Skip to content
Snippets Groups Projects
Commit 486b46f5 authored by Wouter Klijn's avatar Wouter Klijn
Browse files

Task #7491: Output is a ms that should be compared.

parent 67ba1720
Branches
Tags
No related merge requests found
import math
import pyrap.tables as pt
import numpy
import sys
def validate_image_equality(image_1_path, image_2_path, max_delta):
import pyrap.images as pim
def load_and_compare_data_sets(ms1, ms2):
# open the two datasets
ms1 = pt.table(ms1)
ms2 = pt.table(ms2)
# get the difference between the two images
print "comparing images from paths:"
print image_1_path
print image_2_path
im = pim.image('"{0}" - "{1}"'.format(image_1_path, image_2_path))
im.saveas("difference.IM2")
# get the stats of the image
stats_dict = im.statistics()
return_value = compare_image_statistics(stats_dict, max_delta)
#get the amount of rows in the dataset
n_row = len(ms1.getcol('DATA'))
n_complex_vis = 4
if not return_value:
print "\n\n\n"
print "*"*30
print "Statistics of the produced image:"
im = pim.image("{0}".format(image_1_path))
stats_dict_single_image = im.statistics()
print stats_dict_single_image
print "\n\n\n"
print "Statistics of the compare image:"
im = pim.image("{0}".format(image_2_path))
stats_dict_single_image = im.statistics()
print stats_dict_single_image
print "\n\n\n"
print "difference between produced image and the baseline image:"
print "maximum delta: {0}".format(max_delta)
print stats_dict
print "*"*30
# create a target array with the same length as the datacolumn
div_array = numpy.zeros((n_row, 1, n_complex_vis), dtype=numpy.complex64)
ms1_array = ms1.getcol('DATA')
ms2_array = ms2.getcol('CORRECTED_DATA')
return return_value
div_max = 0
for idx in xrange(n_row):
for idy in xrange(n_complex_vis):
div_value = ms1_array[idx][0][idy] - ms2_array[idx][0][idy]
if numpy.abs(div_value) > numpy.abs(div_max):
div_max = div_value
def _test_against_maxdelta(value, max_delta, name):
if math.fabs(value) > max_delta:
print "Dif found: '{0}' difference >{2}<is larger then " \
"the maximum accepted delta: {1}".format(name, max_delta, value)
return True
return False
def compare_image_statistics(stats_dict, max_delta=0.0001):
return_value = False
found_incorrect_datapoint = False
for name, value in stats_dict.items():
if name == "rms":
found_incorrect_datapoint = _test_against_maxdelta(
float(value[0]), max_delta * 300, name)
elif name == "medabsdevmed":
found_incorrect_datapoint = _test_against_maxdelta(
float(value[0]), max_delta * 200, name)
elif name == "minpos":
pass
# this min location might move 100 points while still being the same image
elif name == "min":
found_incorrect_datapoint = _test_against_maxdelta(
float(value[0]), max_delta * 2000, name)
elif name == "maxpos":
pass
# this max location might move 100 points while still being the same image
elif name == "max":
found_incorrect_datapoint = _test_against_maxdelta(
float(value[0]), max_delta * 1500, name)
elif name == "sum":
found_incorrect_datapoint = _test_against_maxdelta(
float(value[0]), max_delta * 200000, name)
elif name == "quartile":
found_incorrect_datapoint = _test_against_maxdelta(
float(value[0]), max_delta * 4000, name)
elif name == "sumsq":
# tested with sum already
pass
elif name == "median":
found_incorrect_datapoint = _test_against_maxdelta(
float(value[0]), max_delta, name)
elif name == "npts":
pass # cannot be tested..
elif name == "sigma":
found_incorrect_datapoint = _test_against_maxdelta(
float(value[0]), max_delta * 300, name)
elif name == "mean":
found_incorrect_datapoint = _test_against_maxdelta(
float(value[0]), max_delta * 3, name)
# if we found an incorrect datapoint in this run or with previous
# results: results in true value if any comparison failed
return_value = return_value or found_incorrect_datapoint
return not return_value
# from here sourcelist compare functions
def validate_source_list_files(source_list_1_path, source_list_2_path, max_delta):
# read the sourcelist files
fp = open(source_list_1_path)
sourcelist1 = fp.read()
fp.close()
fp = open(source_list_2_path)
sourcelist2 = fp.read()
fp.close()
# convert to dataarrays
sourcelist_data_1 = convert_sourcelist_as_string_to_data_array(sourcelist1)
sourcelist_data_2 = convert_sourcelist_as_string_to_data_array(sourcelist2)
return compare_sourcelist_data_arrays(sourcelist_data_1, sourcelist_data_2, max_delta)
def convert_sourcelist_as_string_to_data_array(source_list_as_string):
#split in lines
source_list_lines = source_list_as_string.split("\n")
entries_array = []
#get the format line
format_line_entrie = source_list_lines[0]
# get the format entries
entries_array.append([format_line_entrie.split(",")[0].split("=")[1].strip()])
for entry in format_line_entrie.split(',')[1:]:
entries_array.append([entry.strip()])
# scan all the lines for the actual data
for line in sorted(source_list_lines[2:]): # try sorting based on name (should work :P)
# if empty
if line == "":
continue
# add the data entries
for idx, entrie in enumerate(line.split(",")):
entries_array[idx].append(entrie.strip())
return entries_array
def easyprint_data_arrays(data_array1, data_array2):
print "All data as red from the sourcelists:"
for (first_array, second_array) in zip(data_array1, data_array2):
print first_array
print second_array
def compare_sourcelist_data_arrays(data_array1, data_array2, max_delta=0.0001):
"""
Ugly function to compare two sourcelists.
It needs major refactoring, but for a proof of concept it works
"""
print "######################################################"
found_incorrect_datapoint = False
for (first_array, second_array) in zip(data_array1, data_array2):
# first check if the format string is the same, we have a major fail if this happens
if first_array[0] != second_array[0]:
print "******************* problem:"
print "format strings not equal: {0} != {1}".format(first_array[0], second_array[0])
found_incorrect_datapoint = True
# Hard check on equality of the name of the found sources
if first_array[0] == "Name":
for (entrie1, entrie2) in zip(first_array[1:], second_array[1:]):
if entrie1 != entrie2:
print "The sourcelist entrie names are not the same: \n{0} !=\n {1}".format(entrie1, entrie2)
found_incorrect_datapoint = True
# Hard check on equality of the type of the found sources
elif first_array[0] == "Type":
for (entrie1, entrie2) in zip(first_array[1:], second_array[1:]):
if entrie1 != entrie2:
print "The sourcelist entrie types are not the same: {0} != {1}".format(entrie1, entrie2)
found_incorrect_datapoint = True
# soft check on the Ra: convert to float and compare the values
elif first_array[0] == "Ra":
for (entrie1, entrie2) in zip(first_array[1:], second_array[1:]):
entrie1_as_array = entrie1.split(":")
entrie1_as_float = float(entrie1_as_array[0]) * 3600 + float(entrie1_as_array[1]) * 60 + float(entrie1_as_array[2])# float("".join(entrie1.split(":")))
entrie2_as_array = entrie2.split(":")
entrie2_as_float = float(entrie2_as_array[0]) * 3600 + float(entrie2_as_array[1]) * 60 + float(entrie2_as_array[2])
if not math.fabs(entrie1_as_float - entrie2_as_float) < (max_delta * 10000) :
print "we have a problem Ra's are not the same within max_delta: {0} != {1} max_delta_ra = {2}".format(
entrie1, entrie2, max_delta * 10000)
found_incorrect_datapoint = True
elif first_array[0] == "Dec":
for (entrie1, entrie2) in zip(first_array[1:], second_array[1:]):
entrie1_as_array = entrie1.strip("+").split(".")
entrie1_as_float = float(entrie1_as_array[0]) * 3600 + float(entrie1_as_array[1]) * 60 + \
float("{0}.{1}".format(entrie1_as_array[2], entrie1_as_array[3]))
entrie2_as_array = entrie2.strip("+").split(".")
entrie2_as_float = float(entrie2_as_array[0]) * 3600 + float(entrie2_as_array[1]) * 60 + \
float("{0}.{1}".format(entrie2_as_array[2], entrie2_as_array[3]))
if not math.fabs(entrie1_as_float - entrie2_as_float) < (max_delta * 10000) :
print "Dec's are not the same within max_delta: {0} != {1} max_delta_ra = {2}".format(
entrie1, entrie2, max_delta * 10000)
found_incorrect_datapoint = True
elif first_array[0] == "I":
for (entrie1, entrie2) in zip(first_array[1:], second_array[1:]):
entrie1_as_float = float(entrie1)
entrie2_as_float = float(entrie2)
if not math.fabs(entrie1_as_float - entrie2_as_float) < (max_delta * 2000):
print "I's are not the same within max_delta {0} != {1} max_delta_I = {2} ".format(
entrie1_as_float, entrie2_as_float, max_delta * 1000)
found_incorrect_datapoint = True
elif first_array[0] == "Q":
for (entrie1, entrie2) in zip(first_array[1:], second_array[1:]):
entrie1_as_float = float(entrie1)
entrie2_as_float = float(entrie2)
if not math.fabs(entrie1_as_float - entrie2_as_float) < (max_delta * 1000):
print "Q's are not the same within max_delta {0} != {1} max_delta_I = {2} ".format(
entrie1_as_float, entrie2_as_float, max_delta * 1000)
found_incorrect_datapoint = True
elif first_array[0] == "U":
for (entrie1, entrie2) in zip(first_array[1:], second_array[1:]):
entrie1_as_float = float(entrie1)
entrie2_as_float = float(entrie2)
if not math.fabs(entrie1_as_float - entrie2_as_float) < (max_delta * 1000):
print "Q's are not the same within max_delta {0} != {1} max_delta_I = {2} ".format(
entrie1_as_float, entrie2_as_float, max_delta * 1000)
found_incorrect_datapoint = True
elif first_array[0] == "V":
for (entrie1, entrie2) in zip(first_array[1:], second_array[1:]):
entrie1_as_float = float(entrie1)
entrie2_as_float = float(entrie2)
if not math.fabs(entrie1_as_float - entrie2_as_float) < (max_delta * 1000):
print "V's are not the same within max_delta {0} != {1} max_delta_I = {2} ".format(
entrie1_as_float, entrie2_as_float, max_delta * 1000)
found_incorrect_datapoint = True
elif first_array[0] == "MajorAxis":
for (entrie1, entrie2) in zip(first_array[1:], second_array[1:]):
entrie1_as_float = float(entrie1)
entrie2_as_float = float(entrie2)
if not math.fabs(entrie1_as_float - entrie2_as_float) < (max_delta * 60000):
print "MajorAxis's are not the same within max_delta {0} != {1} max_delta_I = {2} ".format(
entrie1_as_float, entrie2_as_float, max_delta * 50000)
found_incorrect_datapoint = True
elif first_array[0] == "MinorAxis":
for (entrie1, entrie2) in zip(first_array[1:], second_array[1:]):
entrie1_as_float = float(entrie1)
entrie2_as_float = float(entrie2)
if not math.fabs(entrie1_as_float - entrie2_as_float) < (max_delta * 30000):
print "MinorAxis's are not the same within max_delta {0} != {1} max_delta_I = {2} ".format(
entrie1_as_float, entrie2_as_float, max_delta * 30000)
found_incorrect_datapoint = True
elif first_array[0] == "Orientation":
for (entrie1, entrie2) in zip(first_array[1:], second_array[1:]):
entrie1_as_float = float(entrie1)
entrie2_as_float = float(entrie2)
if not math.fabs(entrie1_as_float - entrie2_as_float) < (max_delta * 70000):
print "Orientation's are not the same within max_delta {0} != {1} max_delta_I = {2} ".format(
entrie1_as_float, entrie2_as_float, max_delta * 10000)
found_incorrect_datapoint = True
elif first_array[0].split("=")[0].strip() == "ReferenceFrequency":
for (entrie1, entrie2) in zip(first_array[1:], second_array[1:]):
entrie1_as_float = float(entrie1)
entrie2_as_float = float(entrie2)
if not math.fabs(entrie1_as_float - entrie2_as_float) < (max_delta * 10000000):
print "Orientation's are not the same within max_delta {0} != {1} max_delta_I = {2} ".format(
entrie1_as_float, entrie2_as_float, max_delta * 10000000)
found_incorrect_datapoint = True
elif first_array[0].split("=")[0].strip() == "SpectralIndex":
# Not known yet what will be in the spectral index: therefore do not test it
pass
else:
print "unknown format line entrie found: delta fails"
print first_array[0]
found_incorrect_datapoint = True
if found_incorrect_datapoint:
print "######################################################"
print "compared the following data arrays:"
easyprint_data_arrays(data_array1, data_array2)
print "######################################################"
# return inverse of found_incorrect_datapoint to signal delta test success
return not found_incorrect_datapoint
# Test data:
source_list_as_string = """
format = Name, Type, Ra, Dec, I, Q, U, V, MajorAxis, MinorAxis, Orientation, ReferenceFrequency='6.82495e+07', SpectralIndex='[]'
/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i3_s3_g3, GAUSSIAN, 14:58:34.711, +71.42.19.636, 3.145e+01, 0.0, 0.0, 0.0, 1.79857e+02, 1.49783e+02, 1.24446e+02, 6.82495e+07, [0.000e+00]
/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i2_s2_g2, GAUSSIAN, 15:09:52.818, +70.48.01.625, 2.321e+01, 0.0, 0.0, 0.0, 2.23966e+02, 1.09786e+02, 1.32842e+02, 6.82495e+07, [0.000e+00]
/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i4_s4_g4, GAUSSIAN, 14:53:10.634, +69.29.31.920, 1.566e+01, 0.0, 0.0, 0.0, 1.25136e+02, 4.72783e+01, 6.49083e+01, 6.82495e+07, [0.000e+00]
/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i0_s0_g0, POINT, 15:20:15.370, +72.27.35.077, 1.151e+01, 0.0, 0.0, 0.0, 0.00000e+00, 0.00000e+00, 0.00000e+00, 6.82495e+07, [0.000e+00]
/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i1_s1_g1, POINT, 15:15:15.623, +66.54.31.670, 4.138e+00, 0.0, 0.0, 0.0, 0.00000e+00, 0.00000e+00, 0.00000e+00, 6.82495e+07, [0.000e+00]
"""
source_list_as_string2 = """
format = Name, Type, Ra, Dec, I, Q, U, V, MajorAxis, MinorAxis, Orientation, ReferenceFrequency='6.82495e+07', SpectralIndex='[]'
/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i3_s3_g3, GAUSSIAN, 14:58:34.711, +71.42.19.636, 3.146e+01, 0.0, 0.0, 0.0, 1.79857e+02, 1.49783e+02, 1.24446e+02, 6.82496e+07, [0.000e+00]
/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i2_s2_g2, GAUSSIAN, 15:09:52.818, +70.48.01.625, 2.321e+01, 0.0, 0.0, 0.0, 2.23966e+02, 1.09786e+02, 1.32842e+02, 6.82495e+07, [0.000e+00]
/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i4_s4_g4, GAUSSIAN, 14:53:10.634, +69.29.31.920, 1.566e+01, 0.0, 0.0, 0.0, 1.25136e+02, 4.72783e+01, 6.49083e+01, 6.82495e+07, [0.000e+00]
/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i0_s0_g0, POINT, 15:20:15.370, +72.27.35.077, 1.151e+01, 0.0, 0.0, 0.0, 0.00000e+00, 0.00000e+00, 0.00000e+00, 6.82495e+07, [0.000e+00]
/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i1_s1_g1, POINT, 15:15:15.623, +66.54.31.670, 4.138e+00, 0.0, 0.0, 0.0, 0.00000e+00, 0.00000e+00, 0.00000e+00, 6.82495e+07, [0.000e+00]
"""
#entries_array = convert_sourcelist_as_string_to_data_array(source_list_as_string)
#entries_array2 = convert_sourcelist_as_string_to_data_array(source_list_as_string2)
#print compare_sourcelist_data_arrays(entries_array, entries_array2, 0.0001)
image_data = {'rms': [ 0.], 'medabsdevmed':[ 0.], 'minpos': [0, 0, 0, 0]
, 'min':[ 0.], 'max': [ 0.],
'quartile': [ 0.], 'sumsq': [ 0.], 'median': [ 0.], 'npts':[ 65536.],
'maxpos': [0, 0, 0, 0], 'sigma': [ 0.], 'mean': [ 0.]}
#{'rms': array([ 0.52093363]), 'medabsdevmed': array([ 0.27387491]), 'minpos': array([156, 221, 0, 0],
#dtype=int32), 'min': array([-2.26162958]), 'max': array([ 24.01361465]), 'sum': array([ 1355.46549538]),
#'quartile': array([ 0.54873329]), 'sumsq': array([ 17784.62525496]), 'median': array([ 0.00240479]),
# 'npts': array([ 65536.]), 'maxpos': array([148, 199, 0, 0], dtype=int32),
# 'sigma': array([ 0.52052685]), 'mean': array([ 0.02068276])}
image_data = {'rms': [ 0.52093363], 'medabsdevmed': [ 0.27387491], 'minpos': [[156, 221, 0, 0], "int32"],
'min': [-2.26162958], 'max': [ 24.01361465], 'sum': [ 1355.46549538],
'quartile' : [ 0.54873329], 'sumsq': [ 17784.62525496], 'median': [ 0.00240479],
'npts': [ 65536.], 'maxpos':[ [148, 199, 0, 0], "int32"],
'sigma': [ 0.52052685], 'mean': [ 0.02068276]}
# print compare_image_statistics(image_data)
div_array[idx][0][idy] = div_value
print "maximum different value between measurement sets: {0}".format(div_max)
# Use a delta of about float precision
if div_max > 1e-6:
print "The measurement sets are contained a different value"
print "failed delta test!"
return False
return True
if __name__ == "__main__":
source_list_1, image_1, source_list_2, image_2, max_delta = None, None, None, None, None
ms_1, mw_2 = None, None
# Parse parameters from command line
error = False
print sys.argv[1:5]
print sys.argv
try:
image_1, source_list_1, fist_1, image_2, source_list_2, fits_2 = sys.argv[1:7]
except:
print "Sourcelist comparison has been disabled! Arguments must still be provided"
print "usage: python {0} source_list_1_path "\
" image_1_path source_list_2_path image_2_path (max_delta type=float)".format(sys.argv[0])
ms_1, mw_2 = sys.argv[1:3]
except Exception, e:
print e
print "usage: python {0} ms1 "\
" ms2 ".format(sys.argv[0])
print "The longbaseline is deterministic and should result in the same ms"
sys.exit(1)
max_delta = None
try:
max_delta = float(sys.argv[5])
except:
max_delta = 0.0001
sys.exit(0)
# todo: Add delta test when we have validate test data
#print "using max delta: {0}".format(max_delta)
#if not error:
# image_equality = validate_image_equality(image_1, image_2, max_delta)
# # sourcelist comparison is still unstable default to true
# sourcelist_equality = True #validate_source_list_files(source_list_1, source_list_2, max_delta)
# if not (image_equality and sourcelist_equality):
# print "Regression test failed: exiting with exitstatus 1"
# print " image_equality: {0}".format(image_equality)
# print " sourcelist_equality: {0}".format(sourcelist_equality)
# sys.exit(1)
# print "Regression test Succeed!!"
# sys.exit(0)
if not error:
print "regression test:"
data_equality = load_and_compare_data_sets(ms_1, mw_2)
if not data_equality:
print "Regression test failed: exiting with exitstatus 1"
sys.exit(1)
print "Regression test Succeed!!"
sys.exit(0)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment