Select Git revision
tb_ddrctrl.vhd
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
tb_ddrctrl.vhd 11.05 KiB
-------------------------------------------------------------------------------
--
-- Copyright 2022
-- ASTRON (Netherlands Institute for Radio Astronomy) <http://www.astron.nl/>
-- P.O.Box 2, 7990 AA Dwingeloo, The Netherlands
--
-- Licensed under the Apache License, Version 2.0 (the "License");
-- you may not use this file except in compliance with the License.
-- You may obtain a copy of the License at
--
-- http://www.apache.org/licenses/LICENSE-2.0
--
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language governing permissions and
-- limitations under the License.
--
-------------------------------------------------------------------------------
-- Author: Job van Wee
-- Purpose: Self checking and self-stopping tb for ddrctrl.vhd
-- Usage:
-- > run -a
LIBRARY IEEE, common_lib, technology_lib, tech_ddr_lib, dp_lib;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.NUMERIC_STD.ALL;
USE IEEE.MATH_REAL.ALL;
USE technology_lib.technology_pkg.ALL;
USE tech_ddr_lib.tech_ddr_pkg.ALL;
USE dp_lib.dp_stream_pkg.ALL;
USE common_lib.common_mem_pkg.ALL;
USE common_lib.common_pkg.ALL;
ENTITY tb_ddrctrl IS
GENERIC (
g_tech_ddr : t_c_tech_ddr := c_tech_ddr4_8g_1600m; -- type of memory
g_sim_model : BOOLEAN := TRUE; -- determens if this is a simulation
g_nof_streams : POSITIVE := 12; -- number of input streams
g_data_w : NATURAL := 14; -- data with of input data vectors
g_sim_length : NATURAL := 52
);
END tb_ddrctrl;
ARCHITECTURE tb OF tb_ddrctrl IS
-- constants for testbench
CONSTANT c_clk_freq : NATURAL := 200; -- clock frequency in MHz
CONSTANT c_clk_period : TIME := (10**6 / c_clk_freq) * 1 ps; -- clock priod, 5 ns
-- constants for readability
CONSTANT c_in_data_w : NATURAL := g_nof_streams * g_data_w; -- output data with, 168
CONSTANT c_out_data_w : NATURAL := func_tech_ddr_ctlr_data_w( g_tech_ddr ); -- output data vector with, 576
CONSTANT c_adr_w : NATURAL := 4; -- address with in simulation
CONSTANT c_adr_size : NATURAL := 2**c_adr_w; -- address size in simulation
-- function for making total data vector
FUNCTION c_total_vector_init RETURN STD_LOGIC_VECTOR IS
VARIABLE temp : STD_LOGIC_VECTOR(c_in_data_w*g_sim_length-1 DOWNTO 0);
BEGIN
FOR I IN 0 TO g_sim_length*g_nof_streams-1 LOOP
temp(g_data_w*(I+1)-1 DOWNTO g_data_w*I) := TO_UVEC(I, g_data_w);
END LOOP;
RETURN temp;
END FUNCTION c_total_vector_init;
-- constant for running the test
CONSTANT c_total_vector : STD_LOGIC_VECTOR(c_in_data_w*g_sim_length-1 DOWNTO 0) := c_total_vector_init; -- vector which contains all input data vectors to make it easy to fill ctr_vector
-- input signals for ddrctrl.vhd
SIGNAL clk : STD_LOGIC := '1';
SIGNAL rst : STD_LOGIC := '0';
SIGNAL q_rst : STD_LOGIC := '0';
SIGNAL q_q_rst : STD_LOGIC := '0';
SIGNAL in_sosi_arr : t_dp_sosi_arr(g_nof_streams-1 DOWNTO 0) := (OTHERS => c_dp_sosi_init); -- input data signal for ddrctrl_pack.vhd
-- output singals from ddrctrl.vhd
SIGNAL out_of : NATURAL := 0; -- output signal from ddrctrl_repack to determen how high the overflow is
SIGNAL out_mosi : t_mem_ctlr_mosi := c_mem_ctlr_mosi_rst; -- output signal from ddrctrl_pack.vhd
-- testbench signal
SIGNAL tb_end : STD_LOGIC := '0'; -- signal to turn the testbench off
-- signals for running test
SIGNAL in_data_cnt : NATURAL := 0; -- signal which contains the amount of times there has been input data for ddrctrl_repack.vhd
SIGNAL q_in_data_cnt : NATURAL := 0; -- signal which contains the amount of times there has been input data for ddrctrl_repack.vhd with a delay of 1 clockcycle
SIGNAL q_q_in_data_cnt : NATURAL := 0; -- signal which contains the amount of times there has been input data for ddrctrl_repack.vhd with a delay of 2 clockcycles
SIGNAL test_running : STD_LOGIC := '0'; -- signal to tell wheter the testing has started
SIGNAL q_test_running : STD_LOGIC := '0'; -- signal to tell wheter the testing has started with a delay of 1 clockcycle
SIGNAL q_q_test_running : STD_LOGIC := '0'; -- signal to tell wheter the testing has started with a delay of 2 clockcycles
SIGNAL lag_due_reset : NATURAL := 0; -- signal to hold the address lag after a rest
SIGNAL q_lag_due_reset : NATURAL := 0; -- signal to hold the address lag after a rest with a delay of 1 clockcycle
BEGIN
-- generating clock
clk <= NOT clk OR tb_end AFTER c_clk_period/2;
-- excecuting test
p_test : PROCESS
BEGIN
-- start the test
tb_end <= '0';
WAIT UNTIL rising_edge(clk); -- align to rising edge
WAIT FOR c_clk_period*4;
rst <= '1';
WAIT FOR c_clk_period*1;
rst <= '0';
test_running <= '1';
-- filling the input data vectors with the corresponding numbers
make_data : FOR J IN 0 TO g_sim_length-1 LOOP
in_data_cnt <= in_data_cnt+1;
fill_in_sosi_arr_rest : FOR I IN 0 TO g_nof_streams-1 LOOP
in_sosi_arr(I).data(g_data_w-1 DOWNTO 0) <= c_total_vector(g_data_w*(I+1)+J*c_in_data_w-1 DOWNTO g_data_w*I+J*c_in_data_w);
END LOOP;
WAIT FOR c_clk_period*1;
END LOOP;
test_running <= '0';
-- testing reset
FOR I IN 0 TO g_sim_length-1 LOOP
rst <= '1';
WAIT FOR c_clk_period*1;
rst <= '0';
WAIT FOR c_clk_period*((((c_out_data_w/c_in_data_w)+1)*c_adr_size)+4);
END LOOP;
-- stopping the testbench
WAIT FOR c_clk_period*4;
tb_end <= '1';
ASSERT FALSE REPORT "Test: OK" SEVERITY FAILURE;
END PROCESS;
-- generating compare data for out_mosi
p_out_mosi : PROCESS
BEGIN
WAIT UNTIL rising_edge(clk);
if rising_edge(clk) THEN
q_q_rst <= q_rst;
q_lag_due_reset <= lag_due_reset;
q_rst <= rst;
END IF;
IF q_rst = '1' THEN
IF lag_due_reset + TO_UINT(out_mosi.address) >= c_adr_size THEN
lag_due_reset <= lag_due_reset+TO_UINT(out_mosi.address)-c_adr_size;
ELSE
lag_due_reset <= lag_due_reset+TO_UINT(out_mosi.address);
END IF;
END IF;
END PROCESS;
-- verifying if the address is correct by keeping track of the address
p_verify_address : PROCESS
BEGIN
FOR I IN 0 TO c_adr_size-1 LOOP
IF I >= q_lag_due_reset THEN
ASSERT I-q_lag_due_reset = TO_UINT(out_mosi.address) REPORT "Wrong address, 1, I = " & NATURAL'image(I-q_lag_due_reset) & ", address = " & NATURAL'image(TO_UINT(out_mosi.address)) SEVERITY ERROR;
ELSE
ASSERT (I-q_lag_due_reset)+c_adr_size = TO_UINT(out_mosi.address) REPORT "Wrong address, 2, I = " & NATURAL'image((I-q_lag_due_reset)+c_adr_size) & ", address = " & NATURAL'image(TO_UINT(out_mosi.address)) SEVERITY ERROR;
END IF;
WAIT UNTIL out_mosi.wr = '1';
IF q_q_rst = '1' THEN
WAIT UNTIL out_mosi.wr = '1';
END IF;
END LOOP;
END PROCESS;
-- verification by checking if the input vectors are correctly put into the output vector and the amount of overflow is as expected
p_verify : PROCESS
VARIABLE ctr_of : NATURAL := 0;
VARIABLE out_data_cnt : NATURAL := 0;
BEGIN
WAIT UNTIL rising_edge(clk);
IF q_q_test_running = '1' AND out_mosi.wr = '1' THEN
out_data_cnt := out_data_cnt+1;
IF out_data_cnt mod 2 = 0 THEN
ctr_of := c_in_data_w*(q_q_in_data_cnt)-c_out_data_w*out_data_cnt;
ASSERT ctr_of = out_of REPORT "The amount of overflow does not match, ctr_of = " & NATURAL'image(ctr_of) & ", out_of = " & NATURAL'image(out_of) SEVERITY ERROR;
END IF;
ASSERT out_mosi.wrdata(c_out_data_w-1 DOWNTO 0) = c_total_vector(c_out_data_w*out_data_cnt-1 DOWNTO c_out_data_w*(out_data_cnt-1)) REPORT "Data does not match, out_data_cnt = " & NATURAL'image(out_data_cnt) SEVERITY ERROR;
END IF;
END PROCESS;
-- DUT
u_ddrctrl : ENTITY work.ddrctrl
GENERIC MAP (
g_tech_ddr => g_tech_ddr,
g_sim_model => g_sim_model,
g_nof_streams => g_nof_streams,
g_data_w => g_data_w
)
PORT MAP (
clk => clk,
rst => rst,
in_sosi_arr => in_sosi_arr,
out_of => out_of,
out_mosi => out_mosi
);
END tb;