Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
idg
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Jira
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
ResearchAndDevelopment
idg
Commits
3a013b2e
Commit
3a013b2e
authored
4 years ago
by
Bas van der Tol
Browse files
Options
Downloads
Patches
Plain Diff
WIP: add idg-cal scripts
parent
d572e953
No related branches found
No related tags found
1 merge request
!47
Idg cal jakob
Pipeline
#7754
failed
4 years ago
Stage: prepare
Stage: build
Stage: integration_and_deploy
Changes
4
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
CMakeLists.txt
+3
-2
3 additions, 2 deletions
CMakeLists.txt
idg-cal/CMakeLists.txt
+11
-0
11 additions, 0 deletions
idg-cal/CMakeLists.txt
idg-cal/h5parmwriter.py
+0
-0
0 additions, 0 deletions
idg-cal/h5parmwriter.py
idg-cal/idgcaldpstep.py
+431
-0
431 additions, 0 deletions
idg-cal/idgcaldpstep.py
with
445 additions
and
2 deletions
CMakeLists.txt
+
3
−
2
View file @
3a013b2e
...
...
@@ -44,10 +44,10 @@ option (BUILD_WITH_PYTHON "Build Python bindings" OFF)
if
(
${
CMAKE_VERSION
}
VERSION_GREATER
"3.12.4"
)
find_package
(
Python REQUIRED
)
set
(
PYTHON_INSTALL_DIR
${
CMAKE_INSTALL_PREFIX
}
/lib/python
${
Python_VERSION_MAJOR
}
.
${
Python_VERSION_MINOR
}
/
dist
-packages/idg
)
set
(
PYTHON_INSTALL_DIR
${
CMAKE_INSTALL_PREFIX
}
/lib/python
${
Python_VERSION_MAJOR
}
.
${
Python_VERSION_MINOR
}
/
site
-packages/idg
)
else
()
find_package
(
PythonInterp REQUIRED
)
set
(
PYTHON_INSTALL_DIR
${
CMAKE_INSTALL_PREFIX
}
/lib/python
${
PYTHON_VERSION_MAJOR
}
.
${
PYTHON_VERSION_MINOR
}
/
dist
-packages/idg
)
set
(
PYTHON_INSTALL_DIR
${
CMAKE_INSTALL_PREFIX
}
/lib/python
${
PYTHON_VERSION_MAJOR
}
.
${
PYTHON_VERSION_MINOR
}
/
site
-packages/idg
)
endif
()
if
(
BUILD_TESTING
)
...
...
@@ -58,6 +58,7 @@ add_subdirectory("idg-util")
add_subdirectory
(
"idg-lib"
)
add_subdirectory
(
"idg-bin"
)
add_subdirectory
(
"idg-api"
)
add_subdirectory
(
"idg-cal"
)
# Write environment-module
configure_file
(
...
...
This diff is collapsed.
Click to expand it.
idg-cal/CMakeLists.txt
0 → 100644
+
11
−
0
View file @
3a013b2e
# Copyright (C) 2020 ASTRON (Netherlands Institute for Radio Astronomy)
# SPDX-License-Identifier: GPL-3.0-or-later
# Install Python modules.
install
(
FILES
# __init__.py
h5parmwriter.py
idgcaldpstep.py
DESTINATION
${
PYTHON_INSTALL_DIR
}
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
scripts
/h5parmwriter.py
→
idg-cal
/h5parmwriter.py
+
0
−
0
View file @
3a013b2e
File moved
This diff is collapsed.
Click to expand it.
idg-cal/idgcaldpstep.py
0 → 100644
+
431
−
0
View file @
3a013b2e
# Copyright (C) 2020 ASTRON (Netherlands Institute for Radio Astronomy)
# SPDX-License-Identifier: GPL-3.0-or-later
import
dppp
import
numpy
as
np
import
idg
import
idg.util
import
astropy.io.fits
as
fits
import
scipy.linalg
import
time
class
IDGCalDPStep
(
dppp
.
DPStep
):
def
__init__
(
self
,
parset
,
prefix
):
super
().
__init__
()
self
.
read_parset
(
parset
,
prefix
)
self
.
dpbuffers
=
[]
self
.
is_initialized
=
False
def
show
(
self
)
:
print
()
print
(
"
IDGCalDPStep
"
)
def
process
(
self
,
dpbuffer
)
:
# Accumulate buffers
self
.
dpbuffers
.
append
(
dpbuffer
)
# If we have accumulated enough data, process it
if
len
(
self
.
dpbuffers
)
==
self
.
nr_timesteps
:
self
.
process_buffers
()
# Send processed data to the next step
for
dpbuffer
in
self
.
dpbuffers
:
self
.
process_next_step
(
dpbuffer
)
# Clear accumulated data
self
.
dpbuffers
=
[]
def
finish
(
self
):
# If there is any remaining data, process it
if
len
(
self
.
dpbuffers
):
# TODO deal with incomplete solution interval
# self.process_buffers()
for
dpbuffer
in
self
.
dpbuffers
:
self
.
process_next_step
(
dpbuffer
)
self
.
dpbuffers
=
[]
def
update_info
(
self
,
dpinfo
):
super
().
update_info
(
dpinfo
)
self
.
info
().
set_need_vis_data
()
self
.
fetch_uvw
=
True
self
.
fetch_weights
=
True
def
read_parset
(
self
,
parset
,
prefix
):
self
.
parset
=
parset
self
.
prefix
=
prefix
solint
=
parset
.
getInt
(
prefix
+
"
solint
"
,
0
)
if
solint
:
self
.
solution_interval_amplitude
=
solint
self
.
solution_interval_phase
=
solint
else
:
self
.
solution_interval_amplitude
=
parset
.
getInt
(
prefix
+
"
solintamplitude
"
,
0
)
self
.
solution_interval_phase
=
parset
.
getInt
(
prefix
+
"
solintphase
"
,
0
)
self
.
imagename
=
parset
.
getString
(
prefix
+
"
modelimage
"
)
self
.
padding
=
parset
.
getFloat
(
prefix
+
"
padding
"
,
1.2
)
self
.
nr_timeslots
=
40
self
.
nr_timesteps_per_slot
=
4
self
.
nr_timesteps
=
self
.
nr_timeslots
*
self
.
nr_timesteps_per_slot
self
.
nr_correlations
=
4
self
.
subgrid_size
=
32
self
.
taper_support
=
7
self
.
wterm_support
=
5
self
.
aterm_support
=
5
self
.
kernel_size
=
self
.
taper_support
+
self
.
wterm_support
+
self
.
aterm_support
self
.
nr_parameters_ampl
=
6
self
.
nr_parameters_phase
=
3
self
.
nr_parameters0
=
self
.
nr_parameters_ampl
+
self
.
nr_parameters_phase
self
.
nr_parameters
=
self
.
nr_parameters_ampl
+
self
.
nr_parameters_phase
*
self
.
nr_timeslots
self
.
solver_update_gain
=
0.5
self
.
pinv_tol
=
1e-9
self
.
max_iter
=
1
self
.
w_step
=
400.0
def
initialize
(
self
):
self
.
is_initialized
=
True
self
.
nr_stations
=
self
.
info
().
nantenna
()
self
.
nr_baselines
=
(
self
.
nr_stations
*
(
self
.
nr_stations
-
1
))
//
2
self
.
frequencies
=
np
.
array
(
self
.
info
().
get_channel_frequencies
(),
dtype
=
np
.
float32
)
self
.
nr_channels
=
len
(
self
.
frequencies
)
self
.
baselines
=
np
.
zeros
(
shape
=
(
self
.
nr_baselines
),
dtype
=
idg
.
baselinetype
)
station1
=
np
.
array
(
self
.
info
().
get_antenna1
())
station2
=
np
.
array
(
self
.
info
().
get_antenna2
())
self
.
auto_corr_mask
=
(
station1
!=
station2
)
self
.
baselines
[
'
station1
'
]
=
station1
[
self
.
auto_corr_mask
]
self
.
baselines
[
'
station2
'
]
=
station2
[
self
.
auto_corr_mask
]
# initialize proxy
# self.proxy = idg.HybridCUDA.GenericOptimized(self.nr_correlations, self.subgrid_size)
self
.
proxy
=
idg
.
CPU
.
Optimized
(
self
.
nr_correlations
,
self
.
subgrid_size
)
# read image dimensions from fits header
h
=
fits
.
getheader
(
self
.
imagename
)
N0
=
h
[
"
NAXIS1
"
]
self
.
cell_size
=
abs
(
h
[
"
CDELT1
"
])
/
180
*
np
.
pi
# compute padded image size
N
=
next_composite
(
int
(
N0
*
self
.
padding
))
self
.
grid_size
=
N
self
.
image_size
=
N
*
self
.
cell_size
# Initialize empty grid
self
.
grid
=
np
.
zeros
(
shape
=
(
self
.
nr_correlations
,
self
.
grid_size
,
self
.
grid_size
),
dtype
=
idg
.
gridtype
)
# Initialize taper
taper
=
idgwindow
(
self
.
subgrid_size
,
self
.
taper_support
,
self
.
padding
)
self
.
taper2
=
np
.
outer
(
taper
,
taper
).
astype
(
np
.
float32
)
taper_
=
np
.
fft
.
fftshift
(
np
.
fft
.
fft
(
np
.
fft
.
ifftshift
(
taper
)))
taper_grid
=
np
.
zeros
(
self
.
grid_size
,
dtype
=
np
.
complex128
)
taper_grid
[(
self
.
grid_size
-
self
.
subgrid_size
)
//
2
:(
self
.
grid_size
+
self
.
subgrid_size
)
//
2
]
=
taper_
*
np
.
exp
(
-
1j
*
np
.
linspace
(
-
np
.
pi
/
2
,
np
.
pi
/
2
,
self
.
subgrid_size
,
endpoint
=
False
))
taper_grid
=
np
.
fft
.
fftshift
(
np
.
fft
.
ifft
(
np
.
fft
.
ifftshift
(
taper_grid
))).
real
*
self
.
grid_size
/
self
.
subgrid_size
taper_grid0
=
taper_grid
[(
N
-
N0
)
//
2
:(
N
+
N0
)
//
2
]
# read image data, assume Stokes I
d
=
fits
.
getdata
(
self
.
imagename
)
self
.
grid
[
0
,
(
N
-
N0
)
//
2
:(
N
+
N0
)
//
2
,
(
N
-
N0
)
//
2
:(
N
+
N0
)
//
2
]
=
d
[
0
,
0
,:,:]
/
np
.
outer
(
taper_grid0
,
taper_grid0
)
self
.
grid
[
3
,
(
N
-
N0
)
//
2
:(
N
+
N0
)
//
2
,
(
N
-
N0
)
//
2
:(
N
+
N0
)
//
2
]
=
d
[
0
,
0
,:,:]
/
np
.
outer
(
taper_grid0
,
taper_grid0
)
self
.
proxy
.
transform
(
idg
.
ImageDomainToFourierDomain
,
self
.
grid
)
self
.
shift
=
np
.
array
((
0.0
,
0.0
,
0.0
),
dtype
=
np
.
float32
)
self
.
aterms_offsets
=
idg
.
util
.
get_example_aterms_offset
(
self
.
nr_timeslots
,
self
.
nr_timesteps
)
self
.
Bampl
,
self
.
Tampl
=
polynomial_basis_functions
(
self
.
subgrid_size
,
self
.
image_size
,
self
.
nr_parameters_ampl
)
self
.
Bphase
,
self
.
Tphase
=
polynomial_basis_functions
(
self
.
subgrid_size
,
self
.
image_size
,
self
.
nr_parameters_phase
)
def
process_buffers
(
self
):
if
not
self
.
is_initialized
:
self
.
initialize
()
# Concatenate accumulated data and display just the shapes
visibilities
=
np
.
stack
([
np
.
array
(
dpbuffer
.
get_data
(),
copy
=
False
)
for
dpbuffer
in
self
.
dpbuffers
],
axis
=
1
)
visibilities
=
visibilities
[
self
.
auto_corr_mask
,:,:]
flags
=
np
.
stack
([
np
.
array
(
dpbuffer
.
get_flags
(),
copy
=
False
)
for
dpbuffer
in
self
.
dpbuffers
],
axis
=
1
)
flags
=
flags
[
self
.
auto_corr_mask
,:,:]
weights
=
np
.
stack
([
np
.
array
(
dpbuffer
.
get_weights
(),
copy
=
False
)
for
dpbuffer
in
self
.
dpbuffers
],
axis
=
1
)
weights
=
weights
[
self
.
auto_corr_mask
,:,:]
uvw_
=
np
.
stack
([
np
.
array
(
dpbuffer
.
get_uvw
(),
copy
=
False
)
for
dpbuffer
in
self
.
dpbuffers
],
axis
=
1
)
uvw
=
np
.
zeros
(
shape
=
(
self
.
nr_baselines
,
self
.
nr_timesteps
),
dtype
=
idg
.
uvwtype
)
print
(
f
"
shape uvw_:
"
,
uvw_
.
shape
)
print
(
self
.
auto_corr_mask
.
shape
)
print
(
uvw_
[
self
.
auto_corr_mask
,:,
0
].
shape
)
uvw
[
'
u
'
]
=
uvw_
[
self
.
auto_corr_mask
,:,
0
]
uvw
[
'
v
'
]
=
-
uvw_
[
self
.
auto_corr_mask
,:,
1
]
uvw
[
'
w
'
]
=
-
uvw_
[
self
.
auto_corr_mask
,:,
2
]
print
(
f
"
shape of baselines:
"
,
self
.
baselines
.
shape
)
print
(
f
"
shape of visibilities:
"
,
visibilities
.
shape
)
print
(
f
"
shape of flags:
"
,
flags
.
shape
)
print
(
f
"
shape of weights:
"
,
weights
.
shape
)
print
(
f
"
shape uvw:
"
,
uvw
.
shape
)
weights
*=
~
flags
self
.
proxy
.
calibrate_init
(
self
.
w_step
,
self
.
shift
,
self
.
cell_size
,
self
.
kernel_size
,
self
.
subgrid_size
,
self
.
frequencies
,
visibilities
,
weights
,
uvw
,
self
.
baselines
,
self
.
grid
,
self
.
aterms_offsets
,
self
.
taper2
)
X0
=
np
.
ones
((
self
.
nr_stations
,
1
))
X1
=
np
.
zeros
((
self
.
nr_stations
,
1
))
# initialize parameters
parameters
=
np
.
concatenate
((
X0
,)
+
(
self
.
nr_parameters
-
1
)
*
(
X1
,),
axis
=
1
)
for
i
in
range
(
self
.
nr_stations
):
parameters
[
i
,:
self
.
nr_parameters_ampl
]
=
np
.
dot
(
np
.
linalg
.
inv
(
self
.
Tampl
),
parameters
[
i
,:
self
.
nr_parameters_ampl
])
for
j
in
range
(
self
.
nr_timeslots
):
parameters
[
i
,
self
.
nr_parameters_ampl
+
j
*
self
.
nr_parameters_phase
:
self
.
nr_parameters_ampl
+
(
j
+
1
)
*
self
.
nr_parameters_phase
]
=
\
np
.
dot
(
np
.
linalg
.
inv
(
self
.
Tphase
),
parameters
[
i
,
self
.
nr_parameters_ampl
+
j
*
self
.
nr_parameters_phase
:
self
.
nr_parameters_ampl
+
(
j
+
1
)
*
self
.
nr_parameters_phase
])
aterms
=
idg
.
util
.
get_identity_aterms
(
self
.
nr_timeslots
,
self
.
nr_stations
,
self
.
subgrid_size
,
self
.
nr_correlations
)
aterms_offsets
=
idg
.
util
.
get_example_aterms_offset
(
self
.
nr_timeslots
,
self
.
nr_timesteps
)
aterm_ampl
=
np
.
tensordot
(
parameters
[:,:
self
.
nr_parameters_ampl
]
,
self
.
Bampl
,
axes
=
((
1
,),
(
0
,)))
aterm_phase
=
np
.
exp
(
1j
*
np
.
tensordot
(
parameters
[:,
self
.
nr_parameters_ampl
:].
reshape
((
self
.
nr_stations
,
self
.
nr_timeslots
,
self
.
nr_parameters_phase
)),
self
.
Bphase
,
axes
=
((
2
,),
(
0
,))))
aterms
[:,:,:,:,:]
=
aterm_phase
.
transpose
((
1
,
0
,
2
,
3
,
4
))
*
aterm_ampl
nr_iterations
=
0
converged
=
False
max_dx
=
0.0
timer
=
-
time
.
time
()
timer0
=
0
timer1
=
0
previous_residual
=
0.0
while
True
:
nr_iterations
+=
1
print
(
"
iteration nr {0}
"
.
format
(
nr_iterations
),)
max_dx
=
0.0
norm_dx
=
0.0
residual_sum
=
0.0
for
i
in
range
(
self
.
nr_stations
):
print
(
f
"
{
i
}
"
)
timer1
-=
time
.
time
()
# predict visibilities for current solution
hessian
=
np
.
zeros
((
self
.
nr_timeslots
,
self
.
nr_parameters0
,
self
.
nr_parameters0
),
dtype
=
np
.
float64
)
gradient
=
np
.
zeros
((
self
.
nr_timeslots
,
self
.
nr_parameters0
),
dtype
=
np
.
float64
)
residual
=
np
.
zeros
((
1
,
),
dtype
=
np
.
float64
)
aterm_ampl
=
np
.
repeat
(
np
.
tensordot
(
parameters
[
i
,:
self
.
nr_parameters_ampl
],
self
.
Bampl
,
axes
=
((
0
,),
(
0
,)))[
np
.
newaxis
,:],
self
.
nr_timeslots
,
axis
=
0
)
aterm_phase
=
np
.
exp
(
1j
*
np
.
tensordot
(
parameters
[
i
,
self
.
nr_parameters_ampl
:].
reshape
((
self
.
nr_timeslots
,
self
.
nr_parameters_phase
)),
self
.
Bphase
,
axes
=
((
1
,),
(
0
,))))
aterm_derivatives_ampl
=
aterm_phase
[:,
np
.
newaxis
,:,:,:]
*
self
.
Bampl
[
np
.
newaxis
,:,:,:,:]
aterm_derivatives_phase
=
1j
*
aterm_ampl
[:,
np
.
newaxis
,:,:,:]
*
aterm_phase
[:,
np
.
newaxis
,:,:,:]
*
self
.
Bphase
[
np
.
newaxis
,:,:,:,:]
aterm_derivatives
=
np
.
concatenate
((
aterm_derivatives_ampl
,
aterm_derivatives_phase
),
axis
=
1
)
aterm_derivatives
=
np
.
ascontiguousarray
(
aterm_derivatives
,
dtype
=
np
.
complex64
)
timer0
-=
time
.
time
()
self
.
proxy
.
calibrate_update
(
i
,
aterms
,
aterm_derivatives
,
hessian
,
gradient
,
residual
)
timer0
+=
time
.
time
()
residual0
=
residual
[
0
]
residual_sum
+=
residual
[
0
]
gradient
=
np
.
concatenate
((
np
.
sum
(
gradient
[:,:
self
.
nr_parameters_ampl
],
axis
=
0
),
gradient
[:,
self
.
nr_parameters_ampl
:].
flatten
()))
for
t
in
range
(
self
.
nr_timeslots
):
print
(
hessian
[
t
,:,:])
H00
=
hessian
[:,
:
self
.
nr_parameters_ampl
,
:
self
.
nr_parameters_ampl
].
sum
(
axis
=
0
)
H01
=
np
.
concatenate
([
hessian
[
t
,
:
self
.
nr_parameters_ampl
,
self
.
nr_parameters_ampl
:]
for
t
in
range
(
self
.
nr_timeslots
)],
axis
=
1
)
H10
=
np
.
concatenate
([
hessian
[
t
,
self
.
nr_parameters_ampl
:,
:
self
.
nr_parameters_ampl
]
for
t
in
range
(
self
.
nr_timeslots
)],
axis
=
0
)
H11
=
scipy
.
linalg
.
block_diag
(
*
[
hessian
[
t
,
self
.
nr_parameters_ampl
:,
self
.
nr_parameters_ampl
:]
for
t
in
range
(
self
.
nr_timeslots
)])
hessian
=
np
.
block
([[
H00
,
H01
],[
H10
,
H11
]])
hessian0
=
hessian
dx
=
np
.
dot
(
np
.
linalg
.
pinv
(
hessian
,
self
.
pinv_tol
),
gradient
)
norm_dx
+=
np
.
linalg
.
norm
(
dx
)
**
2
if
max_dx
<
np
.
amax
(
abs
(
dx
))
:
max_dx
=
np
.
amax
(
abs
(
dx
))
i_max
=
i
p0
=
parameters
[
i
].
copy
()
parameters
[
i
]
+=
self
.
solver_update_gain
*
dx
aterm_ampl
=
np
.
repeat
(
np
.
tensordot
(
parameters
[
i
,:
self
.
nr_parameters_ampl
],
self
.
Bampl
,
axes
=
((
0
,),
(
0
,)))[
np
.
newaxis
,:],
self
.
nr_timeslots
,
axis
=
0
)
aterm_phase
=
np
.
exp
(
1j
*
np
.
tensordot
(
parameters
[
i
,
self
.
nr_parameters_ampl
:].
reshape
((
self
.
nr_timeslots
,
self
.
nr_parameters_phase
)),
self
.
Bphase
,
axes
=
((
1
,),
(
0
,))))
aterms0
=
aterms
.
copy
()
aterms
[:,
i
]
=
aterm_ampl
*
aterm_phase
timer1
+=
time
.
time
()
dresidual
=
previous_residual
-
residual_sum
fractional_dresidual
=
dresidual
/
residual_sum
print
(
max_dx
,
fractional_dresidual
)
previous_residual
=
residual_sum
converged
=
(
nr_iterations
>
1
)
and
(
fractional_dresidual
<
1e-6
)
if
converged
:
msg
=
"
Converged after {nr_iterations} iterations - {max_dx}
"
.
format
(
nr_iterations
=
nr_iterations
,
max_dx
=
max_dx
)
print
(
msg
)
break
if
nr_iterations
==
self
.
max_iter
:
msg
=
"
Did not converge after {nr_iterations} iterations - {max_dx}
"
.
format
(
nr_iterations
=
nr_iterations
,
max_dx
=
max_dx
)
print
(
msg
)
#figtitle.set_text(msg)
break
parameters_polynomial
=
parameters
.
copy
()
for
i
in
range
(
self
.
nr_stations
):
parameters_polynomial
[
i
,:
self
.
nr_parameters_ampl
]
=
np
.
dot
(
self
.
Tampl
,
parameters_polynomial
[
i
,:
self
.
nr_parameters_ampl
])
for
j
in
range
(
self
.
nr_timeslots
):
parameters_polynomial
[
i
,
self
.
nr_parameters_ampl
+
j
*
self
.
nr_parameters_phase
:
self
.
nr_parameters_ampl
+
(
j
+
1
)
*
self
.
nr_parameters_phase
]
=
\
np
.
dot
(
self
.
Tphase
,
parameters_polynomial
[
i
,
self
.
nr_parameters_ampl
+
j
*
self
.
nr_parameters_phase
:
self
.
nr_parameters_ampl
+
(
j
+
1
)
*
self
.
nr_parameters_phase
])
def
polynomial_basis_functions
(
subgrid_size
,
image_size
,
nr_terms
):
B0
=
np
.
ones
((
1
,
subgrid_size
,
subgrid_size
,
1
))
s
=
image_size
/
subgrid_size
*
(
subgrid_size
-
1
)
l
=
s
*
np
.
linspace
(
-
0.5
,
0.5
,
subgrid_size
)
m
=
-
s
*
np
.
linspace
(
-
0.5
,
0.5
,
subgrid_size
)
B1
,
B2
=
np
.
meshgrid
(
l
,
m
)
B1
=
B1
[
np
.
newaxis
,
:,
:,
np
.
newaxis
]
B2
=
B2
[
np
.
newaxis
,
:,
:,
np
.
newaxis
]
basis_functions
=
[]
order
=
0
while
True
:
for
i
in
range
(
order
+
1
):
basis_functions
.
append
(
B1
**
i
*
B2
**
(
order
-
i
))
if
len
(
basis_functions
)
==
nr_terms
:
break
if
len
(
basis_functions
)
==
nr_terms
:
break
order
+=
1
basis_functions
=
np
.
concatenate
(
basis_functions
)
basis_functions
=
basis_functions
.
reshape
((
-
1
,
subgrid_size
*
subgrid_size
)).
T
U
,
S
,
V
,
=
np
.
linalg
.
svd
(
basis_functions
)
basis_functions_orthonormal
=
U
[:,
:
nr_terms
]
T
=
np
.
dot
(
np
.
linalg
.
pinv
(
basis_functions
),
basis_functions_orthonormal
)
basis_functions_orthonormal
=
basis_functions_orthonormal
.
T
.
reshape
((
-
1
,
subgrid_size
,
subgrid_size
,
1
))
basis_functions_orthonormal
=
np
.
kron
(
basis_functions_orthonormal
,
np
.
array
([
1.0
,
0.0
,
0.0
,
1.0
]))
return
basis_functions_orthonormal
,
T
def
next_composite
(
n
):
n
+=
(
n
&
1
)
while
True
:
nn
=
n
while
((
nn
%
2
)
==
0
):
nn
/=
2
while
((
nn
%
3
)
==
0
):
nn
/=
3
while
((
nn
%
5
)
==
0
):
nn
/=
5
if
(
nn
==
1
):
return
n
n
+=
2
def
idgwindow
(
N
,
W
,
padding
,
offset
=
0.5
,
l_range
=
None
):
"""
"""
l_range_inner
=
np
.
linspace
(
-
(
1
/
padding
)
/
2
,(
1
/
padding
)
/
2
,
N
*
16
+
1
)
vl
=
(
np
.
arange
(
N
)
-
N
/
2
+
offset
)
/
N
vu
=
np
.
arange
(
N
)
-
N
/
2
+
offset
Q
=
np
.
sinc
((
N
-
W
+
1
)
*
(
vl
[:,
np
.
newaxis
]
-
vl
[
np
.
newaxis
,:]))
B
=
[]
RR
=
[]
for
l
in
l_range_inner
:
d
=
np
.
mean
(
np
.
exp
(
2
*
np
.
pi
*
1j
*
vu
[
np
.
newaxis
,:]
*
(
vl
[:,
np
.
newaxis
]
-
l
)),
axis
=
1
).
real
D
=
d
[:,
np
.
newaxis
]
*
d
[
np
.
newaxis
,:]
b_avg
=
np
.
sinc
((
N
-
W
+
1
)
*
(
l
-
vl
))
B
.
append
(
b_avg
*
d
)
S
=
b_avg
[:,
np
.
newaxis
]
*
b_avg
[
np
.
newaxis
,:]
RR
.
append
(
D
*
(
Q
-
S
))
B
=
np
.
array
(
B
)
RR
=
np
.
array
(
RR
)
taper
=
np
.
ones
(
len
(
l_range_inner
))
for
q
in
range
(
10
):
R
=
np
.
sum
((
RR
*
1
/
taper
[:,
np
.
newaxis
,
np
.
newaxis
]
**
2
),
axis
=
0
)
R1
=
R
[:,:(
N
//
2
)]
+
R
[:,:(
N
//
2
)
-
1
:
-
1
]
R2
=
R1
[:(
N
//
2
),:]
+
R1
[:(
N
//
2
)
-
1
:
-
1
,:]
U
,
S1
,
V
=
np
.
linalg
.
svd
(
R2
)
a
=
np
.
abs
(
np
.
concatenate
([
U
[:,
-
1
],
U
[::
-
1
,
-
1
]]))
taper
=
np
.
dot
(
B
,
a
)
if
l_range
is
None
:
return
a
else
:
B
=
[]
RR
=
[]
for
l
in
l_range
:
d
=
np
.
mean
(
np
.
exp
(
2
*
np
.
pi
*
1j
*
vu
[
np
.
newaxis
,:]
*
(
vl
[:,
np
.
newaxis
]
-
l
)),
axis
=
1
).
real
D
=
d
[:,
np
.
newaxis
]
*
d
[
np
.
newaxis
,:]
b_avg
=
np
.
sinc
((
N
-
W
+
1
)
*
(
l
-
vl
))
B
.
append
(
b_avg
*
d
)
S
=
b_avg
[:,
np
.
newaxis
]
*
b_avg
[
np
.
newaxis
,:]
RR
.
append
(
D
*
(
Q
-
S
))
B
=
np
.
array
(
B
)
RR
=
np
.
array
(
RR
)
return
a
,
B
,
RR
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment