Skip to content
Snippets Groups Projects
Commit 54b53f8a authored by Reinier van der Walle's avatar Reinier van der Walle
Browse files

Initial commit of tb_lofar2_unb2b_filterbank

parent 48d325e1
No related branches found
No related tags found
Loading
......@@ -27,7 +27,7 @@
-- MM control actions:
--
-- 1) Enable calc mode for WG via reg_diag_wg with:
-- freq = 20MHz
-- freq = 19.921875MHz
-- ampl = 0.5 * 2**13
--
-- 2) Read current BSN from reg_bsn_scheduler_wg and write reg_bsn_scheduler_wg
......@@ -37,8 +37,12 @@
-- analogue view in Wave window:
--
-- 4) Read ADUH monitor power sum for via reg_aduh_mon and verify with
-- c_exp_wg_power_sp.
-- c_exp_wg_power_sp_0.
-- View sp_power_sum in Wave window
-- 5) Read subband statistics (SST) via ram_st_sst and verify with
-- c_exp_subband_power_sp_0 at c_subband_sp_0.
-- View sp_subband_power_0 in Wave window
--
--
-- Usage:
-- > as 7 # default
......@@ -46,9 +50,10 @@
-- > run -a
--
-------------------------------------------------------------------------------
LIBRARY IEEE, common_lib, unb2b_board_lib, i2c_lib, mm_lib, dp_lib, diag_lib;
LIBRARY IEEE, common_lib, unb2b_board_lib, i2c_lib, mm_lib, dp_lib, diag_lib, lofar2_sdp_lib, wpfb_lib;
USE IEEE.std_logic_1164.ALL;
USE IEEE.numeric_std.ALL;
USE IEEE.MATH_REAL.ALL;
USE common_lib.common_pkg.ALL;
USE unb2b_board_lib.unb2b_board_pkg.ALL;
USE common_lib.tb_common_pkg.ALL;
......@@ -57,6 +62,8 @@ USE mm_lib.mm_file_pkg.ALL;
USE dp_lib.dp_stream_pkg.ALL;
USE mm_lib.mm_file_unb_pkg.ALL;
USE diag_lib.diag_pkg.ALL;
USE wpfb_lib.wpfb_pkg.ALL;
USE lofar2_sdp_lib.sdp_pkg.ALL;
ENTITY tb_lofar2_unb2b_filterbank IS
END tb_lofar2_unb2b_filterbank;
......@@ -76,34 +83,43 @@ ARCHITECTURE tb OF tb_lofar2_unb2b_filterbank IS
CONSTANT c_pps_period : NATURAL := 1000;
CONSTANT c_tb_clk_period : TIME := 100 ps; -- use fast tb_clk to speed up M&C
CONSTANT c_cable_delay : TIME := 12 ns
;
CONSTANT c_cable_delay : TIME := 12 ns;
CONSTANT c_sample_freq : NATURAL := c_unb2b_board_ext_clk_freq_200M/10**6; -- 200 MSps
CONSTANT c_sample_period : TIME := (10**6 / c_sample_freq) * 1 ps;
CONSTANT c_nof_sync : NATURAL := 5;
CONSTANT c_nof_block_per_sync : NATURAL := 16;
CONSTANT c_wpfb_sim : t_wpfb := func_wpfb_set_nof_block_per_sync(c_sdp_wpfb_subbands, c_nof_block_per_sync);
CONSTANT c_percentage : REAL := 0.05; -- percentage that actual value may differ from expected value
CONSTANT c_lo_factor : REAL := 1.0 - c_percentage; -- lower boundary
CONSTANT c_hi_factor : REAL := 1.0 + c_percentage; -- higher boundary
CONSTANT c_nof_points : NATURAL := 1024;
CONSTANT c_nof_taps : NATURAL := 16;
CONSTANT c_subband_period : TIME := c_nof_points * c_sample_period;
CONSTANT c_subband_period : TIME := c_sdp_N_fft * c_sample_period;
-- WG
CONSTANT c_full_scale_ampl : REAL := REAL(2**(18-1)-1); -- = full scale of WG
CONSTANT c_bsn_start_wg : NATURAL := 2; -- start WG at this BSN to instead of some BSN, to avoid mismatches in exact expected data values
CONSTANT c_ampl_sp : NATURAL := 2**(14-1)/2; -- in number of lsb
CONSTANT c_subband_sp : REAL := 51.2; -- Select subband at index 512/10 = 51.2 = 20 MHz
CONSTANT c_wg_subband_freq_unit : REAL := c_diag_wg_freq_unit/512.0; -- subband freq = Fs/512 = 200 MSps/512 = 390625 Hz sinus
CONSTANT c_ampl_sp_0 : NATURAL := 2**(14-1)/2; -- in number of lsb
CONSTANT c_wg_subband_freq_unit : REAL := c_diag_wg_freq_unit/REAL(c_sdp_N_fft); -- subband freq = Fs/1024 = 200 MSps/1024 = 195312.5 Hz sinus
CONSTANT c_wg_freq_offset : REAL := 0.0/11.0; -- in freq_unit
CONSTANT c_subband_sp_0 : REAL := 102.0; -- Select subband at index 102 = 102/1024 * 200MHz = 19.921875 MHz
CONSTANT c_wg_ampl_lsb : REAL := c_diag_wg_ampl_unit / c_full_scale_ampl; -- amplitude in number of LSbit resolution steps
CONSTANT c_exp_wg_power_sp : REAL := REAL(c_ampl_sp**2)/2.0 * REAL(c_nof_points*c_nof_block_per_sync);
CONSTANT c_exp_wg_power_sp_0 : REAL := REAL(c_ampl_sp_0**2)/2.0 * REAL(c_sdp_N_fft*c_nof_block_per_sync);
-- WPFB
CONSTANT c_nof_pfb : NATURAL := 1; -- Verifying 1 of c_sdp_P_pfb = 6 pfb to speed up simulation.
CONSTANT c_wb_leakage_bin : NATURAL := c_wpfb_sim.nof_points / c_wpfb_sim.wb_factor; -- = 256, leakage will occur in this bin if FIR wb_factor is reversed
CONSTANT c_exp_sp_subband_power_ratio : REAL := 1.0/8.0; -- depends on internal WPFB quantization and FIR coefficients
CONSTANT c_exp_sp_subband_power_sum_ratio : REAL := c_exp_sp_subband_power_ratio; -- because all sinus power is expected in one subband
CONSTANT c_exp_subband_power_sp_0 : REAL := c_exp_wg_power_sp_0 * c_exp_sp_subband_power_ratio;
CONSTANT c_measured_subband_power_sp_0 : REAL := 17016589184.0; -- obtained from Wave window
TYPE t_real_arr IS ARRAY (INTEGER RANGE <>) OF REAL;
TyPE t_slv_64_subbands_arr IS ARRAY (INTEGER RANGE <>) OF t_slv_64_arr(0 TO c_sdp_N_sub);
-- ADUH
CONSTANT c_mon_buffer_nof_samples : NATURAL := 1024; --samples per stream
CONSTANT c_mon_buffer_nof_samples : NATURAL := 512; --samples per stream
CONSTANT c_mon_buffer_nof_words : NATURAL := c_mon_buffer_nof_samples;
-- MM
......@@ -113,6 +129,7 @@ ARCHITECTURE tb OF tb_lofar2_unb2b_filterbank IS
CONSTANT c_mm_file_reg_diag_wg : STRING := mmf_unb_file_prefix(c_unb_nr, c_node_nr) & "REG_WG";
CONSTANT c_mm_file_reg_aduh_mon : STRING := mmf_unb_file_prefix(c_unb_nr, c_node_nr) & "REG_ADUH_MONITOR";
CONSTANT c_mm_file_ram_aduh_mon : STRING := mmf_unb_file_prefix(c_unb_nr, c_node_nr) & "RAM_ADUH_MONITOR";
CONSTANT c_mm_file_ram_st_sst : STRING := mmf_unb_file_prefix(c_unb_nr, c_node_nr) & "RAM_ST_SST";
-- Tb
......@@ -122,12 +139,21 @@ ARCHITECTURE tb OF tb_lofar2_unb2b_filterbank IS
SIGNAL rd_data : STD_LOGIC_VECTOR(c_32-1 DOWNTO 0);
-- WG
SIGNAL dbg_c_exp_wg_power_sp : REAL := c_exp_wg_power_sp;
SIGNAL dbg_c_exp_wg_power_sp_0 : REAL := c_exp_wg_power_sp_0;
SIGNAL sp_samples : t_integer_arr(0 TO c_mon_buffer_nof_samples-1) := (OTHERS=>0);
SIGNAL sp_sample : INTEGER := 0;
SIGNAL sp_power_sum : UNSIGNED(63 DOWNTO 0);
SIGNAL sp_power_sum : STD_LOGIC_VECTOR(63 DOWNTO 0);
SIGNAL current_bsn_wg : STD_LOGIC_VECTOR(c_dp_stream_bsn_w-1 DOWNTO 0);
-- WPFB
SIGNAL sp_subband_powers_arr2 : t_slv_64_subbands_arr(c_nof_pfb*c_nof_complex-1 DOWNTO 0); -- [sp][sub]
SIGNAL sp_subband_power_0 : REAL;
SIGNAL sp_subband_power_sum : t_real_arr(c_nof_pfb*c_nof_complex-1 DOWNTO 0) := (OTHERS=>0.0);
SIGNAL sp_subband_power_sum_0 : REAL;
SIGNAL sp_subband_power_ratio_0 : REAL;
SIGNAL sp_subband_power_sum_ratio_0 : REAL;
SIGNAL sp_subband_power_leakage_sum_0 : REAL;
-- DUT
SIGNAL ext_clk : STD_LOGIC := '0';
SIGNAL pps : STD_LOGIC := '0';
......@@ -188,7 +214,9 @@ BEGIN
g_design_note => "Lofar2 adc full",
g_sim => c_sim,
g_sim_unb_nr => c_unb_nr,
g_sim_node_nr => c_node_nr
g_sim_node_nr => c_node_nr,
g_wpfb => c_wpfb_sim,
g_scope_selected_subband => NATURAL(c_subband_sp_0)
)
PORT MAP (
-- GENERAL
......@@ -235,7 +263,9 @@ BEGIN
p_mm_stimuli : PROCESS
VARIABLE v_bsn : NATURAL;
VARIABLE v_sp_power_sum : REAL;
VARIABLE v_sp_power_sum_0 : REAL;
VARIABLE v_sp_subband_power : REAL;
VARIABLE v_W, v_T, v_U, v_S, v_B : NATURAL; -- array indicies
BEGIN
-- Wait for DUT power up after reset
WAIT FOR 1 us;
......@@ -260,8 +290,8 @@ BEGIN
-- 3 : ampl[16:0]
mmf_mm_bus_wr(c_mm_file_reg_diag_wg, 0, 1024*2**16 + 1, tb_clk); -- nof_samples, mode calc
mmf_mm_bus_wr(c_mm_file_reg_diag_wg, 1, INTEGER( 0.0 * c_diag_wg_phase_unit), tb_clk); -- phase offset in degrees
mmf_mm_bus_wr(c_mm_file_reg_diag_wg, 2, INTEGER(c_subband_sp * c_wg_subband_freq_unit), tb_clk); -- freq
mmf_mm_bus_wr(c_mm_file_reg_diag_wg, 3, INTEGER(REAL(c_ampl_sp) * c_wg_ampl_lsb), tb_clk); -- ampl
mmf_mm_bus_wr(c_mm_file_reg_diag_wg, 2, INTEGER((c_subband_sp_0+c_wg_freq_offset) * c_wg_subband_freq_unit), tb_clk); -- freq
mmf_mm_bus_wr(c_mm_file_reg_diag_wg, 3, INTEGER(REAL(c_ampl_sp_0) * c_wg_ampl_lsb), tb_clk); -- ampl
-- Read current BSN
mmf_mm_bus_rd(c_mm_file_reg_bsn_scheduler_wg, 0, current_bsn_wg(31 DOWNTO 0), tb_clk);
......@@ -276,7 +306,7 @@ BEGIN
mmf_mm_bus_wr(c_mm_file_reg_bsn_scheduler_wg, 1, 0, tb_clk); -- assume v_bsn < 2**31-1
-- Wait for ADUH monitor to have filled with WG data
WAIT FOR c_subband_period*c_nof_taps;
WAIT FOR c_subband_period*c_sdp_N_taps;
WAIT FOR c_subband_period*2;
----------------------------------------------------------------------------
......@@ -313,19 +343,85 @@ BEGIN
-- Read ADUH monitor power sum
mmf_mm_bus_rd(c_mm_file_reg_aduh_mon, 2, rd_data, tb_clk); -- read low part
sp_power_sum(31 DOWNTO 0) <= UNSIGNED(rd_data);
sp_power_sum(31 DOWNTO 0) <= rd_data;
mmf_mm_bus_rd(c_mm_file_reg_aduh_mon, 3, rd_data, tb_clk); -- read high part
sp_power_sum(63 DOWNTO 32) <= UNSIGNED(rd_data);
sp_power_sum(63 DOWNTO 32) <= rd_data;
proc_common_wait_some_cycles(tb_clk, 1);
---------------------------------------------------------------------------
-- Verify sp_power_sum
---------------------------------------------------------------------------
-- Convert STD_LOGIC_VECTOR sp_power_sum to REAL
v_sp_power_sum_0 := REAL(REAL(TO_UINT(sp_power_sum(61 DOWNTO 30)))*REAL(2**30) + REAL(TO_UINT(sp_power_sum(29 DOWNTO 0))));
ASSERT v_sp_power_sum_0 > c_lo_factor * c_exp_wg_power_sp_0 REPORT "Wrong SP power for SP 0" SEVERITY ERROR;
ASSERT v_sp_power_sum_0 < c_hi_factor * c_exp_wg_power_sp_0 REPORT "Wrong SP power for SP 0" SEVERITY ERROR;
---------------------------------------------------------------------------
-- Read subband statistics
---------------------------------------------------------------------------
-- . the subband statistics are c_wpfb_sim.stat_data_sz = 2 word power values.
-- . there are c_sdp_N_sub = 512 subbands per signal path
-- . one complex WPFB can process two real inputs A, B
-- . the subbands are output alternately so A0 B0 A1 B1 ... A511 B511 for input A, B
-- . the subband statistics multiple WPFB units appear in order in the ram_st_sst address map
-- . the subband statistics are stored first lo word 0 then hi word 1
FOR I IN 0 TO c_nof_pfb*c_nof_complex*c_sdp_N_sub*c_wpfb_sim.stat_data_sz-1 LOOP
v_W := I MOD c_wpfb_sim.stat_data_sz;
v_T := (I / c_wpfb_sim.stat_data_sz) MOD c_nof_complex;
v_U := I / (c_nof_complex*c_wpfb_sim.stat_data_sz*c_sdp_N_sub);
v_S := v_T + v_U * c_nof_complex;
v_B := (I / (c_nof_complex*c_wpfb_sim.stat_data_sz)) MOD c_sdp_N_sub;
IF v_W=0 THEN
-- low part
mmf_mm_bus_rd(c_mm_file_ram_st_sst, I, rd_data, tb_clk);
sp_subband_powers_arr2(v_S)(v_B)(31 DOWNTO 0) <= rd_data;
ELSE
-- high part
mmf_mm_bus_rd(c_mm_file_ram_st_sst, I, rd_data, tb_clk);
sp_subband_powers_arr2(v_S)(v_B)(63 DOWNTO 32) <= rd_data;
-- Convert STD_LOGIC_VECTOR to REAL
v_sp_subband_power := REAL(TO_UINT(rd_data(29 DOWNTO 0) &
sp_subband_powers_arr2(v_S)(v_B)(31 DOWNTO 30)))*2.0**30 +
REAL(TO_UINT(sp_subband_powers_arr2(v_S)(v_B)(29 DOWNTO 0)));
-- sum
sp_subband_power_sum(v_S) <= sp_subband_power_sum(v_S) + v_sp_subband_power;
END IF;
END LOOP;
-- sp_subband_power_sum is the sum of all subband powers per SP, this value will be close to sp_subband_power
-- because the input is a sinus, so most power will be in 1 subband. The sp_subband_power_leakage_sum shows
-- how much power from the input sinus at a specific subband has leaked into the 511 other subbands.
sp_subband_power_0 <= REAL(TO_UINT(sp_subband_powers_arr2(0)(INTEGER(ROUND(c_subband_sp_0)))(61 DOWNTO 30)))*2.0**30 +
REAL(TO_UINT(sp_subband_powers_arr2(0)(INTEGER(ROUND(c_subband_sp_0)))(29 DOWNTO 0)));
sp_subband_power_sum_0 <= sp_subband_power_sum(0);
proc_common_wait_some_cycles(tb_clk, 1);
---------------------------------------------------------------------------
-- Verification
-- Verify subband statistics
---------------------------------------------------------------------------
-- Convert UNSIGNED sp_power_sum to REAL
v_sp_power_sum := REAL(REAL(TO_INTEGER(sp_power_sum(61 DOWNTO 30)))*REAL(2**30) + REAL(TO_INTEGER(sp_power_sum(29 DOWNTO 0))));
-- verify expected subband power based on WG power
IF v_sp_power_sum_0>0.0 THEN ASSERT sp_subband_power_0 > c_lo_factor * c_exp_subband_power_sp_0 REPORT "Wrong subband power for SP 0" SEVERITY ERROR; END IF;
IF v_sp_power_sum_0>0.0 THEN ASSERT sp_subband_power_0 < c_hi_factor * c_exp_subband_power_sp_0 REPORT "Wrong subband power for SP 0" SEVERITY ERROR; END IF;
-- verify expected subband power based on earlier simulation of exactly measurement of subband power
ASSERT sp_subband_power_0 = c_measured_subband_power_sp_0 REPORT "Wrong exact subband power for SP 0" SEVERITY ERROR;
-- view c_exp_sp_subband_power_ratio in Wave window
IF v_sp_power_sum_0>0.0 THEN sp_subband_power_ratio_0 <= sp_subband_power_0/v_sp_power_sum_0; END IF;
-- view c_exp_sp_subband_power_sum_ratio in Wave window
-- The sp_subband_power_sum_ratio show similar information as sp_subband_power_leakage_sum, because when
-- sp_subband_power_leakage_sum is small then sp_subband_power_sum_ratio ~= sp_subband_power_ratio.
IF v_sp_power_sum_0>0.0 THEN sp_subband_power_sum_ratio_0 <= sp_subband_power_sum_0/v_sp_power_sum_0; END IF;
ASSERT v_sp_power_sum > c_lo_factor * c_exp_wg_power_sp REPORT "Wrong SP power for SP 0" SEVERITY ERROR;
ASSERT v_sp_power_sum < c_hi_factor * c_exp_wg_power_sp REPORT "Wrong SP power for SP 0" SEVERITY ERROR;
-- View sp_subband_power_leakage_sum in Wave window
IF v_sp_power_sum_0>0.0 THEN sp_subband_power_leakage_sum_0 <= sp_subband_power_sum_0 - sp_subband_power_0; END IF;
---------------------------------------------------------------------------
-- End Simulation
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment