Skip to content
Snippets Groups Projects
Commit edb2c90e authored by Eric Kooistra's avatar Eric Kooistra
Browse files

Removed clock domain crossing logic for this control register, because that is...

Removed clock domain crossing logic for this control register, because that is done by io_ddr_cross_domain.vhd in io_ddr.vhd. Removed cal_fail and cal_ok, because these are already available via the io_ddr status register.
parent 91328eda
No related branches found
No related tags found
No related merge requests found
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
-- --
-- Copyright (C) 2011 -- Copyright (C) 2015
-- ASTRON (Netherlands Institute for Radio Astronomy) <http://www.astron.nl/> -- ASTRON (Netherlands Institute for Radio Astronomy) <http://www.astron.nl/>
-- P.O.Box 2, 7990 AA Dwingeloo, The Netherlands -- P.O.Box 2, 7990 AA Dwingeloo, The Netherlands
-- --
...@@ -19,26 +19,35 @@ ...@@ -19,26 +19,35 @@
-- --
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
-- RO read only (no VHDL present to access HW in write mode)
-- WO write only (no VHDL present to access HW in read mode)
-- WE write event (=WO)
-- WR write control, read control
-- RW read status, write control
-- RC read, clear on read
-- FR FIFO read
-- FW FIFO write
-- --
-- wi Bits R/W Name Default Description |REG_DDR3| -- Register definition:
--
-- wi Bits R/W Name Default Description
-- ============================================================================= -- =============================================================================
-- 0 [0] WE burstbegin 0x0 -- 0 [0] WE burstbegin 0x0
-- 1 [0] WO wr_not_rd 0x0 -- 1 [0] WO wr_not_rd 0x0
-- 2 [0] RO done 0x1 -- 2 [0] RO done 0x1
-- 3 [1..0] RO cal_result 0x1 cal_fail & cal_ok -- 3 not used
-- 4 [0] RO waitrequest_n 0x1 -- 4 not used
-- 5 [31..0] WO address 0x0 -- 5 [31..0] WO address 0x0
-- 6 [31..0] WO burstsize 0x0 -- 6 [31..0] WO burstsize 0x0
-- 7 [0] WR flush 0x0 -- 7 [0] WR flush 0x0
-- ============================================================================= -- =============================================================================
--
-- Legenda:
--
-- RO read only (no VHDL present to access HW in write mode)
-- WO write only (no VHDL present to access HW in read mode)
-- WE write event (=WO)
-- WR write control, read control
-- RW read status, write control
-- RC read, clear on read
-- FR FIFO read
-- FW FIFO write
--
-- Remarks:
-- . Clock domain crossing between mm_clk and the DDR controller clock domain
-- needs to be done by io_ddr_cross_domain.vhd in io_ddr.
LIBRARY IEEE, common_lib, diag_lib; LIBRARY IEEE, common_lib, diag_lib;
USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_1164.ALL;
...@@ -52,8 +61,6 @@ ENTITY io_ddr_reg IS ...@@ -52,8 +61,6 @@ ENTITY io_ddr_reg IS
-- Clocks and reset -- Clocks and reset
mm_rst : IN STD_LOGIC; -- reset synchronous with mm_clk mm_rst : IN STD_LOGIC; -- reset synchronous with mm_clk
mm_clk : IN STD_LOGIC; -- memory-mapped bus clock mm_clk : IN STD_LOGIC; -- memory-mapped bus clock
dp_rst : IN STD_LOGIC; -- reset synchronous with dp_clk
dp_clk : IN STD_LOGIC; -- other clock domain clock
-- Memory Mapped Slave in mm_clk domain -- Memory Mapped Slave in mm_clk domain
sla_in : IN t_mem_mosi; -- actual ranges defined by c_mm_reg sla_in : IN t_mem_mosi; -- actual ranges defined by c_mm_reg
...@@ -72,13 +79,14 @@ ARCHITECTURE rtl OF io_ddr_reg IS ...@@ -72,13 +79,14 @@ ARCHITECTURE rtl OF io_ddr_reg IS
adr_w => ceil_log2(8), adr_w => ceil_log2(8),
dat_w => c_word_w, -- Use MM bus data width = c_word_w = 32 for all MM registers dat_w => c_word_w, -- Use MM bus data width = c_word_w = 32 for all MM registers
nof_dat => 8, nof_dat => 8,
init_sl => '0'); init_sl => '0');
-- Registers in mm_clk domain
SIGNAL mm_dvr_miso : t_mem_ctlr_miso; SIGNAL i_dvr_mosi : t_mem_ctlr_mosi;
SIGNAL mm_dvr_mosi : t_mem_ctlr_mosi;
BEGIN BEGIN
dvr_mosi <= i_dvr_mosi;
------------------------------------------------------------------------------ ------------------------------------------------------------------------------
-- MM register access in the mm_clk domain -- MM register access in the mm_clk domain
-- . Hardcode the shared MM slave register directly in RTL instead of using -- . Hardcode the shared MM slave register directly in RTL instead of using
...@@ -90,29 +98,30 @@ BEGIN ...@@ -90,29 +98,30 @@ BEGIN
p_mm_reg : PROCESS (mm_rst, mm_clk) p_mm_reg : PROCESS (mm_rst, mm_clk)
BEGIN BEGIN
IF mm_rst = '1' THEN IF mm_rst = '1' THEN
sla_out <= c_mem_miso_rst; sla_out <= c_mem_miso_rst;
mm_dvr_mosi <= c_mem_ctlr_mosi_rst; i_dvr_mosi <= c_mem_ctlr_mosi_rst;
ELSIF rising_edge(mm_clk) THEN ELSIF rising_edge(mm_clk) THEN
-- Read access defaults -- Read access defaults
sla_out.rdval <= '0'; sla_out.rdval <= '0';
mm_dvr_mosi.burstbegin <= '0';
-- Write access defaults
i_dvr_mosi.burstbegin <= '0';
-- Write access: set register value -- Write access: set register value
IF sla_in.wr = '1' THEN IF sla_in.wr = '1' THEN
CASE TO_UINT(sla_in.address(c_mm_reg.adr_w-1 DOWNTO 0)) IS CASE TO_UINT(sla_in.address(c_mm_reg.adr_w-1 DOWNTO 0)) IS
-- Write Block Sync -- Write Block Sync
WHEN 0 => WHEN 0 =>
mm_dvr_mosi.burstbegin <= sla_in.wrdata(0); i_dvr_mosi.burstbegin <= sla_in.wrdata(0); -- default to '0' so MM write '1' will yield a pulse of one mm_clk clock cycle
WHEN 1 => WHEN 1 =>
mm_dvr_mosi.wr <= sla_in.wrdata(0); i_dvr_mosi.wr <= sla_in.wrdata(0); -- = wr_not_rd, so no need to control i_dvr_mosi.rd
mm_dvr_mosi.rd <= NOT(sla_in.wrdata(0));
WHEN 5 => WHEN 5 =>
mm_dvr_mosi.address <= sla_in.wrdata(c_mem_ctlr_address_w-1 DOWNTO 0); i_dvr_mosi.address <= sla_in.wrdata(c_mem_ctlr_address_w-1 DOWNTO 0);
WHEN 6 => WHEN 6 =>
mm_dvr_mosi.burstsize <= sla_in.wrdata(c_mem_ctlr_burstsize_w-1 DOWNTO 0); i_dvr_mosi.burstsize <= sla_in.wrdata(c_mem_ctlr_burstsize_w-1 DOWNTO 0);
WHEN 7 => WHEN 7 =>
mm_dvr_mosi.flush <= sla_in.wrdata(0); i_dvr_mosi.flush <= sla_in.wrdata(0);
WHEN OTHERS => NULL; -- unused MM addresses WHEN OTHERS => NULL; -- unused MM addresses
END CASE; END CASE;
...@@ -123,128 +132,14 @@ BEGIN ...@@ -123,128 +132,14 @@ BEGIN
CASE TO_UINT(sla_in.address(c_mm_reg.adr_w-1 DOWNTO 0)) IS CASE TO_UINT(sla_in.address(c_mm_reg.adr_w-1 DOWNTO 0)) IS
-- Read Block Sync -- Read Block Sync
WHEN 2 => WHEN 2 =>
sla_out.rddata(0) <= mm_dvr_miso.done; sla_out.rddata(0) <= dvr_miso.done; -- read only
WHEN 3 =>
sla_out.rddata(1 DOWNTO 0) <= mm_dvr_miso.cal_fail & mm_dvr_miso.cal_ok;
WHEN 4 =>
sla_out.rddata(0) <= mm_dvr_miso.waitrequest_n;
WHEN 7 => WHEN 7 =>
sla_out.rddata(0) <= mm_dvr_mosi.flush; sla_out.rddata(0) <= i_dvr_mosi.flush; -- readback
WHEN OTHERS => NULL; -- unused MM addresses WHEN OTHERS => NULL; -- unused MM addresses
END CASE; END CASE;
END IF; END IF;
END IF; END IF;
END PROCESS; END PROCESS;
------------------------------------------------------------------------------
-- Transfer register value between mm_clk and st_clk domain.
-- If the function of the register ensures that the value will not be used
-- immediately when it was set, then the transfer between the clock domains
-- can be done by wires only. Otherwise if the change in register value can
-- have an immediate effect then the bit or word value needs to be transfered
-- using:
--
-- . common_async --> for single-bit level signal
-- . common_spulse --> for single-bit pulse signal
-- . common_reg_cross_domain --> for a multi-bit (a word) signal
--
-- Typically always use a crossing component for the single bit signals (to
-- be on the safe side) and only use a crossing component for the word
-- signals if it is necessary (to avoid using more logic than necessary).
------------------------------------------------------------------------------
u_spulse_en_evt : ENTITY common_lib.common_spulse
PORT MAP (
in_rst => mm_rst,
in_clk => mm_clk,
in_pulse => mm_dvr_mosi.burstbegin,
in_busy => OPEN,
out_rst => dp_rst,
out_clk => dp_clk,
out_pulse => dvr_mosi.burstbegin
);
u_async_wr : ENTITY common_lib.common_async
GENERIC MAP (
g_rst_level => '0'
)
PORT MAP (
rst => dp_rst,
clk => dp_clk,
din => mm_dvr_mosi.wr,
dout => dvr_mosi.wr
);
u_async_rd : ENTITY common_lib.common_async
GENERIC MAP (
g_rst_level => '0'
)
PORT MAP (
rst => dp_rst,
clk => dp_clk,
din => mm_dvr_mosi.rd,
dout => dvr_mosi.rd
);
u_async_flush : ENTITY common_lib.common_async
GENERIC MAP (
g_rst_level => '0'
)
PORT MAP (
rst => dp_rst,
clk => dp_clk,
din => mm_dvr_mosi.flush,
dout => dvr_mosi.flush
);
u_async_done : ENTITY common_lib.common_async
GENERIC MAP (
g_rst_level => '0'
)
PORT MAP (
rst => mm_rst,
clk => mm_clk,
din => dvr_miso.done,
dout => mm_dvr_miso.done
);
u_async_waitrequest_n : ENTITY common_lib.common_async
GENERIC MAP (
g_rst_level => '0'
)
PORT MAP (
rst => mm_rst,
clk => mm_clk,
din => dvr_miso.waitrequest_n,
dout => mm_dvr_miso.waitrequest_n
);
mm_dvr_miso.cal_fail <= dvr_miso.cal_fail;
mm_dvr_miso.cal_ok <= dvr_miso.cal_ok;
u_cross_domain_addr : ENTITY common_lib.common_reg_cross_domain
PORT MAP (
in_rst => mm_rst,
in_clk => mm_clk,
in_dat => mm_dvr_mosi.address,
in_done => OPEN,
out_rst => dp_rst,
out_clk => dp_clk,
out_dat => dvr_mosi.address,
out_new => OPEN
);
u_cross_domain_burstsize : ENTITY common_lib.common_reg_cross_domain
PORT MAP (
in_rst => mm_rst,
in_clk => mm_clk,
in_dat => mm_dvr_mosi.burstsize,
in_done => OPEN,
out_rst => dp_rst,
out_clk => dp_clk,
out_dat => dvr_mosi.burstsize,
out_new => OPEN
);
END rtl; END rtl;
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment