Skip to content
Snippets Groups Projects
Commit 39b51a38 authored by Pepping's avatar Pepping
Browse files

Initial

parent ab654573
No related branches found
No related tags found
No related merge requests found
#! /usr/bin/env python
###############################################################################
#
# Copyright (C) 2012
# ASTRON (Netherlands Institute for Radio Astronomy) <http://www.astron.nl/>
# P.O.Box 2, 7990 AA Dwingeloo, The Netherlands
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
###############################################################################
"""Test case for the ddr3_transpose entity.
Description:
Usage:
> python tc_ddr3_transpose.py --unb 0 --fn 0 --sim
"""
###############################################################################
# System imports
import test_case
import node_io
import unb_apertif as apr
import pi_diag_block_gen
import pi_diag_data_buffer
import pi_ss_ss_wide
import dsp_test
import sys, os
import subprocess
import time
import pylab as pl
import numpy as np
import scipy as sp
import random
from tools import *
from common import *
import mem_init_file
###############################################################################
# Create a test case object
tc = test_case.Testcase('TB - ', '')
# Constants/Generics that are shared between VHDL and Python
# Name Value Default Description
# START_VHDL_GENERICS
g_wr_chunksize = 64
g_wr_nof_chunks = 1
g_rd_chunksize = 16
g_rd_nof_chunks = 4
g_gapsize = 0
g_nof_blocks = 4
g_nof_blk_per_sync = 64
# END_VHDL_GENERICS
# Overwrite generics with argumented generics from autoscript or command line.
if tc.generics != None:
g_wr_chunksize = tc.generics['g_wr_chunksize']
g_wr_nof_chunks = tc.generics['g_wr_nof_chunks']
g_rd_chunksize = tc.generics['g_rd_chunksize']
g_rd_nof_chunks = tc.generics['g_rd_nof_chunks']
g_gapsize = tc.generics['g_gapsize']
g_nof_blocks = tc.generics['g_nof_blocks']
g_nof_blk_per_sync = tc.generics['g_nof_blk_per_sync']
c_blocksize = (g_wr_chunksize + g_gapsize) * g_wr_nof_chunks
c_pagesize = c_blocksize * g_nof_blocks
c_bg_nof_streams = 4
c_bg_ram_size = g_wr_chunksize * g_wr_nof_chunks * g_rd_chunksize
c_in_dat_w = 8
c_db_nof_streams = c_bg_nof_streams
c_db_ram_size = c_bg_ram_size #g_rd_chunksize * g_rd_nof_chunks * g_nof_blocks
c_frame_size = g_wr_chunksize
c_nof_int_streams = 1
c_ena_pre_transpose = False
c_gap_size = 0 #g_rd_chunksize
tc.append_log(3, '>>>')
tc.append_log(1, '>>> Title : Test bench for ddr3_transpose' )
tc.append_log(3, '>>>')
tc.append_log(3, '')
tc.set_result('PASSED')
# Create access object for nodes
io = node_io.NodeIO(tc.nodeImages, tc.base_ip)
# Create block generator instance
bg = pi_diag_block_gen.PiDiagBlockGen(tc, io, c_bg_nof_streams, c_bg_ram_size)
# Create databuffer instances
db_re = pi_diag_data_buffer.PiDiagDataBuffer(tc, io, instanceName = 'REAL', nofStreams=c_db_nof_streams, ramSizePerStream=c_db_ram_size)
db_im = pi_diag_data_buffer.PiDiagDataBuffer(tc, io, instanceName = 'IMAG', nofStreams=c_db_nof_streams, ramSizePerStream=c_db_ram_size)
# Create subandselect instance for pre-transpose.
ss = pi_ss_ss_wide.PiSsSsWide (tc, io, c_frame_size*g_rd_chunksize, c_nof_int_streams)
# Create dsp_test instance for helpful methods
dsp_test_bg = dsp_test.DspTest(inDatW=c_in_dat_w)
# Function for generating stimuli and generating hex files.
def gen_bg_hex_files(c_nof_values = 1024, c_nof_streams = 4):
data = []
for i in range(c_nof_streams):
stream_re = []
stream_im = []
for j in range(c_nof_values):
stream_re.append(j)
stream_im.append(i)
data_concat = dsp_test_bg.concatenate_two_lists(stream_re, stream_im, c_in_dat_w)
data.append(data_concat)
filename = "../../src/hex/tb_bg_dat_" + str(i) + ".hex"
mem_init_file.list_to_hex(list_in=data_concat, filename=filename, mem_width=c_nof_complex*c_in_dat_w, mem_depth=2**(ceil_log2(c_bg_ram_size)))
return data
if __name__ == "__main__":
###############################################################################
#
# Create setting for the pre-transpose (subbandselect)
#
###############################################################################
ss_list = []
for i in range(c_frame_size):
for j in range(g_rd_chunksize):
ss_list.append(i + j*c_frame_size)
for i in ss_list:
print i
ss.write_selects(ss_list)
###############################################################################
#
# Create stimuli for the BG
#
###############################################################################
# Prepare x stimuli for block generator
bg_data = gen_bg_hex_files(c_bg_ram_size, c_bg_nof_streams)
################################################################################
##
## Write data and settings to block generator
##
################################################################################
# Write setting for the block generator:
bg.write_block_gen_settings(samplesPerPacket=c_frame_size, blocksPerSync=g_nof_blk_per_sync, gapSize=c_gap_size, memLowAddr=0, memHighAddr=c_bg_ram_size-1, BSNInit=10)
# Write the stimuli to the block generator and enable the block generator
for i in range(c_bg_nof_streams):
bg.write_waveform_ram(data=bg_data[i], channelNr= i)
# Concatenate all channels
t=2
while len(bg_data) > 1:
concat_data = []
for i in range(len(bg_data)/2):
concat_data.append(dsp_test_bg.concatenate_two_lists(bg_data[2*i], bg_data[2*i+1], c_in_dat_w*t))
bg_data = concat_data
t=t*2
bg_data = flatten(bg_data)
# for i in range(len(bg_data)):
# print ">%X<" % bg_data[i]
# Wait until the DDR3 model is initialized.
do_until_gt(io.simIO.getSimTime, ms_retry=1000, val=110000, s_timeout=13600) # 110000
# Enable the blockgenerator
bg.write_enable()
#do_until_gt(io.simIO.getSimTime, ms_retry=1000, val=50000, s_timeout=13600) # 110000
#bg.write_disable()
#do_until_gt(io.simIO.getSimTime, ms_retry=1000, val=60000, s_timeout=13600) # 110000
#bg.write_enable()
#
#do_until_gt(io.simIO.getSimTime, ms_retry=1000, val=120000, s_timeout=13600) # 110000
#bg.write_disable()
#do_until_gt(io.simIO.getSimTime, ms_retry=1000, val=140000, s_timeout=13600) # 110000
#bg.write_enable()
###############################################################################
#
# Calculate reference data
#
###############################################################################
# Subband Select pre-transpose
print "len(ss_list)"
print len(ss_list)
if c_ena_pre_transpose:
bg_data = ss.subband_select(bg_data, ss_list)
ref_data_total = []
# Check how many data there is and how many pages will be used:
for t in range(len(bg_data)/c_pagesize):
bg_data_single_page = bg_data[t*c_pagesize:(t+1)*c_pagesize]
# Write to memory
mem_page = [0] * c_pagesize
print "len(mem_page)"
print len(mem_page)
print "len(bg_data_single_page)"
print len(bg_data_single_page)
for i in range(g_nof_blocks):
for j in range(g_wr_nof_chunks):
for k in range(g_wr_chunksize):
mem_page[i*c_blocksize*g_wr_nof_chunks + j*c_blocksize + k] = bg_data_single_page[i*g_wr_chunksize*g_wr_nof_chunks + j*g_wr_chunksize + k]
# Read from memory
ref_data = [0] * g_nof_blocks * g_rd_nof_chunks * g_rd_chunksize
chunk_cnt = 0
chunk_offset = 0
for i in range(g_nof_blocks):
for j in range(g_rd_nof_chunks):
if chunk_cnt == g_nof_blocks:
chunk_cnt = 0
chunk_offset = chunk_offset + 1
for k in range(g_rd_chunksize):
#ref_data[chunk_cnt*(g_rd_chunksize*g_rd_nof_chunks)+ chunk_offset*g_rd_chunksize + k] = mem_page[chunk_cnt*(g_rd_chunksize*g_rd_nof_chunks+g_gapsize)+ chunk_offset*g_rd_chunksize + k]
ref_data[i*(g_rd_chunksize*g_rd_nof_chunks)+j*g_rd_chunksize + k] = mem_page[chunk_cnt*(g_rd_chunksize*g_rd_nof_chunks+g_gapsize)+ chunk_offset*g_rd_chunksize + k]
chunk_cnt = chunk_cnt + 1
ref_data_total.append(ref_data)
ref_data_total=flatten(ref_data_total)
# Split the data again in individual channels
ref_data_split = []
ref_data_split.append(ref_data_total)
t = c_bg_nof_streams
while len(ref_data_split) < c_bg_nof_streams:
ref_data_temp = []
for i in range(len(ref_data_split)):
[data_a, data_b] = dsp_test_bg.split_in_two_lists(ref_data_split[i], c_in_dat_w*t)
ref_data_temp.append(data_a)
ref_data_temp.append(data_b)
ref_data_split = ref_data_temp
t = t/2
# Split the data in real and imaginary
ref_data_re = []
ref_data_im = []
for i in range(c_bg_nof_streams):
[data_re, data_im] = dsp_test_bg.split_in_two_lists(ref_data_split[i], c_in_dat_w)
ref_data_re.append(data_re)
ref_data_im.append(data_im)
# print "real + imag"
# for i in range(len(ref_data_re)):
# for j in range(len(ref_data_re[i])):
# print "concat: >%X< real: >%X< imag: >%X< " % (ref_data_split[i][j], ref_data_re[i][j], ref_data_im[i][j])
# print
#
# Poll the databuffer to check if the response is there.
# Retry after 3 seconds so we don't issue too many MM reads in case of simulation.
do_until_ge(db_re.read_nof_words, ms_retry=3000, val=c_db_ram_size, s_timeout=3600)
###############################################################################
#
# Read transposed data from data buffer
#
###############################################################################
db_out_re = []
db_out_im = []
for i in range(c_bg_nof_streams):
db_out_re.append(flatten(db_re.read_data_buffer(streamNr=i, n=c_db_ram_size, radix='uns', width=c_in_dat_w, nofColumns=8)))
db_out_im.append(flatten(db_im.read_data_buffer(streamNr=i, n=c_db_ram_size, radix='uns', width=c_in_dat_w, nofColumns=8)))
###############################################################################
#
# Verify output data
#
###############################################################################
for i in range(c_bg_nof_streams):
for j in range(c_db_ram_size):
if db_out_re[i][j] != ref_data_re[i][j]:
tc.append_log(2, 'Error in real output data. Expected data: %d Data read: %d Iteration nr: %d %d' % (ref_data_re[i][j], db_out_re[i][j], i, j))
tc.set_result('FAILED')
if db_out_im[i][j] != ref_data_im[i][j]:
tc.append_log(2, 'Error in imag output data. Expected data: %d Data read: %d Iteration nr: %d %d' % (ref_data_im[i][j], db_out_im[i][j], i, j))
tc.set_result('FAILED')
###############################################################################
# End
tc.set_section_id('')
tc.append_log(3, '')
tc.append_log(3, '>>>')
tc.append_log(0, '>>> Test bench result: %s' % tc.get_result())
tc.append_log(3, '>>>')
sys.exit(tc.get_result())
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment