Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
LOFAR
Manage
Activity
Members
Labels
Plan
Issues
Wiki
Jira issues
Open Jira
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Code review analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
RadioObservatory
LOFAR
Commits
486b46f5
Commit
486b46f5
authored
10 years ago
by
Wouter Klijn
Browse files
Options
Downloads
Patches
Plain Diff
Task #7491: Output is a ms that should be compared.
parent
67ba1720
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
CEP/Pipeline/test/regression_tests/long_baseline_pipeline_test.py
+43
-358
43 additions, 358 deletions
...line/test/regression_tests/long_baseline_pipeline_test.py
with
43 additions
and
358 deletions
CEP/Pipeline/test/regression_tests/long_baseline_pipeline_test.py
+
43
−
358
View file @
486b46f5
import
math
import
pyrap.tables
as
pt
import
numpy
import
sys
def
validate_image_equality
(
image_1_path
,
image_2_path
,
max_delta
):
import
pyrap.images
as
pim
def
load_and_compare_data_sets
(
ms1
,
ms2
):
# open the two datasets
ms1
=
pt
.
table
(
ms1
)
ms2
=
pt
.
table
(
ms2
)
# get the difference between the two images
print
"
comparing images from paths:
"
print
image_1_path
print
image_2_path
im
=
pim
.
image
(
'"
{0}
"
-
"
{1}
"'
.
format
(
image_1_path
,
image_2_path
))
im
.
saveas
(
"
difference.IM2
"
)
# get the stats of the image
stats_dict
=
im
.
statistics
()
return_value
=
compare_image_statistics
(
stats_dict
,
max_delta
)
#get the amount of rows in the dataset
n_row
=
len
(
ms1
.
getcol
(
'
DATA
'
))
n_complex_vis
=
4
if
not
return_value
:
print
"
\n\n\n
"
print
"
*
"
*
30
print
"
Statistics of the produced image:
"
im
=
pim
.
image
(
"
{0}
"
.
format
(
image_1_path
))
stats_dict_single_image
=
im
.
statistics
()
print
stats_dict_single_image
print
"
\n\n\n
"
print
"
Statistics of the compare image:
"
im
=
pim
.
image
(
"
{0}
"
.
format
(
image_2_path
))
stats_dict_single_image
=
im
.
statistics
()
print
stats_dict_single_image
print
"
\n\n\n
"
print
"
difference between produced image and the baseline image:
"
print
"
maximum delta: {0}
"
.
format
(
max_delta
)
print
stats_dict
print
"
*
"
*
30
# create a target array with the same length as the datacolumn
div_array
=
numpy
.
zeros
((
n_row
,
1
,
n_complex_vis
),
dtype
=
numpy
.
complex64
)
ms1_array
=
ms1
.
getcol
(
'
DATA
'
)
ms2_array
=
ms2
.
getcol
(
'
CORRECTED_DATA
'
)
return
return_value
div_max
=
0
for
idx
in
xrange
(
n_row
):
for
idy
in
xrange
(
n_complex_vis
):
div_value
=
ms1_array
[
idx
][
0
][
idy
]
-
ms2_array
[
idx
][
0
][
idy
]
if
numpy
.
abs
(
div_value
)
>
numpy
.
abs
(
div_max
):
div_max
=
div_value
def
_test_against_maxdelta
(
value
,
max_delta
,
name
):
if
math
.
fabs
(
value
)
>
max_delta
:
print
"
Dif found:
'
{0}
'
difference >{2}<is larger then
"
\
"
the maximum accepted delta: {1}
"
.
format
(
name
,
max_delta
,
value
)
return
True
return
False
def
compare_image_statistics
(
stats_dict
,
max_delta
=
0.0001
):
return_value
=
False
found_incorrect_datapoint
=
False
for
name
,
value
in
stats_dict
.
items
():
if
name
==
"
rms
"
:
found_incorrect_datapoint
=
_test_against_maxdelta
(
float
(
value
[
0
]),
max_delta
*
300
,
name
)
elif
name
==
"
medabsdevmed
"
:
found_incorrect_datapoint
=
_test_against_maxdelta
(
float
(
value
[
0
]),
max_delta
*
200
,
name
)
elif
name
==
"
minpos
"
:
pass
# this min location might move 100 points while still being the same image
elif
name
==
"
min
"
:
found_incorrect_datapoint
=
_test_against_maxdelta
(
float
(
value
[
0
]),
max_delta
*
2000
,
name
)
elif
name
==
"
maxpos
"
:
pass
# this max location might move 100 points while still being the same image
elif
name
==
"
max
"
:
found_incorrect_datapoint
=
_test_against_maxdelta
(
float
(
value
[
0
]),
max_delta
*
1500
,
name
)
elif
name
==
"
sum
"
:
found_incorrect_datapoint
=
_test_against_maxdelta
(
float
(
value
[
0
]),
max_delta
*
200000
,
name
)
elif
name
==
"
quartile
"
:
found_incorrect_datapoint
=
_test_against_maxdelta
(
float
(
value
[
0
]),
max_delta
*
4000
,
name
)
elif
name
==
"
sumsq
"
:
# tested with sum already
pass
elif
name
==
"
median
"
:
found_incorrect_datapoint
=
_test_against_maxdelta
(
float
(
value
[
0
]),
max_delta
,
name
)
elif
name
==
"
npts
"
:
pass
# cannot be tested..
elif
name
==
"
sigma
"
:
found_incorrect_datapoint
=
_test_against_maxdelta
(
float
(
value
[
0
]),
max_delta
*
300
,
name
)
elif
name
==
"
mean
"
:
found_incorrect_datapoint
=
_test_against_maxdelta
(
float
(
value
[
0
]),
max_delta
*
3
,
name
)
# if we found an incorrect datapoint in this run or with previous
# results: results in true value if any comparison failed
return_value
=
return_value
or
found_incorrect_datapoint
return
not
return_value
# from here sourcelist compare functions
def
validate_source_list_files
(
source_list_1_path
,
source_list_2_path
,
max_delta
):
# read the sourcelist files
fp
=
open
(
source_list_1_path
)
sourcelist1
=
fp
.
read
()
fp
.
close
()
fp
=
open
(
source_list_2_path
)
sourcelist2
=
fp
.
read
()
fp
.
close
()
# convert to dataarrays
sourcelist_data_1
=
convert_sourcelist_as_string_to_data_array
(
sourcelist1
)
sourcelist_data_2
=
convert_sourcelist_as_string_to_data_array
(
sourcelist2
)
return
compare_sourcelist_data_arrays
(
sourcelist_data_1
,
sourcelist_data_2
,
max_delta
)
def
convert_sourcelist_as_string_to_data_array
(
source_list_as_string
):
#split in lines
source_list_lines
=
source_list_as_string
.
split
(
"
\n
"
)
entries_array
=
[]
#get the format line
format_line_entrie
=
source_list_lines
[
0
]
# get the format entries
entries_array
.
append
([
format_line_entrie
.
split
(
"
,
"
)[
0
].
split
(
"
=
"
)[
1
].
strip
()])
for
entry
in
format_line_entrie
.
split
(
'
,
'
)[
1
:]:
entries_array
.
append
([
entry
.
strip
()])
# scan all the lines for the actual data
for
line
in
sorted
(
source_list_lines
[
2
:]):
# try sorting based on name (should work :P)
# if empty
if
line
==
""
:
continue
# add the data entries
for
idx
,
entrie
in
enumerate
(
line
.
split
(
"
,
"
)):
entries_array
[
idx
].
append
(
entrie
.
strip
())
return
entries_array
def
easyprint_data_arrays
(
data_array1
,
data_array2
):
print
"
All data as red from the sourcelists:
"
for
(
first_array
,
second_array
)
in
zip
(
data_array1
,
data_array2
):
print
first_array
print
second_array
def
compare_sourcelist_data_arrays
(
data_array1
,
data_array2
,
max_delta
=
0.0001
):
"""
Ugly function to compare two sourcelists.
It needs major refactoring, but for a proof of concept it works
"""
print
"
######################################################
"
found_incorrect_datapoint
=
False
for
(
first_array
,
second_array
)
in
zip
(
data_array1
,
data_array2
):
# first check if the format string is the same, we have a major fail if this happens
if
first_array
[
0
]
!=
second_array
[
0
]:
print
"
******************* problem:
"
print
"
format strings not equal: {0} != {1}
"
.
format
(
first_array
[
0
],
second_array
[
0
])
found_incorrect_datapoint
=
True
# Hard check on equality of the name of the found sources
if
first_array
[
0
]
==
"
Name
"
:
for
(
entrie1
,
entrie2
)
in
zip
(
first_array
[
1
:],
second_array
[
1
:]):
if
entrie1
!=
entrie2
:
print
"
The sourcelist entrie names are not the same:
\n
{0} !=
\n
{1}
"
.
format
(
entrie1
,
entrie2
)
found_incorrect_datapoint
=
True
# Hard check on equality of the type of the found sources
elif
first_array
[
0
]
==
"
Type
"
:
for
(
entrie1
,
entrie2
)
in
zip
(
first_array
[
1
:],
second_array
[
1
:]):
if
entrie1
!=
entrie2
:
print
"
The sourcelist entrie types are not the same: {0} != {1}
"
.
format
(
entrie1
,
entrie2
)
found_incorrect_datapoint
=
True
# soft check on the Ra: convert to float and compare the values
elif
first_array
[
0
]
==
"
Ra
"
:
for
(
entrie1
,
entrie2
)
in
zip
(
first_array
[
1
:],
second_array
[
1
:]):
entrie1_as_array
=
entrie1
.
split
(
"
:
"
)
entrie1_as_float
=
float
(
entrie1_as_array
[
0
])
*
3600
+
float
(
entrie1_as_array
[
1
])
*
60
+
float
(
entrie1_as_array
[
2
])
# float("".join(entrie1.split(":")))
entrie2_as_array
=
entrie2
.
split
(
"
:
"
)
entrie2_as_float
=
float
(
entrie2_as_array
[
0
])
*
3600
+
float
(
entrie2_as_array
[
1
])
*
60
+
float
(
entrie2_as_array
[
2
])
if
not
math
.
fabs
(
entrie1_as_float
-
entrie2_as_float
)
<
(
max_delta
*
10000
)
:
print
"
we have a problem Ra
'
s are not the same within max_delta: {0} != {1} max_delta_ra = {2}
"
.
format
(
entrie1
,
entrie2
,
max_delta
*
10000
)
found_incorrect_datapoint
=
True
elif
first_array
[
0
]
==
"
Dec
"
:
for
(
entrie1
,
entrie2
)
in
zip
(
first_array
[
1
:],
second_array
[
1
:]):
entrie1_as_array
=
entrie1
.
strip
(
"
+
"
).
split
(
"
.
"
)
entrie1_as_float
=
float
(
entrie1_as_array
[
0
])
*
3600
+
float
(
entrie1_as_array
[
1
])
*
60
+
\
float
(
"
{0}.{1}
"
.
format
(
entrie1_as_array
[
2
],
entrie1_as_array
[
3
]))
entrie2_as_array
=
entrie2
.
strip
(
"
+
"
).
split
(
"
.
"
)
entrie2_as_float
=
float
(
entrie2_as_array
[
0
])
*
3600
+
float
(
entrie2_as_array
[
1
])
*
60
+
\
float
(
"
{0}.{1}
"
.
format
(
entrie2_as_array
[
2
],
entrie2_as_array
[
3
]))
if
not
math
.
fabs
(
entrie1_as_float
-
entrie2_as_float
)
<
(
max_delta
*
10000
)
:
print
"
Dec
'
s are not the same within max_delta: {0} != {1} max_delta_ra = {2}
"
.
format
(
entrie1
,
entrie2
,
max_delta
*
10000
)
found_incorrect_datapoint
=
True
elif
first_array
[
0
]
==
"
I
"
:
for
(
entrie1
,
entrie2
)
in
zip
(
first_array
[
1
:],
second_array
[
1
:]):
entrie1_as_float
=
float
(
entrie1
)
entrie2_as_float
=
float
(
entrie2
)
if
not
math
.
fabs
(
entrie1_as_float
-
entrie2_as_float
)
<
(
max_delta
*
2000
):
print
"
I
'
s are not the same within max_delta {0} != {1} max_delta_I = {2}
"
.
format
(
entrie1_as_float
,
entrie2_as_float
,
max_delta
*
1000
)
found_incorrect_datapoint
=
True
elif
first_array
[
0
]
==
"
Q
"
:
for
(
entrie1
,
entrie2
)
in
zip
(
first_array
[
1
:],
second_array
[
1
:]):
entrie1_as_float
=
float
(
entrie1
)
entrie2_as_float
=
float
(
entrie2
)
if
not
math
.
fabs
(
entrie1_as_float
-
entrie2_as_float
)
<
(
max_delta
*
1000
):
print
"
Q
'
s are not the same within max_delta {0} != {1} max_delta_I = {2}
"
.
format
(
entrie1_as_float
,
entrie2_as_float
,
max_delta
*
1000
)
found_incorrect_datapoint
=
True
elif
first_array
[
0
]
==
"
U
"
:
for
(
entrie1
,
entrie2
)
in
zip
(
first_array
[
1
:],
second_array
[
1
:]):
entrie1_as_float
=
float
(
entrie1
)
entrie2_as_float
=
float
(
entrie2
)
if
not
math
.
fabs
(
entrie1_as_float
-
entrie2_as_float
)
<
(
max_delta
*
1000
):
print
"
Q
'
s are not the same within max_delta {0} != {1} max_delta_I = {2}
"
.
format
(
entrie1_as_float
,
entrie2_as_float
,
max_delta
*
1000
)
found_incorrect_datapoint
=
True
elif
first_array
[
0
]
==
"
V
"
:
for
(
entrie1
,
entrie2
)
in
zip
(
first_array
[
1
:],
second_array
[
1
:]):
entrie1_as_float
=
float
(
entrie1
)
entrie2_as_float
=
float
(
entrie2
)
if
not
math
.
fabs
(
entrie1_as_float
-
entrie2_as_float
)
<
(
max_delta
*
1000
):
print
"
V
'
s are not the same within max_delta {0} != {1} max_delta_I = {2}
"
.
format
(
entrie1_as_float
,
entrie2_as_float
,
max_delta
*
1000
)
found_incorrect_datapoint
=
True
elif
first_array
[
0
]
==
"
MajorAxis
"
:
for
(
entrie1
,
entrie2
)
in
zip
(
first_array
[
1
:],
second_array
[
1
:]):
entrie1_as_float
=
float
(
entrie1
)
entrie2_as_float
=
float
(
entrie2
)
if
not
math
.
fabs
(
entrie1_as_float
-
entrie2_as_float
)
<
(
max_delta
*
60000
):
print
"
MajorAxis
'
s are not the same within max_delta {0} != {1} max_delta_I = {2}
"
.
format
(
entrie1_as_float
,
entrie2_as_float
,
max_delta
*
50000
)
found_incorrect_datapoint
=
True
elif
first_array
[
0
]
==
"
MinorAxis
"
:
for
(
entrie1
,
entrie2
)
in
zip
(
first_array
[
1
:],
second_array
[
1
:]):
entrie1_as_float
=
float
(
entrie1
)
entrie2_as_float
=
float
(
entrie2
)
if
not
math
.
fabs
(
entrie1_as_float
-
entrie2_as_float
)
<
(
max_delta
*
30000
):
print
"
MinorAxis
'
s are not the same within max_delta {0} != {1} max_delta_I = {2}
"
.
format
(
entrie1_as_float
,
entrie2_as_float
,
max_delta
*
30000
)
found_incorrect_datapoint
=
True
elif
first_array
[
0
]
==
"
Orientation
"
:
for
(
entrie1
,
entrie2
)
in
zip
(
first_array
[
1
:],
second_array
[
1
:]):
entrie1_as_float
=
float
(
entrie1
)
entrie2_as_float
=
float
(
entrie2
)
if
not
math
.
fabs
(
entrie1_as_float
-
entrie2_as_float
)
<
(
max_delta
*
70000
):
print
"
Orientation
'
s are not the same within max_delta {0} != {1} max_delta_I = {2}
"
.
format
(
entrie1_as_float
,
entrie2_as_float
,
max_delta
*
10000
)
found_incorrect_datapoint
=
True
elif
first_array
[
0
].
split
(
"
=
"
)[
0
].
strip
()
==
"
ReferenceFrequency
"
:
for
(
entrie1
,
entrie2
)
in
zip
(
first_array
[
1
:],
second_array
[
1
:]):
entrie1_as_float
=
float
(
entrie1
)
entrie2_as_float
=
float
(
entrie2
)
if
not
math
.
fabs
(
entrie1_as_float
-
entrie2_as_float
)
<
(
max_delta
*
10000000
):
print
"
Orientation
'
s are not the same within max_delta {0} != {1} max_delta_I = {2}
"
.
format
(
entrie1_as_float
,
entrie2_as_float
,
max_delta
*
10000000
)
found_incorrect_datapoint
=
True
elif
first_array
[
0
].
split
(
"
=
"
)[
0
].
strip
()
==
"
SpectralIndex
"
:
# Not known yet what will be in the spectral index: therefore do not test it
pass
else
:
print
"
unknown format line entrie found: delta fails
"
print
first_array
[
0
]
found_incorrect_datapoint
=
True
if
found_incorrect_datapoint
:
print
"
######################################################
"
print
"
compared the following data arrays:
"
easyprint_data_arrays
(
data_array1
,
data_array2
)
print
"
######################################################
"
# return inverse of found_incorrect_datapoint to signal delta test success
return
not
found_incorrect_datapoint
# Test data:
source_list_as_string
=
"""
format = Name, Type, Ra, Dec, I, Q, U, V, MajorAxis, MinorAxis, Orientation, ReferenceFrequency=
'
6.82495e+07
'
, SpectralIndex=
'
[]
'
/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i3_s3_g3, GAUSSIAN, 14:58:34.711, +71.42.19.636, 3.145e+01, 0.0, 0.0, 0.0, 1.79857e+02, 1.49783e+02, 1.24446e+02, 6.82495e+07, [0.000e+00]
/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i2_s2_g2, GAUSSIAN, 15:09:52.818, +70.48.01.625, 2.321e+01, 0.0, 0.0, 0.0, 2.23966e+02, 1.09786e+02, 1.32842e+02, 6.82495e+07, [0.000e+00]
/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i4_s4_g4, GAUSSIAN, 14:53:10.634, +69.29.31.920, 1.566e+01, 0.0, 0.0, 0.0, 1.25136e+02, 4.72783e+01, 6.49083e+01, 6.82495e+07, [0.000e+00]
/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i0_s0_g0, POINT, 15:20:15.370, +72.27.35.077, 1.151e+01, 0.0, 0.0, 0.0, 0.00000e+00, 0.00000e+00, 0.00000e+00, 6.82495e+07, [0.000e+00]
/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i1_s1_g1, POINT, 15:15:15.623, +66.54.31.670, 4.138e+00, 0.0, 0.0, 0.0, 0.00000e+00, 0.00000e+00, 0.00000e+00, 6.82495e+07, [0.000e+00]
"""
source_list_as_string2
=
"""
format = Name, Type, Ra, Dec, I, Q, U, V, MajorAxis, MinorAxis, Orientation, ReferenceFrequency=
'
6.82495e+07
'
, SpectralIndex=
'
[]
'
/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i3_s3_g3, GAUSSIAN, 14:58:34.711, +71.42.19.636, 3.146e+01, 0.0, 0.0, 0.0, 1.79857e+02, 1.49783e+02, 1.24446e+02, 6.82496e+07, [0.000e+00]
/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i2_s2_g2, GAUSSIAN, 15:09:52.818, +70.48.01.625, 2.321e+01, 0.0, 0.0, 0.0, 2.23966e+02, 1.09786e+02, 1.32842e+02, 6.82495e+07, [0.000e+00]
/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i4_s4_g4, GAUSSIAN, 14:53:10.634, +69.29.31.920, 1.566e+01, 0.0, 0.0, 0.0, 1.25136e+02, 4.72783e+01, 6.49083e+01, 6.82495e+07, [0.000e+00]
/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i0_s0_g0, POINT, 15:20:15.370, +72.27.35.077, 1.151e+01, 0.0, 0.0, 0.0, 0.00000e+00, 0.00000e+00, 0.00000e+00, 6.82495e+07, [0.000e+00]
/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i1_s1_g1, POINT, 15:15:15.623, +66.54.31.670, 4.138e+00, 0.0, 0.0, 0.0, 0.00000e+00, 0.00000e+00, 0.00000e+00, 6.82495e+07, [0.000e+00]
"""
#entries_array = convert_sourcelist_as_string_to_data_array(source_list_as_string)
#entries_array2 = convert_sourcelist_as_string_to_data_array(source_list_as_string2)
#print compare_sourcelist_data_arrays(entries_array, entries_array2, 0.0001)
image_data
=
{
'
rms
'
:
[
0.
],
'
medabsdevmed
'
:[
0.
],
'
minpos
'
:
[
0
,
0
,
0
,
0
]
,
'
min
'
:[
0.
],
'
max
'
:
[
0.
],
'
quartile
'
:
[
0.
],
'
sumsq
'
:
[
0.
],
'
median
'
:
[
0.
],
'
npts
'
:[
65536.
],
'
maxpos
'
:
[
0
,
0
,
0
,
0
],
'
sigma
'
:
[
0.
],
'
mean
'
:
[
0.
]}
#{'rms': array([ 0.52093363]), 'medabsdevmed': array([ 0.27387491]), 'minpos': array([156, 221, 0, 0],
#dtype=int32), 'min': array([-2.26162958]), 'max': array([ 24.01361465]), 'sum': array([ 1355.46549538]),
#'quartile': array([ 0.54873329]), 'sumsq': array([ 17784.62525496]), 'median': array([ 0.00240479]),
# 'npts': array([ 65536.]), 'maxpos': array([148, 199, 0, 0], dtype=int32),
# 'sigma': array([ 0.52052685]), 'mean': array([ 0.02068276])}
image_data
=
{
'
rms
'
:
[
0.52093363
],
'
medabsdevmed
'
:
[
0.27387491
],
'
minpos
'
:
[[
156
,
221
,
0
,
0
],
"
int32
"
],
'
min
'
:
[
-
2.26162958
],
'
max
'
:
[
24.01361465
],
'
sum
'
:
[
1355.46549538
],
'
quartile
'
:
[
0.54873329
],
'
sumsq
'
:
[
17784.62525496
],
'
median
'
:
[
0.00240479
],
'
npts
'
:
[
65536.
],
'
maxpos
'
:[
[
148
,
199
,
0
,
0
],
"
int32
"
],
'
sigma
'
:
[
0.52052685
],
'
mean
'
:
[
0.02068276
]}
# print compare_image_statistics(image_data)
div_array
[
idx
][
0
][
idy
]
=
div_value
print
"
maximum different value between measurement sets: {0}
"
.
format
(
div_max
)
# Use a delta of about float precision
if
div_max
>
1e-6
:
print
"
The measurement sets are contained a different value
"
print
"
failed delta test!
"
return
False
return
True
if
__name__
==
"
__main__
"
:
source_list_1
,
image_1
,
source_list_2
,
image_2
,
max_delta
=
None
,
None
,
None
,
None
,
None
ms_1
,
mw_2
=
None
,
None
# Parse parameters from command line
error
=
False
print
sys
.
argv
[
1
:
5
]
print
sys
.
argv
try
:
image_1
,
source_list_1
,
fist_1
,
image_2
,
source_list_2
,
fits_2
=
sys
.
argv
[
1
:
7
]
except
:
print
"
Sourcelist comparison has been disabled! Arguments must still be provided
"
print
"
usage: python {0} source_list_1_path
"
\
"
image_1_path source_list_2_path image_2_path (max_delta type=float)
"
.
format
(
sys
.
argv
[
0
])
ms_1
,
mw_2
=
sys
.
argv
[
1
:
3
]
except
Exception
,
e
:
print
e
print
"
usage: python {0} ms1
"
\
"
ms2
"
.
format
(
sys
.
argv
[
0
])
print
"
The longbaseline is deterministic and should result in the same ms
"
sys
.
exit
(
1
)
max_delta
=
None
try
:
max_delta
=
float
(
sys
.
argv
[
5
])
except
:
max_delta
=
0.0001
sys
.
exit
(
0
)
# todo: Add delta test when we have validate test data
#print "using max delta: {0}".format(max_delta)
#if not error:
# image_equality = validate_image_equality(image_1, image_2, max_delta)
# # sourcelist comparison is still unstable default to true
# sourcelist_equality = True #validate_source_list_files(source_list_1, source_list_2, max_delta)
# if not (image_equality and sourcelist_equality):
# print "Regression test failed: exiting with exitstatus 1"
# print " image_equality: {0}".format(image_equality)
# print " sourcelist_equality: {0}".format(sourcelist_equality)
# sys.exit(1)
# print "Regression test Succeed!!"
# sys.exit(0)
if
not
error
:
print
"
regression test:
"
data_equality
=
load_and_compare_data_sets
(
ms_1
,
mw_2
)
if
not
data_equality
:
print
"
Regression test failed: exiting with exitstatus 1
"
sys
.
exit
(
1
)
print
"
Regression test Succeed!!
"
sys
.
exit
(
0
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment