Select Git revision
tech_fifo_component_pkg.vhd
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
fpga.cpp 19.35 KiB
/*
* Copyright 2020 Stichting Nederlandse Wetenschappelijk Onderzoek Instituten,
* ASTRON Netherlands Institute for Radio Astronomy
* Licensed under the Apache License, Version 2.0 (the "License");
*
* you may not use this file except in compliance with the License.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* See ../../LICENSE.txt for more info.
*/
#ifndef _REENTRANT
#error ACK! You need to compile with _REENTRANT defined since this uses threads
#endif
#include <unistd.h>
#include <iostream>
#include <sstream>
#include <fstream>
#include <string.h>
#include <iomanip>
#include <stdio.h>
#include <stdint.h>
//#include <syslog.h>
#include <math.h>
#include <sys/time.h>
#include <arpa/inet.h>
#include "fpga.h"
#include "../tools/mmap.h"
#include "../tools/util.h"
#include<iostream>
#include<fstream>
using namespace std;
extern int debug;
Periph_fpga::Periph_fpga(UCP *ucp,
const string expected_design_name,
const uint expected_firmware_version, const bool enabled)
{
my_expected_design_name = expected_design_name;
my_expected_firmware_version = expected_firmware_version;
my_current_status = "offline";
my_current_temp = -1.;
Enabled = enabled;
if(Enabled) {
registerMap = new RegisterMap(read_reg_map(ucp));
} else {
registerMap = new RegisterMap();
}
// Add composite registers:
registerMap->add_register("fpga/system", 0, 0, 0xffffffff, 0, "RO", "COMP", 0, REG_FORMAT_STRING);
registerMap->add_register("fpga/name", 0, 0, 0xffffffff, 0, "RO", "COMP", 0, REG_FORMAT_STRING);
registerMap->add_register("fpga/stamps", 0, 0, 0xffffffff, 0, "RO", "COMP", 0, REG_FORMAT_STRING);
registerMap->add_register("fpga/note", 0, 0, 0xffffffff, 0, "RO", "COMP", 0, REG_FORMAT_STRING);
registerMap->add_register("fpga/temp", 0, 0, 0xffffffff, 0, "RO", "COMP", 0, REG_FORMAT_STRING);
registerMap->add_register("fpga/status", 0, 0, 0xffffffff, 0, "RO", "COMP", 0, REG_FORMAT_STRING);
registerMap->add_register("fpga/mask", 0, 0, 0xffffffff, 0, "RO", "COMP", 0, REG_FORMAT_STRING);
registerMap->add_register("fpga/rbf", 0, 0, 0xffffffff, 0, "RW", "COMP", 0, REG_FORMAT_STRING);
registerMap->add_register("fpga/flash_init", 0, 0, 0xffffffff, 0, "WO", "COMP", 0, REG_FORMAT_STRING);
registerMap->add_register("fpga/flash_erase", 0, 0, 0xffffffff, 0, "WO", "COMP", 0, REG_FORMAT_STRING);
registerMap->add_register("fpga/flash_pages", 0, 0, 0xffffffff, 0, "WO", "COMP", 0, REG_FORMAT_STRING);
registerMap->add_register("fpga/flash_page", 0, 0, 0xffffffff, 0, "WO", "COMP", 0, REG_FORMAT_STRING);
registerMap->add_register("fpga/flash_prot", 0, 0, 0xffffffff, 0, "WO", "COMP", 0, REG_FORMAT_STRING);
registerMap->add_register("fpga/epcs_wait_busy", 0, 0, 0xffffffff, 0, "RO", "COMP", 0, REG_FORMAT_STRING);
registerMap->add_register("fpga/epcs_mmdp_data", 0, 0, 0xffffffff, 0, "WO", "COMP", 0, REG_FORMAT_STRING);
// Test FPGA by reading system info:
try {
TermOutput termout;
read_system_info(ucp, termout);
} catch(std::exception& e) {
cerr << "Test Periph_fpga::Periph_fpga:read_system_info(): " << e.what() << endl;
}
// rbf_wf.open ("/tmp/rbf.dat", std::ofstream::out | std::ofstream::binary );
// if(!rbf_wf) {
// cerr << "Cannot open file!" << endl;
// exit(-1);
// }
Flash_fact_sector_start = 0;
Flash_fact_sector_end = 159;
Flash_user_sector_start = 160;
Flash_user_sector_end = 319;
Flash_pages_per_sector = 1024;
Flash_page_size_bytes = 256;
Flash_page_start = Flash_user_sector_start * Flash_pages_per_sector;
Flash_select = 1; // default is user
#define FLASH_EPCS_REG_ADDR 0
#define FLASH_EPCS_REG_RDEN 1
#define FLASH_EPCS_REG_READ 2
#define FLASH_EPCS_REG_WRITE 3
#define FLASH_EPCS_REG_SECTOR_ERASE 4
#define FLASH_EPCS_REG_BUSY 5
#define FLASH_EPCS_REG_UNPROTECT 6
}
Periph_fpga::~Periph_fpga()
{
// rbf_wf.close();
if(registerMap != NULL) delete registerMap;
}
bool Periph_fpga::Read(UCP *ucp, const std::string addr_str, const uint32_t offset, const uint32_t nvalues,
uint32_t *data_ptr)
{
bool ret;
if(!Enabled) {
throw runtime_error("disabled "+addr_str);
}
uint32_t addr = registerMap->getValidAddr(addr_str,offset,nvalues);
registerMap->getReadPermission(addr_str);
uint32_t mask = registerMap->getMask((addr_str));
uint32_t shift = registerMap->getShift((addr_str));
bool isfifo = registerMap->type_isfifo((addr_str));
ret = ucp->readRegister(addr,nvalues,data_ptr,isfifo);
if(ret && (shift != 0 || mask != 0xffffffff)) {
for(uint32_t i=0; i < nvalues; i++) {
data_ptr[i] &= mask;
data_ptr[i] = data_ptr[i] >> shift;
}
}
return ret;
}
bool Periph_fpga::Write(UCP *ucp, const std::string addr_str, const uint32_t offset, const uint32_t nvalues,
uint32_t *data_ptr)
{
if(!Enabled) {
throw runtime_error("disabled "+addr_str);
}
uint32_t addr = registerMap->getValidAddr((addr_str),offset,nvalues);
registerMap->getWritePermission((addr_str));
uint32_t shift = registerMap->getShift((addr_str));
uint32_t mask = registerMap->getMask((addr_str));
bool isfifo = registerMap->type_isfifo((addr_str));
if(shift != 0 || mask != 0xffffffff) {
for(uint32_t i=0; i<nvalues; i++) {
data_ptr[i] = data_ptr[i] << shift;
data_ptr[i] &= mask;
}
}
return ucp->writeRegister(addr,nvalues,data_ptr,isfifo);
}
bool Periph_fpga::read_fpga_status(TermOutput& termout, int format)
{
termout.strout << "\"" << my_current_status << "\"";
if(my_current_status == "online") {
termout.valint[0] = 1;
termout.valfloat[0] = 1.;
} else {
termout.valint[0] = 0;
termout.valfloat[0] = 0.;
}
termout.nof_floats = 1;
termout.nof_ints = 1;
termout.datatype = format;
return true;
}
bool Periph_fpga::read_fpga_mask(TermOutput& termout, int format)
{
termout.strout << "\"" << Enabled << "\"";
termout.valint[0] = (int)Enabled;
termout.valfloat[0] = (float)Enabled;
termout.nof_floats = 1;
termout.nof_ints = 1;
termout.datatype = format;
return true;
}
bool Periph_fpga::read_fpga_temp(TermOutput& termout)
{
termout.strout << "\"" << my_current_temp << "\"";
return true;
}
/*
"""Peripheral system_info
Register map:
31 24 23 16 15 8 7 0 wi
|-----------------|-----------------|-----------------|-----------------|
| use_phy[7:0] | 1
|-----------------------------------------------------------------------|
| system_info[31:0] | 0
|-----------------------------------------------------------------------|
system_info[23:20] = firmware version high[3:0]
system_info[19:16] = firmware version low[3:0]
system_info[10] = cs_sim (= g_sim, 0 on HW, 1 in VHDL simulation)
system_info[9:8] = hardware version [1:0] (= 0 for UniBoard 1A and 1B)
system_info[7:0] = node id[7;0]
*/
bool Periph_fpga::read_system_info(UCP *ucp, TermOutput& termout)
{
uint32_t data;
bool retval = Read(ucp, "mm/0/unb2b/system/info",0,1,&data);
std::string design_name = read_design_name(ucp);
termout.strout << "design_name=" << design_name << ", ";
char str[1000];
// FIXME: get rid of magic constants in masks, should be in CCFG:
uint firmware_version = (data & 0x00F00000) >> 20;
uint firmware_subversion = (data & 0x000F0000) >> 16;
sprintf(str,"fw_version=%d.%d",firmware_version,firmware_subversion); termout.strout << str;
if(design_name == my_expected_design_name && firmware_version >= my_expected_firmware_version) {
my_current_status = "online";
retval = true;
} else {
retval = false;
termout.strout << "Unexpected design_name / firmware_version" << endl;
cerr << "Warning: Node configuration mismatch!! (read_design_name/version=" << design_name
<< "/" << firmware_version << "), expected=" << my_expected_design_name
<< "/" << my_expected_firmware_version << ")" << endl;
//syslog(LOG_WARNING,"Node configuration mismatch!! (read_design_name/version=%s/%d, expected=%s/%d)\n",
// design_name.c_str(), firmware_version,
// my_expected_design_name.c_str(), my_expected_firmware_version);
my_current_status = "offline";
registerMap->setAllPermission_NA();
}
return retval;
}
bool Periph_fpga::read(UCP *ucp, TermOutput& termout, const std::string addr,
const std::string type, const uint offs, uint *data, const uint nvalues,
const int format) // FIXME: may delete 'format' arg
{
bool retval = false;
if(type == "mm") {
retval = Read(ucp, addr, offs,nvalues,data);
if(retval) {
for(uint i=0; i < nvalues; i++) {
if(i>0) termout.strout << ",";
termout.strout << data[i];
}
}
} else { // "fpga/..."
if(addr == "fpga/system") {
retval = read_system_info(ucp, termout);
} else if(addr == "fpga/name"){
string str = read_design_name(ucp);
termout.strout << "read_design_name:" << str;
termout.datatype = format;
strcpy(termout.valstr[0], str.c_str());
retval = true;
} else if(addr == "fpga/stamps") {
retval = read_stamps(ucp, termout);
} else if(addr == "fpga/note") {
termout.strout << "read_design_note:" << read_design_note(ucp);
retval = true;
} else if(addr == "fpga/temp") {
retval = read_fpga_temperature(ucp, termout, format);
} else if(addr == "fpga/epcs_wait_busy") {
retval = wait_while_epcs_busy(ucp,1000);
} else if(addr == "fpga/status") {
retval = read_fpga_status(termout, format);
} else if(addr == "fpga/mask") {
retval = read_fpga_mask(termout, format);
} else if(addr == "fpga/scrap") {
retval = read_fpga_scrap(ucp, termout);
} else {
throw runtime_error("address "+addr+" not found!");
}
}
return retval;
}
bool Periph_fpga::write(UCP *ucp, const std::string addr, const std::string type,
const uint offs, const uint *data, const uint len, const int format)
{
bool retval = false;
if(type == "mm") {
retval = Write(ucp, addr, offs, len, (uint32_t *)data);
} else { // "fpga/..."
// if(addr == "fpga/rbf") {
// char *data_ptr=(char *)data;
// cout << "writing: " << len*sizeof(uint32_t) << " bytes" << endl;
// rbf_wf.write(data_ptr, len*sizeof(uint32_t));
// retval = true;
// } else
if(addr == "fpga/flash_init") {
Flash_select = (uint32_t)data[0];
if(Flash_select == 0) { // factory
Flash_page_start = Flash_fact_sector_start * Flash_pages_per_sector;
} else { // user
Flash_page_start = Flash_user_sector_start * Flash_pages_per_sector;
}
} else if(addr == "fpga/flash_erase") {
flash_erase(ucp);
} else if(addr == "fpga/flash_pages") {
retval = flash_pages(ucp, data, len);
} else if(addr == "fpga/flash_page") {
retval = flash_page(ucp, data, len);
} else if(addr == "fpga/flash_prot") {
retval = flash_prot(ucp, data);
} else if(addr == "fpga/epcs_mmdp_data") {
// write to FIFO
retval = Write(ucp, "mm/0/REG_MMDP_DATA", 0, len, (uint32_t *)data);
} else {
throw runtime_error("address "+addr+" not found!");
}
}
return retval;
}
bool Periph_fpga::flash_prot(UCP *ucp, const uint *data)
{
bool retval = false;
uint32_t passphrase_protect = 0;
uint32_t passphrase_unprotect = 0xBEDA221E;
if(*data == 0) { // unprotect
retval = Write(ucp, "mm/0/REG_EPCS", FLASH_EPCS_REG_UNPROTECT, 1, &passphrase_unprotect);
} else { // protect
retval = Write(ucp, "mm/0/REG_EPCS", FLASH_EPCS_REG_UNPROTECT, 1, &passphrase_protect);
}
return retval;
}
bool Periph_fpga::flash_page(UCP *ucp, const uint *data, const uint len)
{
bool retval = false;
wait_while_epcs_busy(ucp,1);
// write address
uint32_t addr = Flash_page_start * Flash_page_size_bytes;
retval = Write(ucp, "mm/0/REG_EPCS", FLASH_EPCS_REG_ADDR, 1, &addr);
// write to FIFO
retval = Write(ucp, "mm/0/REG_MMDP_DATA", 0, len, (uint32_t *)data);
// write_write
uint32_t d = 1;
retval = Write(ucp, "mm/0/REG_EPCS", FLASH_EPCS_REG_WRITE, 1, &d);
return retval;
}
bool Periph_fpga::flash_pages(UCP *ucp, const uint *data, const uint len)
{
bool retval = false;
uint page_size_words = Flash_page_size_bytes / sizeof(uint32_t);
uint nof_pages = ceil_div(len, page_size_words);
cout << "Periph_fpga::flash_pages nof_pages=" << nof_pages << endl;
for(uint p=0; p<nof_pages; p++) {
retval = flash_page(ucp, &data[(p*page_size_words)], page_size_words);
Flash_page_start++;
}
return retval;
}
bool Periph_fpga::wait_while_epcs_busy(UCP *ucp, uint sleeptime)
{
uint32_t data;
bool retval;
//cout << "wait_while_epcs_busy:";
for(int i=0; i<100; i++) {
retval = Read(ucp, "mm/0/REG_EPCS", FLASH_EPCS_REG_BUSY, 1, &data);
if(!retval) break;
if(data == 0) break;
usleep(sleeptime);
//cout << "." << flush;
}
//cout << endl;
if(data != 0) retval = false; // still busy
return retval;
}
bool Periph_fpga::flash_erase_sector(UCP *ucp, uint32_t sector)
{
// We need to write any address in the target sector's address range to select that sector for erase.
// We'll use the base (lowest) address of the sectors for this: sector 0 starts at 0x0, sector 1 starts
// at 0x40000 etc.
bool retval = false;
uint32_t s,d;
std::vector<uint32_t> s_list = {0,0x10000,0x20000,0x30000};
cout << "erase flash sector: " << sector << endl;
for(uint i=0; i < s_list.size(); i++) {
s=sector * 0x40000 + s_list[i];
// write address
retval = Write(ucp, "mm/0/REG_EPCS", FLASH_EPCS_REG_ADDR, 1, &s);
// sector erase
d = 1;
retval = Write(ucp, "mm/0/REG_EPCS", FLASH_EPCS_REG_SECTOR_ERASE, 1, &d);
wait_while_epcs_busy(ucp,50000);
}
return retval;
}
bool Periph_fpga::flash_erase(UCP *ucp)
{
bool retval = false;
uint32_t start, end;
cout << "erase flash for bank: " << Flash_select << endl;
if(Flash_select == 0) { // factory
start = Flash_fact_sector_start;
end = Flash_fact_sector_end+1;
} else { // user
start = Flash_user_sector_start;
end = Flash_user_sector_end+1;
}
for(uint32_t s = start; s < end; s++) {
retval = flash_erase_sector(ucp, s);
}
return retval;
}
string Periph_fpga::read_design_name(UCP *ucp)
{
uint32_t nof_design_name_regs = 4;
uint32_t nvalues = nof_design_name_regs;
//uint32_t *data = new uint32_t[nvalues * sizeof(uint32_t)+1];
uint32_t data[20];
memset((void *)data,0,20);
bool retval = Read(ucp, "mm/0/unb2b/system/info", 2, nvalues, data);
char *str_ptr = (char *)data;
string name = string(str_ptr);
//if(data != NULL) delete[] data;
return (retval ? name : "? (error)");
}
string Periph_fpga::read_design_note(UCP *ucp)
{
uint32_t nof_design_name_regs = 4;
uint32_t nvalues = nof_design_name_regs;
//uint32_t *data = new uint32_t[nvalues * sizeof(uint32_t)+1];
uint32_t data[20];
memset((void *)data,0,20);
bool retval = Read(ucp, "mm/0/unb2b/system/info", 20, nvalues,data);
char *str_ptr = (char *)data;
string note = string(str_ptr);
//if(data != NULL) delete[] data;
return (retval ? note : "? (error)");
}
bool Periph_fpga::read_stamps(UCP *ucp, TermOutput& termout)
{
uint32_t nof_regs = 3;
uint32_t nvalues = nof_regs;
uint32_t data[20];
memset((void *)data,0,20);
//uint32_t *data = new uint32_t[nvalues * sizeof(uint32_t)+1];
bool retval = Read(ucp, "mm/0/unb2b/system/info", 15, nvalues, data);
termout.strout << " Stamp: date=" << data[0] << endl;
termout.strout << " Stamp: time=" << data[1] << endl;
termout.strout << " Stamp: svn=" << data[2] << endl;
//if(data != NULL) delete[] data;
return retval;
}
bool Periph_fpga::read_fpga_temperature(UCP *ucp, TermOutput& termout, int format)
{
bool retval = true;
uint32_t nvalues = 1;
uint32_t data[20];
memset((void *)data,0,20);
//uint32_t *data = new uint32_t[nvalues * sizeof(uint32_t)];
retval = Read(ucp, "mm/0/unb2b/fpga/temp", 0, nvalues, data);
// ADC to engineering
// see the constants: https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_alttemp_sense.pdf
// page 10
float temp = ((693. * (float)data[0]) / 1024.) - 265;
char str[1000];
sprintf(str," FPGA temperature = %.02f [degC]\n", temp); termout.strout << str;
termout.valfloat[0] = temp;
termout.nof_floats = 1;
termout.nof_ints = 0;
termout.datatype = format;
my_current_temp = temp;
//if(data != NULL) delete[] data;
return retval;
}
bool Periph_fpga::read_fpga_scrap(UCP *ucp, TermOutput& termout)
{
bool retval = true;
uint32_t nvalues = 1;
uint32_t data[20];
memset((void *)data,0,20);
retval = Read(ucp, "mm/0/unb2b/scrap_ram/data", 0, nvalues, data);
char str[1000];
sprintf(str," Scrap RAM[0] = %d\n", data[0]); termout.strout << str;
termout.valint[0] = data[0];
termout.nof_floats = 0;
termout.nof_ints = 1;
return retval;
}
bool Periph_fpga::write_wdi_override(UCP *ucp, TermOutput& termout)
{
uint32_t data = 0xB007FAC7;
return Write(ucp, "mm/0/wdi/wdi/reset_word", 0, 1, &data);
}
RegisterMap Periph_fpga::read_reg_map(UCP *ucp)
{
RegisterMap reg;
uint32_t nvalues = REG_ADDR_ROM_SYSTEM_SPAN;
uint32_t addr = REG_ADDR_ROM_SYSTEM;
uint32_t *data = new uint32_t[nvalues * sizeof(uint32_t)];
if(data == NULL) cerr << "malloc error" << endl;
memset((void *)data,0,nvalues * sizeof(uint32_t));
if(!ucp->readRegister(addr, nvalues, data)) {
if(data != NULL) delete[] data;
cerr << "ucp.readRegister failed" << endl;
return reg;
}
for(uint i=0; i < nvalues; i++) {
/*
cout << "data[" << dec << i << "]=0x" << hex << std::setw(8) << std::setfill('0') << data[i] << " ";
for(int j=0;j<4;j++) {
char c = (char)(data[i]>>(8*j)) ;
if (c=='\0') printf("\\0"); else cout << c;
}
cout << endl;
*/
data[i] = ntohl(data[i]);
}
char *str_ptr = (char *)data;
string reg_map_str(str_ptr);
cout << "Periph_fpga::read_reg_map:\n" << reg_map_str << endl;
if(data != NULL) delete[] data;
istringstream iss_regmap(reg_map_str);
return mmap_to_regmap(iss_regmap);
}