Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
H
HDL
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Jira
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
RTSD
HDL
Commits
c16c2077
Commit
c16c2077
authored
2 years ago
by
Eric Kooistra
Browse files
Options
Downloads
Patches
Plain Diff
Add -f and -r to investigate effect of resolution.
parent
dde3b49b
No related branches found
No related tags found
No related merge requests found
Pipeline
#38147
passed
2 years ago
Stage: simulation
Stage: synthesis
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
libraries/base/common/python/try_round_weight.py
+53
-6
53 additions, 6 deletions
libraries/base/common/python/try_round_weight.py
with
53 additions
and
6 deletions
libraries/base/common/python/try_round_weight.py
+
53
−
6
View file @
c16c2077
...
...
@@ -34,10 +34,15 @@
# . increasing -N improves the results, for LOFAR subbands N = 195312
# . it may be preferred to apply the subband weights to the unquantized
# WPFB output.
# Usage:
# Note:
# . For values exactly halfway between rounded decimal values, NumPy rounds to
# the nearest even value. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round
# to 0.0, etc.
# Usage:
# > python3 try_round_weight.py -N 195312
import
argparse
import
textwrap
import
numpy
as
np
import
matplotlib
...
...
@@ -47,9 +52,33 @@ import matplotlib.pyplot as plt
import
common
as
cm
# Parse arguments to derive user parameters
_parser
=
argparse
.
ArgumentParser
(
'
try_round_weight
'
)
_parser
=
argparse
.
ArgumentParser
(
description
=
""
.
join
(
textwrap
.
dedent
(
"""
\
Model effect of applying a weight after or before rounding:
. weights in range(w_lo, w_hi, w_step)
. sigma of noise in range(s_lo, s_hi, s_step)
. use N = 195312 to model number of subband periods in 1 s of LOFAR SST
. use different seed S to check whether result in plots depends on seed
. use r = 0 for default integer rounding, use r > 0 to have extra
LSbits resolution before rounding
. use f = 0 for full double resolution before rounding, use f > 0 and
r = 0 to have noise with a fraction of f LSbits before rounding
# Get an overview
> python try_round_weight.py --w_lo 0.2 --w_hi 3.0 --w_step 0.01 --s_lo 0.5 --s_hi 10 --s_step 0.2 -N 195312 -S 1
# Zoom in at w = 0.75
> python try_round_weight.py --w_lo 0.7 --w_hi 0.8 --w_step 0.0001 --s_lo 1 --s_hi 10 --s_step 1 -N 195312 -S 0
# Use -r = 6 to see effect of having more resolution before rounding
> python try_round_weight.py --w_lo 0.7 --w_hi 0.8 --w_step 0.0001 --s_lo 1 --s_hi 10 --s_step 1 -N 195312 -S 0 -r 6
\n
"""
)),
formatter_class
=
argparse
.
RawTextHelpFormatter
)
_parser
.
add_argument
(
'
-S
'
,
default
=
0
,
type
=
int
,
help
=
'
Random number seed
'
)
_parser
.
add_argument
(
'
-N
'
,
default
=
1000
,
type
=
int
,
help
=
'
Number of input samples
'
)
_parser
.
add_argument
(
'
-f
'
,
default
=
0
,
type
=
int
,
help
=
'
Number of LSbits in fraction, use default 0 for double accuracy
'
)
_parser
.
add_argument
(
'
-r
'
,
default
=
0
,
type
=
int
,
help
=
'
Number of LSbits extra resolution before rounding
'
)
_parser
.
add_argument
(
'
--s_lo
'
,
default
=
0.1
,
type
=
float
,
help
=
'
Lowest sigma
'
)
_parser
.
add_argument
(
'
--s_hi
'
,
default
=
25.0
,
type
=
float
,
help
=
'
Highest sigma
'
)
_parser
.
add_argument
(
'
--s_step
'
,
default
=
0.1
,
type
=
float
,
help
=
'
Step sigma
'
)
...
...
@@ -63,7 +92,6 @@ np.random.seed(args.S)
# Prepare noise signal
N_samples
=
args
.
N
noise
=
np
.
random
.
randn
(
N_samples
)
noise
=
np
.
random
.
randn
(
N_samples
)
noise
/=
np
.
std
(
noise
)
# Noise levels range, 1 unit = 1 LSbit
...
...
@@ -80,13 +108,32 @@ weight_step = args.w_step
weights
=
np
.
arange
(
weight_lo
,
weight_hi
,
weight_step
)
N_weights
=
len
(
weights
)
# Fraction
fraction
=
args
.
f
fraction_factor
=
2
**
fraction
# Resolution
resolution
=
args
.
r
resolution_factor
=
2
**
resolution
# Determine weighted rounded noise sigma / weighted noise sigma for range of weights and input noise sigmas
sigmas_ratio
=
np
.
nan
*
np
.
zeros
((
N_weights
,
N_sigmas
))
# w rows, s cols
sigmas_qq
=
np
.
zeros
((
N_weights
,
N_sigmas
))
sigmas_sq
=
np
.
zeros
((
N_weights
,
N_sigmas
))
for
s
,
sigma
in
enumerate
(
sigmas
):
noise_s
=
noise
*
sigma
noise_q
=
np
.
round
(
noise_s
)
if
resolution
==
0
:
if
fraction
==
0
:
# Default use full double resolution of fraction of noise_s
noise_q
=
np
.
round
(
noise_s
)
else
:
# First use round() to get noise_f with a fraction of fraction number of LSbits
noise_f
=
np
.
round
(
noise_s
*
fraction_factor
)
/
fraction_factor
# Then use round to round the fraction of fraction number of LSbits in noise_f
noise_q
=
np
.
round
(
noise_f
)
else
:
noise_q
=
np
.
round
(
noise_s
*
resolution_factor
)
/
resolution_factor
for
w
,
weight
in
enumerate
(
weights
):
noise_q_weighted_q
=
np
.
round
(
noise_q
*
weight
)
# apply weight to rounded noise
noise_s_weighted_q
=
np
.
round
(
noise_s
*
weight
)
# apply weight to original noise
...
...
@@ -110,7 +157,7 @@ for s, sigma in enumerate(sigmas):
plt
.
plot
(
weights
,
sigmas_qq_T
[
s
],
label
=
'
s = %4.2f
'
%
sigma
)
plt
.
title
(
"
Sigma of weighted quantized noise
"
)
plt
.
xlabel
(
"
Weight
"
)
plt
.
ylabel
(
"
Sigma
"
)
plt
.
ylabel
(
"
Sigma
_qq
"
)
plt
.
legend
(
loc
=
'
upper right
'
)
plt
.
grid
()
...
...
@@ -130,7 +177,7 @@ for w, weight in enumerate(weights):
plt
.
plot
(
sigmas
,
sigmas_ratio
[
w
],
label
=
'
w = %4.2f
'
%
weight
)
plt
.
title
(
"
Relative sigma difference of weighting after / before quantisation
"
)
plt
.
xlabel
(
"
Sigma
"
)
plt
.
ylabel
(
"
Relative sigma difference
"
)
plt
.
ylabel
(
"
Relative sigma difference
(s_qq / s_sq)
"
)
plt
.
legend
(
loc
=
'
upper right
'
)
plt
.
grid
()
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment