Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
H
HDL
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Jira
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
RTSD
HDL
Commits
67d6f57e
Commit
67d6f57e
authored
2 years ago
by
Eric Kooistra
Browse files
Options
Downloads
Patches
Plain Diff
Add plots as function of weights. Add -S to set random seed.
parent
21da4446
No related branches found
No related tags found
No related merge requests found
Pipeline
#38143
passed
2 years ago
Stage: simulation
Stage: synthesis
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
libraries/base/common/python/try_round_weight.py
+52
-17
52 additions, 17 deletions
libraries/base/common/python/try_round_weight.py
with
52 additions
and
17 deletions
libraries/base/common/python/try_round_weight.py
+
52
−
17
View file @
67d6f57e
...
...
@@ -48,47 +48,82 @@ import common as cm
# Parse arguments to derive user parameters
_parser
=
argparse
.
ArgumentParser
(
'
try_round_weight
'
)
_parser
.
add_argument
(
'
-S
'
,
default
=
0
,
type
=
int
,
help
=
'
Random number seed
'
)
_parser
.
add_argument
(
'
-N
'
,
default
=
1000
,
type
=
int
,
help
=
'
Number of input samples
'
)
_parser
.
add_argument
(
'
--weight_lo
'
,
default
=
0.3
,
type
=
float
,
help
=
'
Lowest weight
'
)
_parser
.
add_argument
(
'
--weight_hi
'
,
default
=
2.0
,
type
=
float
,
help
=
'
Highest weight
'
)
_parser
.
add_argument
(
'
--weight_step
'
,
default
=
0.1
,
type
=
float
,
help
=
'
Step weight
'
)
_parser
.
add_argument
(
'
--s_lo
'
,
default
=
0.1
,
type
=
float
,
help
=
'
Lowest sigma
'
)
_parser
.
add_argument
(
'
--s_hi
'
,
default
=
25.0
,
type
=
float
,
help
=
'
Highest sigma
'
)
_parser
.
add_argument
(
'
--s_step
'
,
default
=
0.1
,
type
=
float
,
help
=
'
Step sigma
'
)
_parser
.
add_argument
(
'
--w_lo
'
,
default
=
0.3
,
type
=
float
,
help
=
'
Lowest weight
'
)
_parser
.
add_argument
(
'
--w_hi
'
,
default
=
2.0
,
type
=
float
,
help
=
'
Highest weight
'
)
_parser
.
add_argument
(
'
--w_step
'
,
default
=
0.1
,
type
=
float
,
help
=
'
Step weight
'
)
args
=
_parser
.
parse_args
()
N_samples
=
args
.
N
weight_lo
=
args
.
weight_lo
weight_hi
=
args
.
weight_hi
weight_step
=
args
.
weight_step
np
.
random
.
seed
(
args
.
S
)
# Prepare signals
# Prepare noise signal
N_samples
=
args
.
N
noise
=
np
.
random
.
randn
(
N_samples
)
noise
=
np
.
random
.
randn
(
N_samples
)
noise
/=
np
.
std
(
noise
)
# Noise level range, 1 unit = 1 LSbit
sigma_lo
=
0.1
sigma_hi
=
25
sigmas
=
np
.
arange
(
sigma_lo
,
sigma_hi
,
0.1
)
# Noise levels range, 1 unit = 1 LSbit
sigma_lo
=
args
.
s_lo
sigma_hi
=
args
.
s_hi
sigma_step
=
args
.
s_step
sigmas
=
np
.
arange
(
sigma_lo
,
sigma_hi
,
sigma_step
)
N_sigmas
=
len
(
sigmas
)
# Weight range, unit weight = 1
# Weights range, unit weight = 1
weight_lo
=
args
.
w_lo
weight_hi
=
args
.
w_hi
weight_step
=
args
.
w_step
weights
=
np
.
arange
(
weight_lo
,
weight_hi
,
weight_step
)
N_weights
=
len
(
weights
)
# Determine weighted rounded noise sigma / weighted noise sigma for range of weights and input noise sigmas
sigmas_ratio
=
np
.
nan
*
np
.
zeros
((
N_weights
,
N_sigmas
))
# w rows, s cols
sigmas_qq
=
np
.
zeros
((
N_weights
,
N_sigmas
))
sigmas_sq
=
np
.
zeros
((
N_weights
,
N_sigmas
))
for
s
,
sigma
in
enumerate
(
sigmas
):
noise_s
=
noise
*
sigma
noise_q
=
np
.
round
(
noise_s
)
for
w
,
weight
in
enumerate
(
weights
):
noise_q_weighted_q
=
np
.
round
(
noise_q
*
weight
)
# apply weight to rounded noise
noise_s_weighted_q
=
np
.
round
(
noise_s
*
weight
)
# apply weight to original noise
sigma_qq
=
np
.
std
(
noise_q_weighted_q
)
sigma_sq
=
np
.
std
(
noise_s_weighted_q
)
if
sigma_sq
!=
0
:
sigmas_ratio
[
w
][
s
]
=
sigma_qq
/
sigma_sq
# weighted rounded noise sigma / weighted noise sigma
s_qq
=
np
.
std
(
noise_q_weighted_q
)
s_sq
=
np
.
std
(
noise_s_weighted_q
)
sigmas_qq
[
w
][
s
]
=
s_qq
sigmas_sq
[
w
][
s
]
=
s_sq
if
s_sq
!=
0
:
sigmas_ratio
[
w
][
s
]
=
s_qq
/
s_sq
# weighted rounded noise sigma / weighted noise sigma
# Transpose [w][s] to have index ranges [s][w]
sigmas_ratio_T
=
sigmas_ratio
.
transpose
()
sigmas_qq_T
=
sigmas_qq
.
transpose
()
sigmas_sq_T
=
sigmas_sq
.
transpose
()
# Plot results
figNr
=
0
figNr
+=
1
plt
.
figure
(
figNr
)
for
s
,
sigma
in
enumerate
(
sigmas
):
plt
.
plot
(
weights
,
sigmas_qq_T
[
s
],
label
=
'
s = %4.2f
'
%
sigma
)
plt
.
title
(
"
Sigma of weighted quantized noise
"
)
plt
.
xlabel
(
"
Weight
"
)
plt
.
ylabel
(
"
Sigma
"
)
plt
.
legend
(
loc
=
'
upper right
'
)
plt
.
grid
()
figNr
+=
1
plt
.
figure
(
figNr
)
for
s
,
sigma
in
enumerate
(
sigmas
):
plt
.
plot
(
weights
,
sigmas_ratio_T
[
s
],
label
=
'
s = %4.2f
'
%
sigma
)
plt
.
title
(
"
Relative sigma difference of weighting after / before quantisation
"
)
plt
.
xlabel
(
"
Weight
"
)
plt
.
ylabel
(
"
Relative sigma difference
"
)
plt
.
legend
(
loc
=
'
upper right
'
)
plt
.
grid
()
figNr
+=
1
plt
.
figure
(
figNr
)
for
w
,
weight
in
enumerate
(
weights
):
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment