diff --git a/CEP/Pipeline/test/regression_tests/long_baseline_pipeline_test.py b/CEP/Pipeline/test/regression_tests/long_baseline_pipeline_test.py
index 5e12e482a8e567b12edd168a1aea9839f453d37c..4daa3d5fad0ae01931f1b7d34bb1946cb44a6b53 100644
--- a/CEP/Pipeline/test/regression_tests/long_baseline_pipeline_test.py
+++ b/CEP/Pipeline/test/regression_tests/long_baseline_pipeline_test.py
@@ -1,376 +1,61 @@
-import math
+import pyrap.tables as pt
+import numpy
 import sys
 
-def validate_image_equality(image_1_path, image_2_path, max_delta):
-    import pyrap.images as pim
+def load_and_compare_data_sets(ms1, ms2):
+    # open the two datasets
+    ms1 = pt.table(ms1)
+    ms2 = pt.table(ms2)
 
-    # get the difference between the two images
-    print "comparing images from paths:"
-    print image_1_path
-    print image_2_path
-    im = pim.image('"{0}" - "{1}"'.format(image_1_path, image_2_path))
-    im.saveas("difference.IM2")
-    # get the stats of the image
-    stats_dict = im.statistics()
-    return_value = compare_image_statistics(stats_dict, max_delta)
+    #get the amount of rows in the dataset
+    n_row = len(ms1.getcol('DATA'))
+    n_complex_vis = 4
 
-    if not return_value:
-        print "\n\n\n"
-        print "*"*30
-        print "Statistics of the produced image:"
-        im = pim.image("{0}".format(image_1_path))
-        stats_dict_single_image = im.statistics()
-        print stats_dict_single_image
-        print "\n\n\n"
-        print "Statistics of the compare image:"
-        im = pim.image("{0}".format(image_2_path))
-        stats_dict_single_image = im.statistics()
-        print stats_dict_single_image
-        print "\n\n\n"
-        print "difference between produced image and the baseline image:"
-        print "maximum delta: {0}".format(max_delta)
-        print stats_dict
-        print "*"*30
+    # create a target array with the same length as the datacolumn
+    div_array = numpy.zeros((n_row, 1, n_complex_vis), dtype=numpy.complex64)
+    ms1_array = ms1.getcol('DATA')
+    ms2_array = ms2.getcol('CORRECTED_DATA')
 
-    return return_value
+    div_max = 0
+    for idx in xrange(n_row):
+        for idy  in xrange(n_complex_vis):
 
+            div_value = ms1_array[idx][0][idy] - ms2_array[idx][0][idy]
+            if numpy.abs(div_value) > numpy.abs(div_max):
+                div_max = div_value
 
-def _test_against_maxdelta(value, max_delta, name):
-    if math.fabs(value) > max_delta:
-        print "Dif found: '{0}' difference >{2}<is larger then " \
-            "the maximum accepted delta: {1}".format(name, max_delta, value)
-        return True
-    return False
-
-def compare_image_statistics(stats_dict, max_delta=0.0001):
-
-    return_value = False
-    found_incorrect_datapoint = False
-    for name, value in stats_dict.items():
-
-        if name == "rms":
-            found_incorrect_datapoint = _test_against_maxdelta(
-                float(value[0]), max_delta * 300, name)
-        elif name == "medabsdevmed":
-            found_incorrect_datapoint = _test_against_maxdelta(
-                float(value[0]), max_delta * 200, name)
-        elif name == "minpos":
-            pass
-            # this min location might move 100 points while still being the same image
-        elif name == "min":
-            found_incorrect_datapoint = _test_against_maxdelta(
-                float(value[0]), max_delta * 2000, name)
-        elif name == "maxpos":
-            pass
-            # this max location might move 100 points while still being the same image
-        elif name == "max":
-            found_incorrect_datapoint = _test_against_maxdelta(
-                float(value[0]), max_delta * 1500, name)
-        elif name == "sum":
-            found_incorrect_datapoint = _test_against_maxdelta(
-                float(value[0]), max_delta * 200000, name)
-        elif name == "quartile":
-            found_incorrect_datapoint = _test_against_maxdelta(
-                float(value[0]), max_delta * 4000, name)
-        elif name == "sumsq":
-            # tested with sum already
-            pass
-
-        elif name == "median":
-            found_incorrect_datapoint = _test_against_maxdelta(
-                float(value[0]), max_delta, name)
-        elif name == "npts":
-            pass    # cannot be tested..
-        elif name == "sigma":
-            found_incorrect_datapoint = _test_against_maxdelta(
-                float(value[0]), max_delta * 300, name)
-        elif name == "mean":
-            found_incorrect_datapoint = _test_against_maxdelta(
-                float(value[0]), max_delta * 3, name)
-
-        # if we found an incorrect datapoint in this run or with previous
-        # results: results in true value if any comparison failed
-        return_value = return_value or found_incorrect_datapoint
-
-    return not return_value
-
-
-
-# from here sourcelist compare functions
-def validate_source_list_files(source_list_1_path, source_list_2_path, max_delta):
-    # read the sourcelist files
-    fp = open(source_list_1_path)
-    sourcelist1 = fp.read()
-    fp.close()
-
-    fp = open(source_list_2_path)
-    sourcelist2 = fp.read()
-    fp.close()
-
-    # convert to dataarrays
-    sourcelist_data_1 = convert_sourcelist_as_string_to_data_array(sourcelist1)
-    sourcelist_data_2 = convert_sourcelist_as_string_to_data_array(sourcelist2)
-
-    return compare_sourcelist_data_arrays(sourcelist_data_1, sourcelist_data_2, max_delta)
-
-
-def convert_sourcelist_as_string_to_data_array(source_list_as_string):
-    #split in lines
-    source_list_lines = source_list_as_string.split("\n")
-    entries_array = []
-
-    #get the format line
-    format_line_entrie = source_list_lines[0]
-
-    # get the format entries
-    entries_array.append([format_line_entrie.split(",")[0].split("=")[1].strip()])
-    for entry in format_line_entrie.split(',')[1:]:
-        entries_array.append([entry.strip()])
-
-    # scan all the lines for the actual data
-
-    for line in sorted(source_list_lines[2:]):  # try sorting based on name (should work :P)
-        # if empty
-        if line == "":
-            continue
-        # add the data entries
-        for idx, entrie in enumerate(line.split(",")):
-            entries_array[idx].append(entrie.strip())
-
-    return entries_array
-
-def easyprint_data_arrays(data_array1, data_array2):
-    print "All data as red from the sourcelists:"
-    for (first_array, second_array) in zip(data_array1, data_array2):
-        print first_array
-        print second_array
-
-def compare_sourcelist_data_arrays(data_array1, data_array2, max_delta=0.0001):
-    """
-    Ugly function to compare two sourcelists.
-    It needs major refactoring, but for a proof of concept it works
-    """
-    print "######################################################"
-    found_incorrect_datapoint = False
-    for (first_array, second_array) in zip(data_array1, data_array2):
-
-        # first check if the format string is the same, we have a major fail if this happens
-        if first_array[0] != second_array[0]:
-            print "******************* problem:"
-            print "format strings not equal: {0} != {1}".format(first_array[0], second_array[0])
-            found_incorrect_datapoint = True
-
-        # Hard check on equality of the name of the found sources
-        if first_array[0] == "Name":
-            for (entrie1, entrie2) in zip(first_array[1:], second_array[1:]):
-                if entrie1 != entrie2:
-                    print "The sourcelist entrie names are not the same: \n{0} !=\n {1}".format(entrie1, entrie2)
-                    found_incorrect_datapoint = True
-
-        # Hard check on equality of the type of the found sources
-        elif first_array[0] == "Type":
-            for (entrie1, entrie2) in zip(first_array[1:], second_array[1:]):
-                if entrie1 != entrie2:
-                    print "The sourcelist entrie types are not the same: {0} != {1}".format(entrie1, entrie2)
-                    found_incorrect_datapoint = True
-
-        # soft check on the Ra: convert to float and compare the values
-        elif first_array[0] == "Ra":
-            for (entrie1, entrie2) in zip(first_array[1:], second_array[1:]):
-                entrie1_as_array = entrie1.split(":")
-                entrie1_as_float = float(entrie1_as_array[0]) * 3600 + float(entrie1_as_array[1]) * 60 + float(entrie1_as_array[2])# float("".join(entrie1.split(":")))
-                entrie2_as_array = entrie2.split(":")
-                entrie2_as_float = float(entrie2_as_array[0]) * 3600 + float(entrie2_as_array[1]) * 60 + float(entrie2_as_array[2])
-                if not math.fabs(entrie1_as_float - entrie2_as_float) < (max_delta * 10000) :
-                    print "we have a problem Ra's are not the same within max_delta: {0} != {1}  max_delta_ra = {2}".format(
-                                                entrie1, entrie2, max_delta * 10000)
-                    found_incorrect_datapoint = True
-        elif first_array[0] == "Dec":
-            for (entrie1, entrie2) in zip(first_array[1:], second_array[1:]):
-                entrie1_as_array = entrie1.strip("+").split(".")
-                entrie1_as_float = float(entrie1_as_array[0]) * 3600 + float(entrie1_as_array[1]) * 60 + \
-                    float("{0}.{1}".format(entrie1_as_array[2], entrie1_as_array[3]))
-                entrie2_as_array = entrie2.strip("+").split(".")
-                entrie2_as_float = float(entrie2_as_array[0]) * 3600 + float(entrie2_as_array[1]) * 60 + \
-                    float("{0}.{1}".format(entrie2_as_array[2], entrie2_as_array[3]))
-                if not math.fabs(entrie1_as_float - entrie2_as_float) < (max_delta * 10000) :
-                    print "Dec's are not the same within max_delta: {0} != {1}  max_delta_ra = {2}".format(
-                                                entrie1, entrie2, max_delta * 10000)
-                    found_incorrect_datapoint = True
-
-        elif first_array[0] == "I":
-            for (entrie1, entrie2) in zip(first_array[1:], second_array[1:]):
-                entrie1_as_float = float(entrie1)
-                entrie2_as_float = float(entrie2)
-                if  not math.fabs(entrie1_as_float - entrie2_as_float) < (max_delta * 2000):
-                    print "I's are not the same within max_delta {0} != {1}   max_delta_I = {2}  ".format(
-                                entrie1_as_float, entrie2_as_float, max_delta * 1000)
-                    found_incorrect_datapoint = True
-
-
-        elif first_array[0] == "Q":
-            for (entrie1, entrie2) in zip(first_array[1:], second_array[1:]):
-                entrie1_as_float = float(entrie1)
-                entrie2_as_float = float(entrie2)
-                if  not math.fabs(entrie1_as_float - entrie2_as_float) < (max_delta * 1000):
-                    print "Q's are not the same within max_delta {0} != {1}   max_delta_I = {2}  ".format(
-                                entrie1_as_float, entrie2_as_float, max_delta * 1000)
-                    found_incorrect_datapoint = True
-        elif first_array[0] == "U":
-            for (entrie1, entrie2) in zip(first_array[1:], second_array[1:]):
-                entrie1_as_float = float(entrie1)
-                entrie2_as_float = float(entrie2)
-                if  not math.fabs(entrie1_as_float - entrie2_as_float) < (max_delta * 1000):
-                    print "Q's are not the same within max_delta {0} != {1}   max_delta_I = {2}  ".format(
-                                entrie1_as_float, entrie2_as_float, max_delta * 1000)
-                    found_incorrect_datapoint = True
-
-        elif first_array[0] == "V":
-            for (entrie1, entrie2) in zip(first_array[1:], second_array[1:]):
-                entrie1_as_float = float(entrie1)
-                entrie2_as_float = float(entrie2)
-                if  not math.fabs(entrie1_as_float - entrie2_as_float) < (max_delta * 1000):
-                    print "V's are not the same within max_delta {0} != {1}   max_delta_I = {2}  ".format(
-                                entrie1_as_float, entrie2_as_float, max_delta * 1000)
-                    found_incorrect_datapoint = True
-
-        elif first_array[0] == "MajorAxis":
-            for (entrie1, entrie2) in zip(first_array[1:], second_array[1:]):
-                entrie1_as_float = float(entrie1)
-                entrie2_as_float = float(entrie2)
-                if  not math.fabs(entrie1_as_float - entrie2_as_float) < (max_delta * 60000):
-                    print "MajorAxis's are not the same within max_delta {0} != {1}   max_delta_I = {2}  ".format(
-                                entrie1_as_float, entrie2_as_float, max_delta * 50000)
-                    found_incorrect_datapoint = True
-
-        elif first_array[0] == "MinorAxis":
-            for (entrie1, entrie2) in zip(first_array[1:], second_array[1:]):
-                entrie1_as_float = float(entrie1)
-                entrie2_as_float = float(entrie2)
-                if  not math.fabs(entrie1_as_float - entrie2_as_float) < (max_delta * 30000):
-                    print "MinorAxis's are not the same within max_delta {0} != {1}   max_delta_I = {2}  ".format(
-                                entrie1_as_float, entrie2_as_float, max_delta * 30000)
-                    found_incorrect_datapoint = True
-
-        elif first_array[0] == "Orientation":
-            for (entrie1, entrie2) in zip(first_array[1:], second_array[1:]):
-                entrie1_as_float = float(entrie1)
-                entrie2_as_float = float(entrie2)
-                if  not math.fabs(entrie1_as_float - entrie2_as_float) < (max_delta * 70000):
-                    print "Orientation's are not the same within max_delta {0} != {1}   max_delta_I = {2}  ".format(
-                                entrie1_as_float, entrie2_as_float, max_delta * 10000)
-                    found_incorrect_datapoint = True
-
-        elif first_array[0].split("=")[0].strip() == "ReferenceFrequency":
-            for (entrie1, entrie2) in zip(first_array[1:], second_array[1:]):
-                entrie1_as_float = float(entrie1)
-                entrie2_as_float = float(entrie2)
-                if  not math.fabs(entrie1_as_float - entrie2_as_float) < (max_delta * 10000000):
-                    print "Orientation's are not the same within max_delta {0} != {1}   max_delta_I = {2}  ".format(
-                                entrie1_as_float, entrie2_as_float, max_delta * 10000000)
-                    found_incorrect_datapoint = True
-        elif first_array[0].split("=")[0].strip() == "SpectralIndex":
-            # Not known yet what will be in the spectral index: therefore do not test it
-            pass
-        else:
-            print "unknown format line entrie found: delta fails"
-            print first_array[0]
-            found_incorrect_datapoint = True
-
-    if found_incorrect_datapoint:
-        print "######################################################"
-        print "compared the following data arrays:"
-        easyprint_data_arrays(data_array1, data_array2)
-        print "######################################################"
-
-
-    # return  inverse of found_incorrect_datapoint to signal delta test success   
-    return not found_incorrect_datapoint
-
-
-# Test data:
-source_list_as_string = """
-format = Name, Type, Ra, Dec, I, Q, U, V, MajorAxis, MinorAxis, Orientation, ReferenceFrequency='6.82495e+07', SpectralIndex='[]'
-
-/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i3_s3_g3, GAUSSIAN, 14:58:34.711, +71.42.19.636, 3.145e+01, 0.0, 0.0, 0.0, 1.79857e+02, 1.49783e+02, 1.24446e+02, 6.82495e+07, [0.000e+00]
-/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i2_s2_g2, GAUSSIAN, 15:09:52.818, +70.48.01.625, 2.321e+01, 0.0, 0.0, 0.0, 2.23966e+02, 1.09786e+02, 1.32842e+02, 6.82495e+07, [0.000e+00]
-/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i4_s4_g4, GAUSSIAN, 14:53:10.634, +69.29.31.920, 1.566e+01, 0.0, 0.0, 0.0, 1.25136e+02, 4.72783e+01, 6.49083e+01, 6.82495e+07, [0.000e+00]
-/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i0_s0_g0, POINT, 15:20:15.370, +72.27.35.077, 1.151e+01, 0.0, 0.0, 0.0, 0.00000e+00, 0.00000e+00, 0.00000e+00, 6.82495e+07, [0.000e+00]
-/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i1_s1_g1, POINT, 15:15:15.623, +66.54.31.670, 4.138e+00, 0.0, 0.0, 0.0, 0.00000e+00, 0.00000e+00, 0.00000e+00, 6.82495e+07, [0.000e+00]
-
-"""
-
-source_list_as_string2 = """
-format = Name, Type, Ra, Dec, I, Q, U, V, MajorAxis, MinorAxis, Orientation, ReferenceFrequency='6.82495e+07', SpectralIndex='[]'
-
-/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i3_s3_g3, GAUSSIAN, 14:58:34.711, +71.42.19.636, 3.146e+01, 0.0, 0.0, 0.0, 1.79857e+02, 1.49783e+02, 1.24446e+02, 6.82496e+07, [0.000e+00]
-/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i2_s2_g2, GAUSSIAN, 15:09:52.818, +70.48.01.625, 2.321e+01, 0.0, 0.0, 0.0, 2.23966e+02, 1.09786e+02, 1.32842e+02, 6.82495e+07, [0.000e+00]
-/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i4_s4_g4, GAUSSIAN, 14:53:10.634, +69.29.31.920, 1.566e+01, 0.0, 0.0, 0.0, 1.25136e+02, 4.72783e+01, 6.49083e+01, 6.82495e+07, [0.000e+00]
-/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i0_s0_g0, POINT, 15:20:15.370, +72.27.35.077, 1.151e+01, 0.0, 0.0, 0.0, 0.00000e+00, 0.00000e+00, 0.00000e+00, 6.82495e+07, [0.000e+00]
-/data/scratch/klijn/out/awimage_cycle_0/image.restored_w0_i1_s1_g1, POINT, 15:15:15.623, +66.54.31.670, 4.138e+00, 0.0, 0.0, 0.0, 0.00000e+00, 0.00000e+00, 0.00000e+00, 6.82495e+07, [0.000e+00]
-
-"""
-#entries_array = convert_sourcelist_as_string_to_data_array(source_list_as_string)
-#entries_array2 = convert_sourcelist_as_string_to_data_array(source_list_as_string2)
-
-#print compare_sourcelist_data_arrays(entries_array, entries_array2, 0.0001)
-
-image_data = {'rms': [ 0.], 'medabsdevmed':[ 0.], 'minpos': [0, 0, 0, 0]
-              , 'min':[ 0.], 'max': [ 0.],
-        'quartile': [ 0.], 'sumsq': [ 0.], 'median': [ 0.], 'npts':[ 65536.],
-        'maxpos': [0, 0, 0, 0], 'sigma': [ 0.], 'mean': [ 0.]}
-
-
-    #{'rms': array([ 0.52093363]), 'medabsdevmed': array([ 0.27387491]), 'minpos': array([156, 221,   0,   0], 
-    #dtype=int32), 'min': array([-2.26162958]), 'max': array([ 24.01361465]), 'sum': array([ 1355.46549538]), 
-    #'quartile': array([ 0.54873329]), 'sumsq': array([ 17784.62525496]), 'median': array([ 0.00240479]),
-    # 'npts': array([ 65536.]), 'maxpos': array([148, 199,   0,   0], dtype=int32),
-    # 'sigma': array([ 0.52052685]), 'mean': array([ 0.02068276])}
-
-image_data = {'rms': [ 0.52093363], 'medabsdevmed': [ 0.27387491], 'minpos': [[156, 221, 0, 0], "int32"],
-              'min': [-2.26162958], 'max': [ 24.01361465], 'sum': [ 1355.46549538],
-                'quartile' : [ 0.54873329], 'sumsq': [ 17784.62525496], 'median': [ 0.00240479],
-                'npts': [ 65536.], 'maxpos':[ [148, 199, 0, 0], "int32"],
-                'sigma': [ 0.52052685], 'mean': [ 0.02068276]}
-
-# print compare_image_statistics(image_data)
+            div_array[idx][0][idy] = div_value
+    print "maximum different value between measurement sets: {0}".format(div_max)
+    # Use a delta of about float precision
+    if div_max > 1e-6:
+        print "The measurement sets are contained a different value"
+        print "failed delta test!"
+        return False
 
+    return True
 
 
 if __name__ == "__main__":
-    source_list_1, image_1, source_list_2, image_2, max_delta = None, None, None, None, None
+    ms_1, mw_2 = None, None
     # Parse parameters from command line
     error = False
-    print sys.argv[1:5]
+    print sys.argv
     try:
-        image_1, source_list_1, fist_1, image_2, source_list_2, fits_2 = sys.argv[1:7]
-    except:
-        print "Sourcelist comparison has been disabled! Arguments must still be provided"
-        print "usage: python {0} source_list_1_path "\
-            " image_1_path source_list_2_path image_2_path (max_delta type=float)".format(sys.argv[0])
+        ms_1, mw_2 = sys.argv[1:3]
+    except Exception, e:
+        print e
+        print "usage: python {0} ms1 "\
+            " ms2 ".format(sys.argv[0])
+        print "The longbaseline is deterministic and should result in the same ms"
         sys.exit(1)
 
-    max_delta = None
-    try:
-        max_delta = float(sys.argv[5])
-    except:
-        max_delta = 0.0001
-
-    sys.exit(0)
-    # todo: Add delta test when we have validate test data
-    #print "using max delta: {0}".format(max_delta)
-
-    #if not error:
-    #    image_equality = validate_image_equality(image_1, image_2, max_delta)
-    #    # sourcelist comparison is still unstable default to true
-    #    sourcelist_equality = True #validate_source_list_files(source_list_1, source_list_2, max_delta)
-    #    if not (image_equality and sourcelist_equality):
-    #        print "Regression test failed: exiting with exitstatus 1"
-    #        print " image_equality: {0}".format(image_equality)
-    #        print " sourcelist_equality: {0}".format(sourcelist_equality)
-    #        sys.exit(1)
-
-    #    print "Regression test Succeed!!"
-    #    sys.exit(0)
+    if not error:
+        print "regression test:"
+        data_equality = load_and_compare_data_sets(ms_1, mw_2)
 
+        if not data_equality:
+            print "Regression test failed: exiting with exitstatus 1"
+            sys.exit(1)
 
+        print "Regression test Succeed!!"
+        sys.exit(0)