Skip to content
Snippets Groups Projects
Commit c16c2077 authored by Eric Kooistra's avatar Eric Kooistra
Browse files

Add -f and -r to investigate effect of resolution.

parent dde3b49b
No related branches found
No related tags found
No related merge requests found
Pipeline #38147 passed
......@@ -34,10 +34,15 @@
# . increasing -N improves the results, for LOFAR subbands N = 195312
# . it may be preferred to apply the subband weights to the unquantized
# WPFB output.
# Usage:
# Note:
# . For values exactly halfway between rounded decimal values, NumPy rounds to
# the nearest even value. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round
# to 0.0, etc.
# Usage:
# > python3 try_round_weight.py -N 195312
import argparse
import textwrap
import numpy as np
import matplotlib
......@@ -47,9 +52,33 @@ import matplotlib.pyplot as plt
import common as cm
# Parse arguments to derive user parameters
_parser = argparse.ArgumentParser('try_round_weight')
_parser = argparse.ArgumentParser(
description="".join(textwrap.dedent("""\
Model effect of applying a weight after or before rounding:
. weights in range(w_lo, w_hi, w_step)
. sigma of noise in range(s_lo, s_hi, s_step)
. use N = 195312 to model number of subband periods in 1 s of LOFAR SST
. use different seed S to check whether result in plots depends on seed
. use r = 0 for default integer rounding, use r > 0 to have extra
LSbits resolution before rounding
. use f = 0 for full double resolution before rounding, use f > 0 and
r = 0 to have noise with a fraction of f LSbits before rounding
# Get an overview
> python try_round_weight.py --w_lo 0.2 --w_hi 3.0 --w_step 0.01 --s_lo 0.5 --s_hi 10 --s_step 0.2 -N 195312 -S 1
# Zoom in at w = 0.75
> python try_round_weight.py --w_lo 0.7 --w_hi 0.8 --w_step 0.0001 --s_lo 1 --s_hi 10 --s_step 1 -N 195312 -S 0
# Use -r = 6 to see effect of having more resolution before rounding
> python try_round_weight.py --w_lo 0.7 --w_hi 0.8 --w_step 0.0001 --s_lo 1 --s_hi 10 --s_step 1 -N 195312 -S 0 -r 6
\n""")),
formatter_class=argparse.RawTextHelpFormatter)
_parser.add_argument('-S', default=0, type=int, help='Random number seed')
_parser.add_argument('-N', default=1000, type=int, help='Number of input samples')
_parser.add_argument('-f', default=0, type=int, help='Number of LSbits in fraction, use default 0 for double accuracy')
_parser.add_argument('-r', default=0, type=int, help='Number of LSbits extra resolution before rounding')
_parser.add_argument('--s_lo', default=0.1, type=float, help='Lowest sigma')
_parser.add_argument('--s_hi', default=25.0, type=float, help='Highest sigma')
_parser.add_argument('--s_step', default=0.1, type=float, help='Step sigma')
......@@ -63,7 +92,6 @@ np.random.seed(args.S)
# Prepare noise signal
N_samples = args.N
noise = np.random.randn(N_samples)
noise = np.random.randn(N_samples)
noise /= np.std(noise)
# Noise levels range, 1 unit = 1 LSbit
......@@ -80,13 +108,32 @@ weight_step = args.w_step
weights = np.arange(weight_lo, weight_hi, weight_step)
N_weights = len(weights)
# Fraction
fraction = args.f
fraction_factor = 2**fraction
# Resolution
resolution = args.r
resolution_factor = 2**resolution
# Determine weighted rounded noise sigma / weighted noise sigma for range of weights and input noise sigmas
sigmas_ratio = np.nan * np.zeros((N_weights, N_sigmas)) # w rows, s cols
sigmas_qq = np.zeros((N_weights, N_sigmas))
sigmas_sq = np.zeros((N_weights, N_sigmas))
for s, sigma in enumerate(sigmas):
noise_s = noise * sigma
noise_q = np.round(noise_s)
if resolution == 0:
if fraction == 0:
# Default use full double resolution of fraction of noise_s
noise_q = np.round(noise_s)
else:
# First use round() to get noise_f with a fraction of fraction number of LSbits
noise_f = np.round(noise_s * fraction_factor) / fraction_factor
# Then use round to round the fraction of fraction number of LSbits in noise_f
noise_q = np.round(noise_f)
else:
noise_q = np.round(noise_s * resolution_factor) / resolution_factor
for w, weight in enumerate(weights):
noise_q_weighted_q = np.round(noise_q * weight) # apply weight to rounded noise
noise_s_weighted_q = np.round(noise_s * weight) # apply weight to original noise
......@@ -110,7 +157,7 @@ for s, sigma in enumerate(sigmas):
plt.plot(weights, sigmas_qq_T[s], label='s = %4.2f' % sigma)
plt.title("Sigma of weighted quantized noise")
plt.xlabel("Weight")
plt.ylabel("Sigma")
plt.ylabel("Sigma_qq")
plt.legend(loc='upper right')
plt.grid()
......@@ -130,7 +177,7 @@ for w, weight in enumerate(weights):
plt.plot(sigmas, sigmas_ratio[w], label='w = %4.2f' % weight)
plt.title("Relative sigma difference of weighting after / before quantisation")
plt.xlabel("Sigma")
plt.ylabel("Relative sigma difference")
plt.ylabel("Relative sigma difference (s_qq / s_sq)")
plt.legend(loc='upper right')
plt.grid()
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment