Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
H
HDL
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Jira
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
RTSD
HDL
Commits
39b51a38
Commit
39b51a38
authored
10 years ago
by
Pepping
Browse files
Options
Downloads
Patches
Plain Diff
Initial
parent
ab654573
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
libraries/base/reorder/tb/python/tc_reorder_transpose.py
+306
-0
306 additions, 0 deletions
libraries/base/reorder/tb/python/tc_reorder_transpose.py
with
306 additions
and
0 deletions
libraries/base/reorder/tb/python/tc_reorder_transpose.py
0 → 100644
+
306
−
0
View file @
39b51a38
#! /usr/bin/env python
###############################################################################
#
# Copyright (C) 2012
# ASTRON (Netherlands Institute for Radio Astronomy) <http://www.astron.nl/>
# P.O.Box 2, 7990 AA Dwingeloo, The Netherlands
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
###############################################################################
"""
Test case for the ddr3_transpose entity.
Description:
Usage:
> python tc_ddr3_transpose.py --unb 0 --fn 0 --sim
"""
###############################################################################
# System imports
import
test_case
import
node_io
import
unb_apertif
as
apr
import
pi_diag_block_gen
import
pi_diag_data_buffer
import
pi_ss_ss_wide
import
dsp_test
import
sys
,
os
import
subprocess
import
time
import
pylab
as
pl
import
numpy
as
np
import
scipy
as
sp
import
random
from
tools
import
*
from
common
import
*
import
mem_init_file
###############################################################################
# Create a test case object
tc
=
test_case
.
Testcase
(
'
TB -
'
,
''
)
# Constants/Generics that are shared between VHDL and Python
# Name Value Default Description
# START_VHDL_GENERICS
g_wr_chunksize
=
64
g_wr_nof_chunks
=
1
g_rd_chunksize
=
16
g_rd_nof_chunks
=
4
g_gapsize
=
0
g_nof_blocks
=
4
g_nof_blk_per_sync
=
64
# END_VHDL_GENERICS
# Overwrite generics with argumented generics from autoscript or command line.
if
tc
.
generics
!=
None
:
g_wr_chunksize
=
tc
.
generics
[
'
g_wr_chunksize
'
]
g_wr_nof_chunks
=
tc
.
generics
[
'
g_wr_nof_chunks
'
]
g_rd_chunksize
=
tc
.
generics
[
'
g_rd_chunksize
'
]
g_rd_nof_chunks
=
tc
.
generics
[
'
g_rd_nof_chunks
'
]
g_gapsize
=
tc
.
generics
[
'
g_gapsize
'
]
g_nof_blocks
=
tc
.
generics
[
'
g_nof_blocks
'
]
g_nof_blk_per_sync
=
tc
.
generics
[
'
g_nof_blk_per_sync
'
]
c_blocksize
=
(
g_wr_chunksize
+
g_gapsize
)
*
g_wr_nof_chunks
c_pagesize
=
c_blocksize
*
g_nof_blocks
c_bg_nof_streams
=
4
c_bg_ram_size
=
g_wr_chunksize
*
g_wr_nof_chunks
*
g_rd_chunksize
c_in_dat_w
=
8
c_db_nof_streams
=
c_bg_nof_streams
c_db_ram_size
=
c_bg_ram_size
#g_rd_chunksize * g_rd_nof_chunks * g_nof_blocks
c_frame_size
=
g_wr_chunksize
c_nof_int_streams
=
1
c_ena_pre_transpose
=
False
c_gap_size
=
0
#g_rd_chunksize
tc
.
append_log
(
3
,
'
>>>
'
)
tc
.
append_log
(
1
,
'
>>> Title : Test bench for ddr3_transpose
'
)
tc
.
append_log
(
3
,
'
>>>
'
)
tc
.
append_log
(
3
,
''
)
tc
.
set_result
(
'
PASSED
'
)
# Create access object for nodes
io
=
node_io
.
NodeIO
(
tc
.
nodeImages
,
tc
.
base_ip
)
# Create block generator instance
bg
=
pi_diag_block_gen
.
PiDiagBlockGen
(
tc
,
io
,
c_bg_nof_streams
,
c_bg_ram_size
)
# Create databuffer instances
db_re
=
pi_diag_data_buffer
.
PiDiagDataBuffer
(
tc
,
io
,
instanceName
=
'
REAL
'
,
nofStreams
=
c_db_nof_streams
,
ramSizePerStream
=
c_db_ram_size
)
db_im
=
pi_diag_data_buffer
.
PiDiagDataBuffer
(
tc
,
io
,
instanceName
=
'
IMAG
'
,
nofStreams
=
c_db_nof_streams
,
ramSizePerStream
=
c_db_ram_size
)
# Create subandselect instance for pre-transpose.
ss
=
pi_ss_ss_wide
.
PiSsSsWide
(
tc
,
io
,
c_frame_size
*
g_rd_chunksize
,
c_nof_int_streams
)
# Create dsp_test instance for helpful methods
dsp_test_bg
=
dsp_test
.
DspTest
(
inDatW
=
c_in_dat_w
)
# Function for generating stimuli and generating hex files.
def
gen_bg_hex_files
(
c_nof_values
=
1024
,
c_nof_streams
=
4
):
data
=
[]
for
i
in
range
(
c_nof_streams
):
stream_re
=
[]
stream_im
=
[]
for
j
in
range
(
c_nof_values
):
stream_re
.
append
(
j
)
stream_im
.
append
(
i
)
data_concat
=
dsp_test_bg
.
concatenate_two_lists
(
stream_re
,
stream_im
,
c_in_dat_w
)
data
.
append
(
data_concat
)
filename
=
"
../../src/hex/tb_bg_dat_
"
+
str
(
i
)
+
"
.hex
"
mem_init_file
.
list_to_hex
(
list_in
=
data_concat
,
filename
=
filename
,
mem_width
=
c_nof_complex
*
c_in_dat_w
,
mem_depth
=
2
**
(
ceil_log2
(
c_bg_ram_size
)))
return
data
if
__name__
==
"
__main__
"
:
###############################################################################
#
# Create setting for the pre-transpose (subbandselect)
#
###############################################################################
ss_list
=
[]
for
i
in
range
(
c_frame_size
):
for
j
in
range
(
g_rd_chunksize
):
ss_list
.
append
(
i
+
j
*
c_frame_size
)
for
i
in
ss_list
:
print
i
ss
.
write_selects
(
ss_list
)
###############################################################################
#
# Create stimuli for the BG
#
###############################################################################
# Prepare x stimuli for block generator
bg_data
=
gen_bg_hex_files
(
c_bg_ram_size
,
c_bg_nof_streams
)
################################################################################
##
## Write data and settings to block generator
##
################################################################################
# Write setting for the block generator:
bg
.
write_block_gen_settings
(
samplesPerPacket
=
c_frame_size
,
blocksPerSync
=
g_nof_blk_per_sync
,
gapSize
=
c_gap_size
,
memLowAddr
=
0
,
memHighAddr
=
c_bg_ram_size
-
1
,
BSNInit
=
10
)
# Write the stimuli to the block generator and enable the block generator
for
i
in
range
(
c_bg_nof_streams
):
bg
.
write_waveform_ram
(
data
=
bg_data
[
i
],
channelNr
=
i
)
# Concatenate all channels
t
=
2
while
len
(
bg_data
)
>
1
:
concat_data
=
[]
for
i
in
range
(
len
(
bg_data
)
/
2
):
concat_data
.
append
(
dsp_test_bg
.
concatenate_two_lists
(
bg_data
[
2
*
i
],
bg_data
[
2
*
i
+
1
],
c_in_dat_w
*
t
))
bg_data
=
concat_data
t
=
t
*
2
bg_data
=
flatten
(
bg_data
)
# for i in range(len(bg_data)):
# print ">%X<" % bg_data[i]
# Wait until the DDR3 model is initialized.
do_until_gt
(
io
.
simIO
.
getSimTime
,
ms_retry
=
1000
,
val
=
110000
,
s_timeout
=
13600
)
# 110000
# Enable the blockgenerator
bg
.
write_enable
()
#do_until_gt(io.simIO.getSimTime, ms_retry=1000, val=50000, s_timeout=13600) # 110000
#bg.write_disable()
#do_until_gt(io.simIO.getSimTime, ms_retry=1000, val=60000, s_timeout=13600) # 110000
#bg.write_enable()
#
#do_until_gt(io.simIO.getSimTime, ms_retry=1000, val=120000, s_timeout=13600) # 110000
#bg.write_disable()
#do_until_gt(io.simIO.getSimTime, ms_retry=1000, val=140000, s_timeout=13600) # 110000
#bg.write_enable()
###############################################################################
#
# Calculate reference data
#
###############################################################################
# Subband Select pre-transpose
print
"
len(ss_list)
"
print
len
(
ss_list
)
if
c_ena_pre_transpose
:
bg_data
=
ss
.
subband_select
(
bg_data
,
ss_list
)
ref_data_total
=
[]
# Check how many data there is and how many pages will be used:
for
t
in
range
(
len
(
bg_data
)
/
c_pagesize
):
bg_data_single_page
=
bg_data
[
t
*
c_pagesize
:(
t
+
1
)
*
c_pagesize
]
# Write to memory
mem_page
=
[
0
]
*
c_pagesize
print
"
len(mem_page)
"
print
len
(
mem_page
)
print
"
len(bg_data_single_page)
"
print
len
(
bg_data_single_page
)
for
i
in
range
(
g_nof_blocks
):
for
j
in
range
(
g_wr_nof_chunks
):
for
k
in
range
(
g_wr_chunksize
):
mem_page
[
i
*
c_blocksize
*
g_wr_nof_chunks
+
j
*
c_blocksize
+
k
]
=
bg_data_single_page
[
i
*
g_wr_chunksize
*
g_wr_nof_chunks
+
j
*
g_wr_chunksize
+
k
]
# Read from memory
ref_data
=
[
0
]
*
g_nof_blocks
*
g_rd_nof_chunks
*
g_rd_chunksize
chunk_cnt
=
0
chunk_offset
=
0
for
i
in
range
(
g_nof_blocks
):
for
j
in
range
(
g_rd_nof_chunks
):
if
chunk_cnt
==
g_nof_blocks
:
chunk_cnt
=
0
chunk_offset
=
chunk_offset
+
1
for
k
in
range
(
g_rd_chunksize
):
#ref_data[chunk_cnt*(g_rd_chunksize*g_rd_nof_chunks)+ chunk_offset*g_rd_chunksize + k] = mem_page[chunk_cnt*(g_rd_chunksize*g_rd_nof_chunks+g_gapsize)+ chunk_offset*g_rd_chunksize + k]
ref_data
[
i
*
(
g_rd_chunksize
*
g_rd_nof_chunks
)
+
j
*
g_rd_chunksize
+
k
]
=
mem_page
[
chunk_cnt
*
(
g_rd_chunksize
*
g_rd_nof_chunks
+
g_gapsize
)
+
chunk_offset
*
g_rd_chunksize
+
k
]
chunk_cnt
=
chunk_cnt
+
1
ref_data_total
.
append
(
ref_data
)
ref_data_total
=
flatten
(
ref_data_total
)
# Split the data again in individual channels
ref_data_split
=
[]
ref_data_split
.
append
(
ref_data_total
)
t
=
c_bg_nof_streams
while
len
(
ref_data_split
)
<
c_bg_nof_streams
:
ref_data_temp
=
[]
for
i
in
range
(
len
(
ref_data_split
)):
[
data_a
,
data_b
]
=
dsp_test_bg
.
split_in_two_lists
(
ref_data_split
[
i
],
c_in_dat_w
*
t
)
ref_data_temp
.
append
(
data_a
)
ref_data_temp
.
append
(
data_b
)
ref_data_split
=
ref_data_temp
t
=
t
/
2
# Split the data in real and imaginary
ref_data_re
=
[]
ref_data_im
=
[]
for
i
in
range
(
c_bg_nof_streams
):
[
data_re
,
data_im
]
=
dsp_test_bg
.
split_in_two_lists
(
ref_data_split
[
i
],
c_in_dat_w
)
ref_data_re
.
append
(
data_re
)
ref_data_im
.
append
(
data_im
)
# print "real + imag"
# for i in range(len(ref_data_re)):
# for j in range(len(ref_data_re[i])):
# print "concat: >%X< real: >%X< imag: >%X< " % (ref_data_split[i][j], ref_data_re[i][j], ref_data_im[i][j])
# print
#
# Poll the databuffer to check if the response is there.
# Retry after 3 seconds so we don't issue too many MM reads in case of simulation.
do_until_ge
(
db_re
.
read_nof_words
,
ms_retry
=
3000
,
val
=
c_db_ram_size
,
s_timeout
=
3600
)
###############################################################################
#
# Read transposed data from data buffer
#
###############################################################################
db_out_re
=
[]
db_out_im
=
[]
for
i
in
range
(
c_bg_nof_streams
):
db_out_re
.
append
(
flatten
(
db_re
.
read_data_buffer
(
streamNr
=
i
,
n
=
c_db_ram_size
,
radix
=
'
uns
'
,
width
=
c_in_dat_w
,
nofColumns
=
8
)))
db_out_im
.
append
(
flatten
(
db_im
.
read_data_buffer
(
streamNr
=
i
,
n
=
c_db_ram_size
,
radix
=
'
uns
'
,
width
=
c_in_dat_w
,
nofColumns
=
8
)))
###############################################################################
#
# Verify output data
#
###############################################################################
for
i
in
range
(
c_bg_nof_streams
):
for
j
in
range
(
c_db_ram_size
):
if
db_out_re
[
i
][
j
]
!=
ref_data_re
[
i
][
j
]:
tc
.
append_log
(
2
,
'
Error in real output data. Expected data: %d Data read: %d Iteration nr: %d %d
'
%
(
ref_data_re
[
i
][
j
],
db_out_re
[
i
][
j
],
i
,
j
))
tc
.
set_result
(
'
FAILED
'
)
if
db_out_im
[
i
][
j
]
!=
ref_data_im
[
i
][
j
]:
tc
.
append_log
(
2
,
'
Error in imag output data. Expected data: %d Data read: %d Iteration nr: %d %d
'
%
(
ref_data_im
[
i
][
j
],
db_out_im
[
i
][
j
],
i
,
j
))
tc
.
set_result
(
'
FAILED
'
)
###############################################################################
# End
tc
.
set_section_id
(
''
)
tc
.
append_log
(
3
,
''
)
tc
.
append_log
(
3
,
'
>>>
'
)
tc
.
append_log
(
0
,
'
>>> Test bench result: %s
'
%
tc
.
get_result
())
tc
.
append_log
(
3
,
'
>>>
'
)
sys
.
exit
(
tc
.
get_result
())
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment