Skip to content
Snippets Groups Projects
Commit 67d6f57e authored by Eric Kooistra's avatar Eric Kooistra
Browse files

Add plots as function of weights. Add -S to set random seed.

parent 21da4446
No related branches found
No related tags found
No related merge requests found
Pipeline #38143 passed
......@@ -48,47 +48,82 @@ import common as cm
# Parse arguments to derive user parameters
_parser = argparse.ArgumentParser('try_round_weight')
_parser.add_argument('-S', default=0, type=int, help='Random number seed')
_parser.add_argument('-N', default=1000, type=int, help='Number of input samples')
_parser.add_argument('--weight_lo', default=0.3, type=float, help='Lowest weight')
_parser.add_argument('--weight_hi', default=2.0, type=float, help='Highest weight')
_parser.add_argument('--weight_step', default=0.1, type=float, help='Step weight')
_parser.add_argument('--s_lo', default=0.1, type=float, help='Lowest sigma')
_parser.add_argument('--s_hi', default=25.0, type=float, help='Highest sigma')
_parser.add_argument('--s_step', default=0.1, type=float, help='Step sigma')
_parser.add_argument('--w_lo', default=0.3, type=float, help='Lowest weight')
_parser.add_argument('--w_hi', default=2.0, type=float, help='Highest weight')
_parser.add_argument('--w_step', default=0.1, type=float, help='Step weight')
args = _parser.parse_args()
N_samples = args.N
weight_lo = args.weight_lo
weight_hi = args.weight_hi
weight_step = args.weight_step
np.random.seed(args.S)
# Prepare signals
# Prepare noise signal
N_samples = args.N
noise = np.random.randn(N_samples)
noise = np.random.randn(N_samples)
noise /= np.std(noise)
# Noise level range, 1 unit = 1 LSbit
sigma_lo = 0.1
sigma_hi = 25
sigmas = np.arange(sigma_lo, sigma_hi, 0.1)
# Noise levels range, 1 unit = 1 LSbit
sigma_lo = args.s_lo
sigma_hi = args.s_hi
sigma_step = args.s_step
sigmas = np.arange(sigma_lo, sigma_hi, sigma_step)
N_sigmas = len(sigmas)
# Weight range, unit weight = 1
# Weights range, unit weight = 1
weight_lo = args.w_lo
weight_hi = args.w_hi
weight_step = args.w_step
weights = np.arange(weight_lo, weight_hi, weight_step)
N_weights = len(weights)
# Determine weighted rounded noise sigma / weighted noise sigma for range of weights and input noise sigmas
sigmas_ratio = np.nan * np.zeros((N_weights, N_sigmas)) # w rows, s cols
sigmas_qq = np.zeros((N_weights, N_sigmas))
sigmas_sq = np.zeros((N_weights, N_sigmas))
for s, sigma in enumerate(sigmas):
noise_s = noise * sigma
noise_q = np.round(noise_s)
for w, weight in enumerate(weights):
noise_q_weighted_q = np.round(noise_q * weight) # apply weight to rounded noise
noise_s_weighted_q = np.round(noise_s * weight) # apply weight to original noise
sigma_qq = np.std(noise_q_weighted_q)
sigma_sq = np.std(noise_s_weighted_q)
if sigma_sq != 0:
sigmas_ratio[w][s] = sigma_qq / sigma_sq # weighted rounded noise sigma / weighted noise sigma
s_qq = np.std(noise_q_weighted_q)
s_sq = np.std(noise_s_weighted_q)
sigmas_qq[w][s] = s_qq
sigmas_sq[w][s] = s_sq
if s_sq != 0:
sigmas_ratio[w][s] = s_qq / s_sq # weighted rounded noise sigma / weighted noise sigma
# Transpose [w][s] to have index ranges [s][w]
sigmas_ratio_T = sigmas_ratio.transpose()
sigmas_qq_T = sigmas_qq.transpose()
sigmas_sq_T = sigmas_sq.transpose()
# Plot results
figNr = 0
figNr += 1
plt.figure(figNr)
for s, sigma in enumerate(sigmas):
plt.plot(weights, sigmas_qq_T[s], label='s = %4.2f' % sigma)
plt.title("Sigma of weighted quantized noise")
plt.xlabel("Weight")
plt.ylabel("Sigma")
plt.legend(loc='upper right')
plt.grid()
figNr += 1
plt.figure(figNr)
for s, sigma in enumerate(sigmas):
plt.plot(weights, sigmas_ratio_T[s], label='s = %4.2f' % sigma)
plt.title("Relative sigma difference of weighting after / before quantisation")
plt.xlabel("Weight")
plt.ylabel("Relative sigma difference")
plt.legend(loc='upper right')
plt.grid()
figNr += 1
plt.figure(figNr)
for w, weight in enumerate(weights):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment