Select Git revision
dp_stream_pkg.vhd
-
Eric Kooistra authored
Added func_dp_stream_arr_combine_data_info_ctrl(). Clarified data, info and ctrl fields in t_dp_sosi.
Eric Kooistra authoredAdded func_dp_stream_arr_combine_data_info_ctrl(). Clarified data, info and ctrl fields in t_dp_sosi.
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
dp_stream_pkg.vhd 59.81 KiB
--------------------------------------------------------------------------------
--
-- Copyright (C) 2010
-- ASTRON (Netherlands Institute for Radio Astronomy) <http://www.astron.nl/>
-- P.O.Box 2, 7990 AA Dwingeloo, The Netherlands
--
-- This program is free software: you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation, either version 3 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program. If not, see <http://www.gnu.org/licenses/>.
--
--------------------------------------------------------------------------------
LIBRARY IEEE, common_lib;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.numeric_std.ALL;
USE common_lib.common_pkg.ALL;
PACKAGE dp_stream_pkg Is
------------------------------------------------------------------------------
-- General DP stream record defintion
------------------------------------------------------------------------------
-- Remarks:
-- * Choose smallest maximum SOSI slv lengths that fit all use cases, because unconstrained record fields slv is not allowed
-- * The large SOSI data field width of 256b has some disadvantages:
-- . about 10% extra simulation time and PC memory usage compared to 72b (measured using tb_unb_tse_board)
-- . a 256b number has 64 hex digits in the Wave window which is awkward because of the leading zeros when typically
-- only 32b are used, fortunately integer representation still works OK (except 0 which is shown as blank).
-- However the alternatives are not attractive, because they affect the implementation of the streaming
-- components that use the SOSI record. Alternatives are e.g.:
-- . define an extra long SOSI data field ldata[255:0] in addition to the existing data[71:0] field
-- . use the array of SOSI records to contain wider data, all with the same SOSI control field values
-- . define another similar SOSI record with data[255:0].
-- Therefore define data width as 256b, because the disadvantages are acceptable and the benefit is great, because all
-- streaming components can remain as they are.
-- * Added sync and bsn to SOSI to have timestamp information with the data
-- * Added re and im to SOSI to support complex data for DSP
-- * The sosi fields can be labeled in diffent groups: ctrl, info and data as shown in comment at the t_dp_sosi definition.
-- This grouping is useful for functions that operate on a t_dp_sosi signal.
-- * The info fields are valid at the sop or at the eop, but typically they hold their last active value to avoid unnessary
-- toggling and to ease viewing in the wave window.
CONSTANT c_dp_stream_bsn_w : NATURAL := 64; -- 64 is sufficient to count blocks of data for years
CONSTANT c_dp_stream_data_w : NATURAL := 768; -- 72 is sufficient for max word 8 * 9-bit. 576 supports half rate DDR4 bus data width. The current 768 is enough for wide single clock SLVs (e.g. headers)
CONSTANT c_dp_stream_dsp_data_w : NATURAL := 64; -- 64 is sufficient for DSP data, including complex power accumulates
CONSTANT c_dp_stream_empty_w : NATURAL := 16; -- 8 is sufficient for max 256 symbols per data word, still use 16 bit to be able to count c_dp_stream_data_w in bits
CONSTANT c_dp_stream_channel_w : NATURAL := 32; -- 32 is sufficient for several levels of hierarchy in mapping types of streams on to channels
CONSTANT c_dp_stream_error_w : NATURAL := 32; -- 32 is sufficient for several levels of hierarchy in mapping error numbers, e.g. 32 different one-hot encoded errors, bit [0] = 0 = OK
CONSTANT c_dp_stream_ok : NATURAL := 0; -- SOSI err field OK value
CONSTANT c_dp_stream_err : NATURAL := 1; -- SOSI err field error value /= OK
CONSTANT c_dp_stream_rl : NATURAL := 1; -- SISO default data path stream ready latency RL = 1
TYPE t_dp_siso IS RECORD -- Source In or Sink Out
ready : STD_LOGIC; -- fine cycle based flow control using ready latency RL >= 0
xon : STD_LOGIC; -- coarse typically block based flow control using xon/xoff
END RECORD;
TYPE t_dp_sosi IS RECORD -- Source Out or Sink In
sync : STD_LOGIC; -- ctrl
bsn : STD_LOGIC_VECTOR(c_dp_stream_bsn_w-1 DOWNTO 0); -- info at sop (block sequence number)
data : STD_LOGIC_VECTOR(c_dp_stream_data_w-1 DOWNTO 0); -- data
re : STD_LOGIC_VECTOR(c_dp_stream_dsp_data_w-1 DOWNTO 0); -- data
im : STD_LOGIC_VECTOR(c_dp_stream_dsp_data_w-1 DOWNTO 0); -- data
valid : STD_LOGIC; -- ctrl
sop : STD_LOGIC; -- ctrl
eop : STD_LOGIC; -- ctrl
empty : STD_LOGIC_VECTOR(c_dp_stream_empty_w-1 DOWNTO 0); -- info at eop
channel : STD_LOGIC_VECTOR(c_dp_stream_channel_w-1 DOWNTO 0); -- info at sop
err : STD_LOGIC_VECTOR(c_dp_stream_error_w-1 DOWNTO 0); -- info at eop (name field 'err' to avoid the 'error' keyword)
END RECORD;
-- Initialise signal declarations with c_dp_stream_rst/rdy to ease the interpretation of slv fields with unused bits
CONSTANT c_dp_siso_rst : t_dp_siso := ('0', '0');
CONSTANT c_dp_siso_x : t_dp_siso := ('X', 'X');
CONSTANT c_dp_siso_hold : t_dp_siso := ('0', '1');
CONSTANT c_dp_siso_rdy : t_dp_siso := ('1', '1');
CONSTANT c_dp_siso_flush : t_dp_siso := ('1', '0');
CONSTANT c_dp_sosi_rst : t_dp_sosi := ('0', (OTHERS=>'0'), (OTHERS=>'0'), (OTHERS=>'0'), (OTHERS=>'0'), '0', '0', '0', (OTHERS=>'0'), (OTHERS=>'0'), (OTHERS=>'0'));
CONSTANT c_dp_sosi_x : t_dp_sosi := ('X', (OTHERS=>'X'), (OTHERS=>'X'), (OTHERS=>'X'), (OTHERS=>'X'), 'X', 'X', 'X', (OTHERS=>'X'), (OTHERS=>'X'), (OTHERS=>'X'));
-- Use integers instead of slv for monitoring purposes (integer range limited to 31 bit plus sign bit)
TYPE t_dp_sosi_integer IS RECORD
sync : STD_LOGIC;
bsn : NATURAL;
data : INTEGER;
re : INTEGER;
im : INTEGER;
valid : STD_LOGIC;
sop : STD_LOGIC;
eop : STD_LOGIC;
empty : NATURAL;
channel : NATURAL;
err : NATURAL;
END RECORD;
-- Use unsigned instead of slv for monitoring purposes beyond the integer range of t_dp_sosi_integer
TYPE t_dp_sosi_unsigned IS RECORD
sync : STD_LOGIC;
bsn : UNSIGNED(c_dp_stream_bsn_w-1 DOWNTO 0);
data : UNSIGNED(c_dp_stream_data_w-1 DOWNTO 0);
re : UNSIGNED(c_dp_stream_dsp_data_w-1 DOWNTO 0);
im : UNSIGNED(c_dp_stream_dsp_data_w-1 DOWNTO 0);
valid : STD_LOGIC;
sop : STD_LOGIC;
eop : STD_LOGIC;
empty : UNSIGNED(c_dp_stream_empty_w-1 DOWNTO 0);
channel : UNSIGNED(c_dp_stream_channel_w-1 DOWNTO 0);
err : UNSIGNED(c_dp_stream_error_w-1 DOWNTO 0);
END RECORD;
CONSTANT c_dp_sosi_unsigned_rst : t_dp_sosi_unsigned := ('0', (OTHERS=>'0'), (OTHERS=>'0'), (OTHERS=>'0'), (OTHERS=>'0'), '0', '0', '0', (OTHERS=>'0'), (OTHERS=>'0'), (OTHERS=>'0'));
CONSTANT c_dp_sosi_unsigned_ones : t_dp_sosi_unsigned := ('1',
TO_UNSIGNED(1, c_dp_stream_bsn_w),
TO_UNSIGNED(1, c_dp_stream_data_w),
TO_UNSIGNED(1, c_dp_stream_dsp_data_w),
TO_UNSIGNED(1, c_dp_stream_dsp_data_w),
'1', '1', '1',
TO_UNSIGNED(1, c_dp_stream_empty_w),
TO_UNSIGNED(1, c_dp_stream_channel_w),
TO_UNSIGNED(1, c_dp_stream_error_w));
-- Use boolean to define whether a t_dp_siso, t_dp_sosi field is used ('1') or not ('0')
TYPE t_dp_siso_sl IS RECORD
ready : STD_LOGIC;
xon : STD_LOGIC;
END RECORD;
TYPE t_dp_sosi_sl IS RECORD
sync : STD_LOGIC;
bsn : STD_LOGIC;
data : STD_LOGIC;
re : STD_LOGIC;
im : STD_LOGIC;
valid : STD_LOGIC;
sop : STD_LOGIC;
eop : STD_LOGIC;
empty : STD_LOGIC;
channel : STD_LOGIC;
err : STD_LOGIC;
END RECORD;
CONSTANT c_dp_siso_sl_rst : t_dp_siso_sl := ('0', '0');
CONSTANT c_dp_siso_sl_ones : t_dp_siso_sl := ('1', '1');
CONSTANT c_dp_sosi_sl_rst : t_dp_sosi_sl := ('0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0');
CONSTANT c_dp_sosi_sl_ones : t_dp_sosi_sl := ('1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1');
-- Multi port or multi register array for DP stream records
TYPE t_dp_siso_arr IS ARRAY (INTEGER RANGE <>) OF t_dp_siso;
TYPE t_dp_sosi_arr IS ARRAY (INTEGER RANGE <>) OF t_dp_sosi;
TYPE t_dp_sosi_integer_arr IS ARRAY (INTEGER RANGE <>) OF t_dp_sosi_integer;
TYPE t_dp_sosi_unsigned_arr IS ARRAY (INTEGER RANGE <>) OF t_dp_sosi_unsigned;
TYPE t_dp_siso_sl_arr IS ARRAY (INTEGER RANGE <>) OF t_dp_siso_sl;
TYPE t_dp_sosi_sl_arr IS ARRAY (INTEGER RANGE <>) OF t_dp_sosi_sl;
-- Multi port or multi register slv arrays for DP stream records fields
TYPE t_dp_bsn_slv_arr IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(c_dp_stream_bsn_w-1 DOWNTO 0);
TYPE t_dp_data_slv_arr IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(c_dp_stream_data_w-1 DOWNTO 0);
TYPE t_dp_dsp_data_slv_arr IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(c_dp_stream_dsp_data_w-1 DOWNTO 0);
TYPE t_dp_empty_slv_arr IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(c_dp_stream_empty_w-1 DOWNTO 0);
TYPE t_dp_channel_slv_arr IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(c_dp_stream_channel_w-1 DOWNTO 0);
TYPE t_dp_error_slv_arr IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(c_dp_stream_error_w-1 DOWNTO 0);
-- Multi-dimemsion array types with fixed LS-dimension
TYPE t_dp_siso_2arr_1 IS ARRAY (INTEGER RANGE <>) OF t_dp_siso_arr(0 DOWNTO 0);
TYPE t_dp_sosi_2arr_1 IS ARRAY (INTEGER RANGE <>) OF t_dp_sosi_arr(0 DOWNTO 0);
-- . 2 dimensional array with 2 fixed LS sosi/siso interfaces (dp_split, dp_concat)
TYPE t_dp_siso_2arr_2 IS ARRAY (INTEGER RANGE <>) OF t_dp_siso_arr(1 DOWNTO 0);
TYPE t_dp_sosi_2arr_2 IS ARRAY (INTEGER RANGE <>) OF t_dp_sosi_arr(1 DOWNTO 0);
TYPE t_dp_siso_2arr_3 IS ARRAY (INTEGER RANGE <>) OF t_dp_siso_arr(2 DOWNTO 0);
TYPE t_dp_sosi_2arr_3 IS ARRAY (INTEGER RANGE <>) OF t_dp_sosi_arr(2 DOWNTO 0);
TYPE t_dp_siso_2arr_4 IS ARRAY (INTEGER RANGE <>) OF t_dp_siso_arr(3 DOWNTO 0);
TYPE t_dp_sosi_2arr_4 IS ARRAY (INTEGER RANGE <>) OF t_dp_sosi_arr(3 DOWNTO 0);
TYPE t_dp_siso_2arr_8 IS ARRAY (INTEGER RANGE <>) OF t_dp_siso_arr(7 DOWNTO 0);
TYPE t_dp_sosi_2arr_8 IS ARRAY (INTEGER RANGE <>) OF t_dp_sosi_arr(7 DOWNTO 0);
TYPE t_dp_siso_2arr_12 IS ARRAY (INTEGER RANGE <>) OF t_dp_siso_arr(11 DOWNTO 0);
TYPE t_dp_sosi_2arr_12 IS ARRAY (INTEGER RANGE <>) OF t_dp_sosi_arr(11 DOWNTO 0);
-- 2-dimensional streaming array type:
-- Note:
-- This t_*_mat is less useful then a t_*_2arr array of arrays, because assignments can only be done per element (i.e. not per row). However for t_*_2arr
-- the arrays dimension must be fixed, so these t_*_2arr types are application dependent and need to be defined where used.
TYPE t_dp_siso_mat IS ARRAY (INTEGER RANGE <>, INTEGER RANGE <>) OF t_dp_siso;
TYPE t_dp_sosi_mat IS ARRAY (INTEGER RANGE <>, INTEGER RANGE <>) OF t_dp_sosi;
-- Check sosi.valid against siso.ready
PROCEDURE proc_dp_siso_alert(CONSTANT c_ready_latency : IN NATURAL;
SIGNAL clk : IN STD_LOGIC;
SIGNAL sosi : IN t_dp_sosi;
SIGNAL siso : IN t_dp_siso;
SIGNAL ready_reg : INOUT STD_LOGIC_VECTOR);
-- Default RL=1
PROCEDURE proc_dp_siso_alert(SIGNAL clk : IN STD_LOGIC;
SIGNAL sosi : IN t_dp_sosi;
SIGNAL siso : IN t_dp_siso;
SIGNAL ready_reg : INOUT STD_LOGIC_VECTOR);
-- SOSI/SISO array version
PROCEDURE proc_dp_siso_alert(CONSTANT c_ready_latency : IN NATURAL;
SIGNAL clk : IN STD_LOGIC;
SIGNAL sosi_arr : IN t_dp_sosi_arr;
SIGNAL siso_arr : IN t_dp_siso_arr;
SIGNAL ready_reg : INOUT STD_LOGIC_VECTOR);
-- SOSI/SISO array version with RL=1
PROCEDURE proc_dp_siso_alert(SIGNAL clk : IN STD_LOGIC;
SIGNAL sosi_arr : IN t_dp_sosi_arr;
SIGNAL siso_arr : IN t_dp_siso_arr;
SIGNAL ready_reg : INOUT STD_LOGIC_VECTOR);
-- Resize functions to fit an integer or an SLV in the corresponding t_dp_sosi field width
-- . Use these functions to assign sosi data TO a record field
-- . Use the range selection [n-1 DOWNTO 0] to assign sosi data FROM a record field to an slv
-- . The unused sosi data field bits could remain undefined 'X', because the unused bits in the fields are not used at all.
-- Typically the sosi data are treated as unsigned in the record field, so extended with '0'. However for interpretating
-- signed data in the simulation wave window it is easier to use sign extension in the record field. Therefore TO_DP_SDATA
-- and RESIZE_DP_SDATA are defined as well.
FUNCTION TO_DP_BSN( n : NATURAL) RETURN STD_LOGIC_VECTOR;
FUNCTION TO_DP_DATA( n : INTEGER) RETURN STD_LOGIC_VECTOR; -- use integer to support 32 bit range
FUNCTION TO_DP_SDATA( n : INTEGER) RETURN STD_LOGIC_VECTOR; -- use integer to support 32 bit range
FUNCTION TO_DP_DSP_DATA(n : INTEGER) RETURN STD_LOGIC_VECTOR; -- for re and im fields
FUNCTION TO_DP_EMPTY( n : NATURAL) RETURN STD_LOGIC_VECTOR;
FUNCTION TO_DP_CHANNEL( n : NATURAL) RETURN STD_LOGIC_VECTOR;
FUNCTION TO_DP_ERROR( n : NATURAL) RETURN STD_LOGIC_VECTOR;
FUNCTION RESIZE_DP_BSN( vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;
FUNCTION RESIZE_DP_DATA( vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR; -- set unused MSBits to '0'
FUNCTION RESIZE_DP_SDATA( vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR; -- sign extend unused MSBits
FUNCTION RESIZE_DP_XDATA( vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR; -- set unused MSBits to 'X'
FUNCTION RESIZE_DP_DSP_DATA(vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR; -- sign extend unused MSBits of re and im fields
FUNCTION RESIZE_DP_EMPTY( vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;
FUNCTION RESIZE_DP_CHANNEL( vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;
FUNCTION RESIZE_DP_ERROR( vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;
FUNCTION REPLICATE_DP_DATA( seq : STD_LOGIC_VECTOR ) RETURN STD_LOGIC_VECTOR; -- replicate seq as often as fits in c_dp_stream_data_w
FUNCTION UNREPLICATE_DP_DATA(data : STD_LOGIC_VECTOR; seq_w : NATURAL) RETURN STD_LOGIC_VECTOR; -- unreplicate data to width seq_w, return low seq_w bits and set mismatch MSbits bits to '1'
FUNCTION TO_DP_SOSI_UNSIGNED(sync, valid, sop, eop : STD_LOGIC; bsn, data, re, im, empty, channel, err : UNSIGNED) RETURN t_dp_sosi_unsigned;
-- Keep part of head data and combine part of tail data, use the other sosi from head_sosi
FUNCTION func_dp_data_shift_first(head_sosi, tail_sosi : t_dp_sosi; symbol_w, nof_symbols_per_data, nof_symbols_from_tail : NATURAL) RETURN t_dp_sosi;
-- Shift and combine part of previous data and this data, use the other sosi from prev_sosi
FUNCTION func_dp_data_shift( prev_sosi, this_sosi : t_dp_sosi; symbol_w, nof_symbols_per_data, nof_symbols_from_this : NATURAL) RETURN t_dp_sosi;
-- Shift part of tail data and account for input empty
FUNCTION func_dp_data_shift_last( tail_sosi : t_dp_sosi; symbol_w, nof_symbols_per_data, nof_symbols_from_tail, input_empty : NATURAL) RETURN t_dp_sosi;
-- Determine resulting empty if two streams are concatenated or split
FUNCTION func_dp_empty_concat(head_empty, tail_empty : STD_LOGIC_VECTOR; nof_symbols_per_data : NATURAL) RETURN STD_LOGIC_VECTOR;
FUNCTION func_dp_empty_split(input_empty, head_empty : STD_LOGIC_VECTOR; nof_symbols_per_data : NATURAL) RETURN STD_LOGIC_VECTOR;
-- Multiplex the t_dp_sosi_arr based on the valid, assuming that at most one input is active valid.
FUNCTION func_dp_sosi_arr_mux(dp : t_dp_sosi_arr) RETURN t_dp_sosi;
-- Determine the combined logical value of corresponding STD_LOGIC fields in t_dp_*_arr (for all elements or only for the mask[]='1' elements)
FUNCTION func_dp_stream_arr_and(dp : t_dp_siso_arr; mask : STD_LOGIC_VECTOR; str : STRING) RETURN STD_LOGIC;
FUNCTION func_dp_stream_arr_and(dp : t_dp_sosi_arr; mask : STD_LOGIC_VECTOR; str : STRING) RETURN STD_LOGIC;
FUNCTION func_dp_stream_arr_and(dp : t_dp_siso_arr; str : STRING) RETURN STD_LOGIC;
FUNCTION func_dp_stream_arr_and(dp : t_dp_sosi_arr; str : STRING) RETURN STD_LOGIC;
FUNCTION func_dp_stream_arr_or( dp : t_dp_siso_arr; mask : STD_LOGIC_VECTOR; str : STRING) RETURN STD_LOGIC;
FUNCTION func_dp_stream_arr_or( dp : t_dp_sosi_arr; mask : STD_LOGIC_VECTOR; str : STRING) RETURN STD_LOGIC;
FUNCTION func_dp_stream_arr_or( dp : t_dp_siso_arr; str : STRING) RETURN STD_LOGIC;
FUNCTION func_dp_stream_arr_or( dp : t_dp_sosi_arr; str : STRING) RETURN STD_LOGIC;
-- Functions to set or get a STD_LOGIC field as a STD_LOGIC_VECTOR to or from an siso or an sosi array
FUNCTION func_dp_stream_arr_set(dp : t_dp_siso_arr; slv : STD_LOGIC_VECTOR; str : STRING) RETURN t_dp_siso_arr;
FUNCTION func_dp_stream_arr_set(dp : t_dp_sosi_arr; slv : STD_LOGIC_VECTOR; str : STRING) RETURN t_dp_sosi_arr;
FUNCTION func_dp_stream_arr_set(dp : t_dp_siso_arr; sl : STD_LOGIC; str : STRING) RETURN t_dp_siso_arr;
FUNCTION func_dp_stream_arr_set(dp : t_dp_sosi_arr; sl : STD_LOGIC; str : STRING) RETURN t_dp_sosi_arr;
FUNCTION func_dp_stream_arr_get(dp : t_dp_siso_arr; str : STRING) RETURN STD_LOGIC_VECTOR;
FUNCTION func_dp_stream_arr_get(dp : t_dp_sosi_arr; str : STRING) RETURN STD_LOGIC_VECTOR;
-- Functions to select elements from two siso or two sosi arrays (sel[] = '1' selects a, sel[] = '0' selects b)
FUNCTION func_dp_stream_arr_select(sel : STD_LOGIC_VECTOR; a, b : t_dp_siso) RETURN t_dp_siso_arr;
FUNCTION func_dp_stream_arr_select(sel : STD_LOGIC_VECTOR; a, b : t_dp_sosi) RETURN t_dp_sosi_arr;
FUNCTION func_dp_stream_arr_select(sel : STD_LOGIC_VECTOR; a : t_dp_siso_arr; b : t_dp_siso) RETURN t_dp_siso_arr;
FUNCTION func_dp_stream_arr_select(sel : STD_LOGIC_VECTOR; a : t_dp_sosi_arr; b : t_dp_sosi) RETURN t_dp_sosi_arr;
FUNCTION func_dp_stream_arr_select(sel : STD_LOGIC_VECTOR; a : t_dp_siso; b : t_dp_siso_arr) RETURN t_dp_siso_arr;
FUNCTION func_dp_stream_arr_select(sel : STD_LOGIC_VECTOR; a : t_dp_sosi; b : t_dp_sosi_arr) RETURN t_dp_sosi_arr;
FUNCTION func_dp_stream_arr_select(sel : STD_LOGIC_VECTOR; a, b : t_dp_siso_arr) RETURN t_dp_siso_arr;
FUNCTION func_dp_stream_arr_select(sel : STD_LOGIC_VECTOR; a, b : t_dp_sosi_arr) RETURN t_dp_sosi_arr;
-- Fix reversed buses due to connecting TO to DOWNTO range arrays.
FUNCTION func_dp_stream_arr_reverse_range(in_arr : t_dp_sosi_arr) RETURN t_dp_sosi_arr;
FUNCTION func_dp_stream_arr_reverse_range(in_arr : t_dp_siso_arr) RETURN t_dp_siso_arr;
-- Functions to combinatorially hold the data fields and to set or reset the control fields in an sosi array
FUNCTION func_dp_stream_arr_combine_data_info_ctrl(dp : t_dp_sosi_arr; info, ctrl : t_dp_sosi) RETURN t_dp_sosi_arr;
FUNCTION func_dp_stream_arr_set_info( dp : t_dp_sosi_arr; info : t_dp_sosi) RETURN t_dp_sosi_arr;
FUNCTION func_dp_stream_arr_set_control( dp : t_dp_sosi_arr; ctrl : t_dp_sosi) RETURN t_dp_sosi_arr;
FUNCTION func_dp_stream_arr_reset_control( dp : t_dp_sosi_arr ) RETURN t_dp_sosi_arr;
-- Functions to combinatorially determine the maximum and minimum sosi bsn[w-1:0] value in the sosi array (for all elements or only for the mask[]='1' elements)
FUNCTION func_dp_stream_arr_bsn_max(dp : t_dp_sosi_arr; mask : STD_LOGIC_VECTOR; w : NATURAL) RETURN STD_LOGIC_VECTOR;
FUNCTION func_dp_stream_arr_bsn_max(dp : t_dp_sosi_arr; w : NATURAL) RETURN STD_LOGIC_VECTOR;
FUNCTION func_dp_stream_arr_bsn_min(dp : t_dp_sosi_arr; mask : STD_LOGIC_VECTOR; w : NATURAL) RETURN STD_LOGIC_VECTOR;
FUNCTION func_dp_stream_arr_bsn_min(dp : t_dp_sosi_arr; w : NATURAL) RETURN STD_LOGIC_VECTOR;
-- Function to copy the BSN of one valid stream to all output streams.
FUNCTION func_dp_stream_arr_copy_valid_bsn(dp : t_dp_sosi_arr; mask : STD_LOGIC_VECTOR) RETURN t_dp_sosi_arr;
-- Functions to combinatorially handle channels
-- Note that the *_select and *_remove function are equivalent to dp_demux with g_combined=TRUE
FUNCTION func_dp_stream_channel_set (st_sosi : t_dp_sosi; ch : NATURAL) RETURN t_dp_sosi; -- select channel nr, add the channel field
FUNCTION func_dp_stream_channel_select(st_sosi : t_dp_sosi; ch : NATURAL) RETURN t_dp_sosi; -- select channel nr, skip the channel field
FUNCTION func_dp_stream_channel_remove(st_sosi : t_dp_sosi; ch : NATURAL) RETURN t_dp_sosi; -- skip channel nr
-- Functions to combinatorially handle the error field
FUNCTION func_dp_stream_error_set(st_sosi : t_dp_sosi; n : NATURAL) RETURN t_dp_sosi; -- force err = 0, is OK
-- Functions to combine sosi fields
FUNCTION func_dp_stream_combine_info_and_data(info, data : t_dp_sosi) RETURN t_dp_sosi;
-- Functions to convert sosi fields
FUNCTION func_dp_stream_slv_to_integer(slv_sosi : t_dp_sosi; w : NATURAL) RETURN t_dp_sosi_integer;
-- Functions to set the DATA, RE and IM field in a stream.
FUNCTION func_dp_stream_set_data(dp : t_dp_sosi; slv : STD_LOGIC_VECTOR; str : STRING ) RETURN t_dp_sosi;
FUNCTION func_dp_stream_set_data(dp : t_dp_sosi_arr; slv : STD_LOGIC_VECTOR; str : STRING ) RETURN t_dp_sosi_arr;
FUNCTION func_dp_stream_set_data(dp : t_dp_sosi_arr; slv : STD_LOGIC_VECTOR; str : STRING; mask : STD_LOGIC_VECTOR) RETURN t_dp_sosi_arr;
-- Concatenate the data from a SOSI array into a single SOSI stream (assumes streams are in sync)
FUNCTION func_dp_stream_concat(snk_in_arr : t_dp_sosi_arr; data_w : NATURAL) RETURN t_dp_sosi; -- Concat SOSI_ARR data into single SOSI
FUNCTION func_dp_stream_concat(src_in : t_dp_siso; nof_streams : NATURAL) RETURN t_dp_siso_arr; -- Wire single SISO to SISO_ARR
-- Deconcatenate data from SOSI into SOSI array
FUNCTION func_dp_stream_deconcat(snk_in : t_dp_sosi; nof_streams, data_w : NATURAL) RETURN t_dp_sosi_arr; -- Deconcat SOSI data
FUNCTION func_dp_stream_deconcat(src_out_arr : t_dp_siso_arr) RETURN t_dp_siso; -- Wire SISO_ARR(0) to single SISO
END dp_stream_pkg;
PACKAGE BODY dp_stream_pkg IS
-- Check sosi.valid against siso.ready
PROCEDURE proc_dp_siso_alert(CONSTANT c_ready_latency : IN NATURAL;
SIGNAL clk : IN STD_LOGIC;
SIGNAL sosi : IN t_dp_sosi;
SIGNAL siso : IN t_dp_siso;
SIGNAL ready_reg : INOUT STD_LOGIC_VECTOR) IS
BEGIN
ready_reg(0) <= siso.ready;
-- Register siso.ready in c_ready_latency registers
IF rising_edge(clk) THEN
-- Check DP sink
IF sosi.valid = '1' AND ready_reg(c_ready_latency) = '0' THEN
REPORT "RL ERROR" SEVERITY FAILURE;
END IF;
ready_reg( 1 TO c_ready_latency) <= ready_reg( 0 TO c_ready_latency-1);
END IF;
END proc_dp_siso_alert;
-- Default RL=1
PROCEDURE proc_dp_siso_alert(SIGNAL clk : IN STD_LOGIC;
SIGNAL sosi : IN t_dp_sosi;
SIGNAL siso : IN t_dp_siso;
SIGNAL ready_reg : INOUT STD_LOGIC_VECTOR) IS
BEGIN
proc_dp_siso_alert(1, clk, sosi, siso, ready_reg);
END proc_dp_siso_alert;
-- SOSI/SISO array version
PROCEDURE proc_dp_siso_alert(CONSTANT c_ready_latency : IN NATURAL;
SIGNAL clk : IN STD_LOGIC;
SIGNAL sosi_arr : IN t_dp_sosi_arr;
SIGNAL siso_arr : IN t_dp_siso_arr;
SIGNAL ready_reg : INOUT STD_LOGIC_VECTOR) IS
BEGIN
FOR i IN 0 TO sosi_arr'LENGTH-1 LOOP
ready_reg(i*(c_ready_latency+1)) <= siso_arr(i).ready; -- SLV is used as an array: nof_streams*(0..c_ready_latency)
END LOOP;
-- Register siso.ready in c_ready_latency registers
IF rising_edge(clk) THEN
FOR i IN 0 TO sosi_arr'LENGTH-1 LOOP
-- Check DP sink
IF sosi_arr(i).valid = '1' AND ready_reg(i*(c_ready_latency+1)+1) = '0' THEN
REPORT "RL ERROR" SEVERITY FAILURE;
END IF;
ready_reg(i*(c_ready_latency+1)+1 TO i*(c_ready_latency+1)+c_ready_latency) <= ready_reg(i*(c_ready_latency+1) TO i*(c_ready_latency+1)+c_ready_latency-1);
END LOOP;
END IF;
END proc_dp_siso_alert;
-- SOSI/SISO array version with RL=1
PROCEDURE proc_dp_siso_alert(SIGNAL clk : IN STD_LOGIC;
SIGNAL sosi_arr : IN t_dp_sosi_arr;
SIGNAL siso_arr : IN t_dp_siso_arr;
SIGNAL ready_reg : INOUT STD_LOGIC_VECTOR) IS
BEGIN
proc_dp_siso_alert(1, clk, sosi_arr, siso_arr, ready_reg);
END proc_dp_siso_alert;
-- Resize functions to fit an integer or an SLV in the corresponding t_dp_sosi field width
FUNCTION TO_DP_BSN(n : NATURAL) RETURN STD_LOGIC_VECTOR IS
BEGIN
RETURN RESIZE_UVEC(TO_SVEC(n, 32), c_dp_stream_bsn_w);
END TO_DP_BSN;
FUNCTION TO_DP_DATA(n : INTEGER) RETURN STD_LOGIC_VECTOR IS
BEGIN
RETURN RESIZE_UVEC(TO_SVEC(n, 32), c_dp_stream_data_w);
END TO_DP_DATA;
FUNCTION TO_DP_SDATA(n : INTEGER) RETURN STD_LOGIC_VECTOR IS
BEGIN
RETURN RESIZE_SVEC(TO_SVEC(n, 32), c_dp_stream_data_w);
END TO_DP_SDATA;
FUNCTION TO_DP_DSP_DATA(n : INTEGER) RETURN STD_LOGIC_VECTOR IS
BEGIN
RETURN RESIZE_SVEC(TO_SVEC(n, 32), c_dp_stream_dsp_data_w);
END TO_DP_DSP_DATA;
FUNCTION TO_DP_EMPTY(n : NATURAL) RETURN STD_LOGIC_VECTOR IS
BEGIN
RETURN TO_UVEC(n, c_dp_stream_empty_w);
END TO_DP_EMPTY;
FUNCTION TO_DP_CHANNEL(n : NATURAL) RETURN STD_LOGIC_VECTOR IS
BEGIN
RETURN TO_UVEC(n, c_dp_stream_channel_w);
END TO_DP_CHANNEL;
FUNCTION TO_DP_ERROR(n : NATURAL) RETURN STD_LOGIC_VECTOR IS
BEGIN
RETURN TO_UVEC(n, c_dp_stream_error_w);
END TO_DP_ERROR;
FUNCTION RESIZE_DP_BSN(vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
BEGIN
RETURN RESIZE_UVEC(vec, c_dp_stream_bsn_w);
END RESIZE_DP_BSN;
FUNCTION RESIZE_DP_DATA(vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
BEGIN
RETURN RESIZE_UVEC(vec, c_dp_stream_data_w);
END RESIZE_DP_DATA;
FUNCTION RESIZE_DP_SDATA(vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
BEGIN
RETURN RESIZE_SVEC(vec, c_dp_stream_data_w);
END RESIZE_DP_SDATA;
FUNCTION RESIZE_DP_XDATA(vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
VARIABLE v_vec : STD_LOGIC_VECTOR(c_dp_stream_data_w-1 DOWNTO 0) := (OTHERS=>'X');
BEGIN
v_vec(vec'LENGTH-1 DOWNTO 0) := vec;
RETURN v_vec;
END RESIZE_DP_XDATA;
FUNCTION RESIZE_DP_DSP_DATA(vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
BEGIN
RETURN RESIZE_SVEC(vec, c_dp_stream_dsp_data_w);
END RESIZE_DP_DSP_DATA;
FUNCTION RESIZE_DP_EMPTY(vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
BEGIN
RETURN RESIZE_UVEC(vec, c_dp_stream_empty_w);
END RESIZE_DP_EMPTY;
FUNCTION RESIZE_DP_CHANNEL(vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
BEGIN
RETURN RESIZE_UVEC(vec, c_dp_stream_channel_w);
END RESIZE_DP_CHANNEL;
FUNCTION RESIZE_DP_ERROR(vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
BEGIN
RETURN RESIZE_UVEC(vec, c_dp_stream_error_w);
END RESIZE_DP_ERROR;
FUNCTION REPLICATE_DP_DATA(seq : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
CONSTANT c_seq_w : NATURAL := seq'LENGTH;
CONSTANT c_nof_replications : NATURAL := ceil_div(c_dp_stream_data_w, c_seq_w);
CONSTANT c_vec_w : NATURAL := ceil_value(c_dp_stream_data_w, c_seq_w);
VARIABLE v_vec : STD_LOGIC_VECTOR(c_vec_w-1 DOWNTO 0);
BEGIN
FOR I IN 0 TO c_nof_replications-1 LOOP
v_vec((I+1)*c_seq_w-1 DOWNTO I*c_seq_w) := seq;
END LOOP;
RETURN v_vec(c_dp_stream_data_w-1 DOWNTO 0);
END REPLICATE_DP_DATA;
FUNCTION UNREPLICATE_DP_DATA(data : STD_LOGIC_VECTOR; seq_w :NATURAL) RETURN STD_LOGIC_VECTOR IS
CONSTANT c_data_w : NATURAL := data'LENGTH;
CONSTANT c_nof_replications : NATURAL := ceil_div(c_data_w, seq_w);
CONSTANT c_vec_w : NATURAL := ceil_value(c_data_w, seq_w);
VARIABLE v_seq : STD_LOGIC_VECTOR(seq_w-1 DOWNTO 0);
VARIABLE v_data : STD_LOGIC_VECTOR(c_vec_w-1 DOWNTO 0);
VARIABLE v_vec : STD_LOGIC_VECTOR(c_vec_w-1 DOWNTO 0);
BEGIN
v_data := RESIZE_UVEC(data, c_vec_w);
v_seq := v_data(seq_w-1 DOWNTO 0); -- low data part is the v_seq
v_vec(seq_w-1 DOWNTO 0) := v_seq; -- keep v_seq at low part of return value
IF c_nof_replications>1 THEN
FOR I IN 1 TO c_nof_replications-1 LOOP
v_vec((I+1)*seq_w-1 DOWNTO I*seq_w) := v_data((I+1)*seq_w-1 DOWNTO I*seq_w) XOR v_seq; -- set return bit to '1' for high part data bits that do not match low part v_seq
END LOOP;
END IF;
RETURN v_vec(c_data_w-1 DOWNTO 0);
END UNREPLICATE_DP_DATA;
FUNCTION TO_DP_SOSI_UNSIGNED(sync, valid, sop, eop : STD_LOGIC; bsn, data, re, im, empty, channel, err : UNSIGNED) RETURN t_dp_sosi_unsigned IS
VARIABLE v_sosi_unsigned : t_dp_sosi_unsigned;
BEGIN
v_sosi_unsigned.sync := sync;
v_sosi_unsigned.valid := valid;
v_sosi_unsigned.sop := sop;
v_sosi_unsigned.eop := eop;
v_sosi_unsigned.bsn := RESIZE(bsn, c_dp_stream_bsn_w);
v_sosi_unsigned.data := RESIZE(data, c_dp_stream_data_w);
v_sosi_unsigned.re := RESIZE(re, c_dp_stream_dsp_data_w);
v_sosi_unsigned.im := RESIZE(im, c_dp_stream_dsp_data_w);
v_sosi_unsigned.empty := RESIZE(empty, c_dp_stream_empty_w);
v_sosi_unsigned.channel := RESIZE(channel, c_dp_stream_channel_w);
v_sosi_unsigned.err := RESIZE(err, c_dp_stream_error_w);
RETURN v_sosi_unsigned;
END TO_DP_SOSI_UNSIGNED;
-- Keep part of head data and combine part of tail data
FUNCTION func_dp_data_shift_first(head_sosi, tail_sosi : t_dp_sosi; symbol_w, nof_symbols_per_data, nof_symbols_from_tail : NATURAL) RETURN t_dp_sosi IS
VARIABLE vN : NATURAL := nof_symbols_per_data;
VARIABLE v_sosi : t_dp_sosi;
BEGIN
ASSERT nof_symbols_from_tail<vN REPORT "func_dp_data_shift_first : no symbols from head" SEVERITY FAILURE;
-- use the other sosi from head_sosi
v_sosi := head_sosi; -- I = nof_symbols_from_tail = 0
FOR I IN 1 TO vN-1 LOOP -- I > 0
IF nof_symbols_from_tail = I THEN
v_sosi.data(I*symbol_w-1 DOWNTO 0) := tail_sosi.data(vN*symbol_w-1 DOWNTO (vN-I)*symbol_w);
END IF;
END LOOP;
RETURN v_sosi;
END func_dp_data_shift_first;
-- Shift and combine part of previous data and this data,
FUNCTION func_dp_data_shift(prev_sosi, this_sosi : t_dp_sosi; symbol_w, nof_symbols_per_data, nof_symbols_from_this : NATURAL) RETURN t_dp_sosi IS
VARIABLE vK : NATURAL := nof_symbols_from_this;
VARIABLE vN : NATURAL := nof_symbols_per_data;
VARIABLE v_sosi : t_dp_sosi;
BEGIN
-- use the other sosi from this_sosi if nof_symbols_from_this > 0 else use other sosi from prev_sosi
IF vK>0 THEN
v_sosi := this_sosi;
ELSE
v_sosi := prev_sosi;
END IF;
-- use sosi data from both if 0 < nof_symbols_from_this < nof_symbols_per_data (i.e. 0 < I < vN)
IF vK<nof_symbols_per_data THEN -- I = vK = nof_symbols_from_this < vN
-- Implementation using variable vK directly instead of via I in a LOOP
-- IF vK > 0 THEN
-- v_sosi.data(vN*symbol_w-1 DOWNTO vK*symbol_w) := prev_sosi.data((vN-vK)*symbol_w-1 DOWNTO 0);
-- v_sosi.data( vK*symbol_w-1 DOWNTO 0) := this_sosi.data( vN *symbol_w-1 DOWNTO (vN-vK)*symbol_w);
-- END IF;
-- Implementaion using LOOP vK rather than VARIABLE vK directly as index to help synthesis and avoid potential multiplier
v_sosi.data := prev_sosi.data; -- I = vK = nof_symbols_from_this = 0
FOR I IN 1 TO vN-1 LOOP -- I = vK = nof_symbols_from_this > 0
IF vK = I THEN
v_sosi.data(vN*symbol_w-1 DOWNTO I*symbol_w) := prev_sosi.data((vN-I)*symbol_w-1 DOWNTO 0);
v_sosi.data( I*symbol_w-1 DOWNTO 0) := this_sosi.data( vN *symbol_w-1 DOWNTO (vN-I)*symbol_w);
END IF;
END LOOP;
END IF;
RETURN v_sosi;
END func_dp_data_shift;
-- Shift part of tail data and account for input empty
FUNCTION func_dp_data_shift_last(tail_sosi : t_dp_sosi; symbol_w, nof_symbols_per_data, nof_symbols_from_tail, input_empty : NATURAL) RETURN t_dp_sosi IS
VARIABLE vK : NATURAL := nof_symbols_from_tail;
VARIABLE vL : NATURAL := input_empty;
VARIABLE vN : NATURAL := nof_symbols_per_data;
VARIABLE v_sosi : t_dp_sosi;
BEGIN
ASSERT vK > 0 REPORT "func_dp_data_shift_last : no symbols from tail" SEVERITY FAILURE;
ASSERT vK+vL<=vN REPORT "func_dp_data_shift_last : impossible shift" SEVERITY FAILURE;
v_sosi := tail_sosi;
-- Implementation using variable vK directly instead of via I in a LOOP
-- IF vK > 0 THEN
-- v_sosi.data(vN*symbol_w-1 DOWNTO (vN-vK)*symbol_w) <= tail_sosi.data((vK+vL)*symbol_w-1 DOWNTO vL*symbol_w);
-- END IF;
-- Implementation using LOOP vK rather than VARIABLE vK directly as index to help synthesis and avoid potential multiplier
-- Implementation using LOOP vL rather than VARIABLE vL directly as index to help synthesis and avoid potential multiplier
FOR I IN 1 TO vN-1 LOOP
IF vK = I THEN
FOR J IN 0 TO vN-1 LOOP
IF vL = J THEN
v_sosi.data(vN*symbol_w-1 DOWNTO (vN-I)*symbol_w) := tail_sosi.data((I+J)*symbol_w-1 DOWNTO J*symbol_w);
END IF;
END LOOP;
END IF;
END LOOP;
RETURN v_sosi;
END func_dp_data_shift_last;
-- Determine resulting empty if two streams are concatenated
-- . both empty must use the same nof symbols per data
FUNCTION func_dp_empty_concat(head_empty, tail_empty : STD_LOGIC_VECTOR; nof_symbols_per_data : NATURAL) RETURN STD_LOGIC_VECTOR IS
VARIABLE v_a, v_b, v_empty : NATURAL;
BEGIN
v_a := TO_UINT(head_empty);
v_b := TO_UINT(tail_empty);
v_empty := v_a + v_b;
IF v_empty >= nof_symbols_per_data THEN
v_empty := v_empty - nof_symbols_per_data;
END IF;
RETURN TO_UVEC(v_empty, head_empty'LENGTH);
END func_dp_empty_concat;
FUNCTION func_dp_empty_split(input_empty, head_empty : STD_LOGIC_VECTOR; nof_symbols_per_data : NATURAL) RETURN STD_LOGIC_VECTOR IS
VARIABLE v_a, v_b, v_empty : NATURAL;
BEGIN
v_a := TO_UINT(input_empty);
v_b := TO_UINT(head_empty);
IF v_a >= v_b THEN
v_empty := v_a - v_b;
ELSE
v_empty := (nof_symbols_per_data + v_a) - v_b;
END IF;
RETURN TO_UVEC(v_empty, head_empty'LENGTH);
END func_dp_empty_split;
-- Multiplex the t_dp_sosi_arr based on the valid, assuming that at most one input is active valid.
FUNCTION func_dp_sosi_arr_mux(dp : t_dp_sosi_arr) RETURN t_dp_sosi IS
VARIABLE v_sosi : t_dp_sosi := c_dp_sosi_rst;
BEGIN
FOR I IN dp'RANGE LOOP
IF dp(I).valid='1' THEN
v_sosi := dp(I);
EXIT;
END IF;
END LOOP;
RETURN v_sosi;
END func_dp_sosi_arr_mux;
-- Determine the combined logical value of corresponding STD_LOGIC fields in t_dp_*_arr (for all elements or only for the mask[]='1' elements)
FUNCTION func_dp_stream_arr_and(dp : t_dp_siso_arr; mask : STD_LOGIC_VECTOR; str : STRING) RETURN STD_LOGIC IS
VARIABLE v_vec : STD_LOGIC_VECTOR(dp'RANGE) := (OTHERS=>'1'); -- set default v_vec such that unmasked input have no influence on operation result
VARIABLE v_any : STD_LOGIC := '0';
BEGIN
-- map siso field to v_vec
FOR I IN dp'RANGE LOOP
IF mask(I)='1' THEN
v_any := '1';
IF str="READY" THEN v_vec(I) := dp(I).ready;
ELSIF str="XON" THEN v_vec(I) := dp(I).xon;
ELSE REPORT "Error in func_dp_stream_arr_and for t_dp_siso_arr";
END IF;
END IF;
END LOOP;
-- do operation on the selected record field
IF v_any='1' THEN
RETURN vector_and(v_vec); -- return AND of the masked input fields
ELSE
RETURN '0'; -- return '0' if no input was masked
END IF;
END func_dp_stream_arr_and;
FUNCTION func_dp_stream_arr_and(dp : t_dp_sosi_arr; mask : STD_LOGIC_VECTOR; str : STRING) RETURN STD_LOGIC IS
VARIABLE v_vec : STD_LOGIC_VECTOR(dp'RANGE) := (OTHERS=>'1'); -- set default v_vec such that unmasked input have no influence on operation result
VARIABLE v_any : STD_LOGIC := '0';
BEGIN
-- map siso field to v_vec
FOR I IN dp'RANGE LOOP
IF mask(I)='1' THEN
v_any := '1';
IF str="VALID" THEN v_vec(I) := dp(I).valid;
ELSIF str="SOP" THEN v_vec(I) := dp(I).sop;
ELSIF str="EOP" THEN v_vec(I) := dp(I).eop;
ELSIF str="SYNC" THEN v_vec(I) := dp(I).sync;
ELSE REPORT "Error in func_dp_stream_arr_and for t_dp_sosi_arr";
END IF;
END IF;
END LOOP;
-- do operation on the selected record field
IF v_any='1' THEN
RETURN vector_and(v_vec); -- return AND of the masked input fields
ELSE
RETURN '0'; -- return '0' if no input was masked
END IF;
END func_dp_stream_arr_and;
FUNCTION func_dp_stream_arr_and(dp : t_dp_siso_arr; str : STRING) RETURN STD_LOGIC IS
CONSTANT c_mask : STD_LOGIC_VECTOR(dp'RANGE) := (OTHERS=>'1');
BEGIN
RETURN func_dp_stream_arr_and(dp, c_mask, str);
END func_dp_stream_arr_and;
FUNCTION func_dp_stream_arr_and(dp : t_dp_sosi_arr; str : STRING) RETURN STD_LOGIC IS
CONSTANT c_mask : STD_LOGIC_VECTOR(dp'RANGE) := (OTHERS=>'1');
BEGIN
RETURN func_dp_stream_arr_and(dp, c_mask, str);
END func_dp_stream_arr_and;
FUNCTION func_dp_stream_arr_or(dp : t_dp_siso_arr; mask : STD_LOGIC_VECTOR; str : STRING) RETURN STD_LOGIC IS
VARIABLE v_vec : STD_LOGIC_VECTOR(dp'RANGE) := (OTHERS=>'0'); -- set default v_vec such that unmasked input have no influence on operation result
VARIABLE v_any : STD_LOGIC := '0';
BEGIN
-- map siso field to v_vec
FOR I IN dp'RANGE LOOP
IF mask(I)='1' THEN
v_any := '1';
IF str="READY" THEN v_vec(I) := dp(I).ready;
ELSIF str="XON" THEN v_vec(I) := dp(I).xon;
ELSE REPORT "Error in func_dp_stream_arr_or for t_dp_siso_arr";
END IF;
END IF;
END LOOP;
-- do operation on the selected record field
IF v_any='1' THEN
RETURN vector_or(v_vec); -- return OR of the masked input fields
ELSE
RETURN '0'; -- return '0' if no input was masked
END IF;
END func_dp_stream_arr_or;
FUNCTION func_dp_stream_arr_or(dp : t_dp_sosi_arr; mask : STD_LOGIC_VECTOR; str : STRING) RETURN STD_LOGIC IS
VARIABLE v_vec : STD_LOGIC_VECTOR(dp'RANGE) := (OTHERS=>'0'); -- set default v_vec such that unmasked input have no influence on operation result
VARIABLE v_any : STD_LOGIC := '0';
BEGIN
-- map siso field to v_vec
FOR I IN dp'RANGE LOOP
IF mask(I)='1' THEN
v_any := '1';
IF str="VALID" THEN v_vec(I) := dp(I).valid;
ELSIF str="SOP" THEN v_vec(I) := dp(I).sop;
ELSIF str="EOP" THEN v_vec(I) := dp(I).eop;
ELSIF str="SYNC" THEN v_vec(I) := dp(I).sync;
ELSE REPORT "Error in func_dp_stream_arr_or for t_dp_sosi_arr";
END IF;
END IF;
END LOOP;
-- do operation on the selected record field
IF v_any='1' THEN
RETURN vector_or(v_vec); -- return OR of the masked input fields
ELSE
RETURN '0'; -- return '0' if no input was masked
END IF;
END func_dp_stream_arr_or;
FUNCTION func_dp_stream_arr_or(dp : t_dp_siso_arr; str : STRING) RETURN STD_LOGIC IS
CONSTANT c_mask : STD_LOGIC_VECTOR(dp'RANGE) := (OTHERS=>'1');
BEGIN
RETURN func_dp_stream_arr_or(dp, c_mask, str);
END func_dp_stream_arr_or;
FUNCTION func_dp_stream_arr_or(dp : t_dp_sosi_arr; str : STRING) RETURN STD_LOGIC IS
CONSTANT c_mask : STD_LOGIC_VECTOR(dp'RANGE) := (OTHERS=>'1');
BEGIN
RETURN func_dp_stream_arr_or(dp, c_mask, str);
END func_dp_stream_arr_or;
-- Functions to set or get a STD_LOGIC field as a STD_LOGIC_VECTOR to or from an siso or an sosi array
FUNCTION func_dp_stream_arr_set(dp : t_dp_siso_arr; slv : STD_LOGIC_VECTOR; str : STRING) RETURN t_dp_siso_arr IS
VARIABLE v_dp : t_dp_siso_arr(dp'RANGE) := dp; -- default
VARIABLE v_slv : STD_LOGIC_VECTOR(dp'RANGE) := slv; -- map to ensure same range as for dp
BEGIN
FOR I IN dp'RANGE LOOP
IF str="READY" THEN v_dp(I).ready := v_slv(I);
ELSIF str="XON" THEN v_dp(I).xon := v_slv(I);
ELSE REPORT "Error in func_dp_stream_arr_set for t_dp_siso_arr";
END IF;
END LOOP;
RETURN v_dp;
END func_dp_stream_arr_set;
FUNCTION func_dp_stream_arr_set(dp : t_dp_sosi_arr; slv : STD_LOGIC_VECTOR; str : STRING) RETURN t_dp_sosi_arr IS
VARIABLE v_dp : t_dp_sosi_arr(dp'RANGE) := dp; -- default
VARIABLE v_slv : STD_LOGIC_VECTOR(dp'RANGE) := slv; -- map to ensure same range as for dp
BEGIN
FOR I IN dp'RANGE LOOP
IF str="VALID" THEN v_dp(I).valid := v_slv(I);
ELSIF str="SOP" THEN v_dp(I).sop := v_slv(I);
ELSIF str="EOP" THEN v_dp(I).eop := v_slv(I);
ELSIF str="SYNC" THEN v_dp(I).sync := v_slv(I);
ELSE REPORT "Error in func_dp_stream_arr_set for t_dp_sosi_arr";
END IF;
END LOOP;
RETURN v_dp;
END func_dp_stream_arr_set;
FUNCTION func_dp_stream_arr_set(dp : t_dp_siso_arr; sl : STD_LOGIC; str : STRING) RETURN t_dp_siso_arr IS
VARIABLE v_slv : STD_LOGIC_VECTOR(dp'RANGE) := (OTHERS=>sl);
BEGIN
RETURN func_dp_stream_arr_set(dp, v_slv, str);
END func_dp_stream_arr_set;
FUNCTION func_dp_stream_arr_set(dp : t_dp_sosi_arr; sl : STD_LOGIC; str : STRING) RETURN t_dp_sosi_arr IS
VARIABLE v_slv : STD_LOGIC_VECTOR(dp'RANGE) := (OTHERS=>sl);
BEGIN
RETURN func_dp_stream_arr_set(dp, v_slv, str);
END func_dp_stream_arr_set;
FUNCTION func_dp_stream_arr_get(dp : t_dp_siso_arr; str : STRING) RETURN STD_LOGIC_VECTOR IS
VARIABLE v_ctrl : STD_LOGIC_VECTOR(dp'RANGE);
BEGIN
FOR I IN dp'RANGE LOOP
IF str="READY" THEN v_ctrl(I) := dp(I).ready;
ELSIF str="XON" THEN v_ctrl(I) := dp(I).xon;
ELSE REPORT "Error in func_dp_stream_arr_get for t_dp_siso_arr";
END IF;
END LOOP;
RETURN v_ctrl;
END func_dp_stream_arr_get;
FUNCTION func_dp_stream_arr_get(dp : t_dp_sosi_arr; str : STRING) RETURN STD_LOGIC_VECTOR IS
VARIABLE v_ctrl : STD_LOGIC_VECTOR(dp'RANGE);
BEGIN
FOR I IN dp'RANGE LOOP
IF str="VALID" THEN v_ctrl(I) := dp(I).valid;
ELSIF str="SOP" THEN v_ctrl(I) := dp(I).sop;
ELSIF str="EOP" THEN v_ctrl(I) := dp(I).eop;
ELSIF str="SYNC" THEN v_ctrl(I) := dp(I).sync;
ELSE REPORT "Error in func_dp_stream_arr_get for t_dp_sosi_arr";
END IF;
END LOOP;
RETURN v_ctrl;
END func_dp_stream_arr_get;
-- Functions to select elements from two siso or two sosi arrays (sel[] = '1' selects a, sel[] = '0' selects b)
FUNCTION func_dp_stream_arr_select(sel : STD_LOGIC_VECTOR; a, b : t_dp_siso) RETURN t_dp_siso_arr IS
VARIABLE v_dp : t_dp_siso_arr(sel'RANGE);
BEGIN
FOR I IN sel'RANGE LOOP
IF sel(I)='1' THEN
v_dp(I) := a;
ELSE
v_dp(I) := b;
END IF;
END LOOP;
RETURN v_dp;
END func_dp_stream_arr_select;
FUNCTION func_dp_stream_arr_select(sel : STD_LOGIC_VECTOR; a : t_dp_siso_arr; b : t_dp_siso) RETURN t_dp_siso_arr IS
VARIABLE v_dp : t_dp_siso_arr(sel'RANGE);
BEGIN
FOR I IN sel'RANGE LOOP
IF sel(I)='1' THEN
v_dp(I) := a(I);
ELSE
v_dp(I) := b;
END IF;
END LOOP;
RETURN v_dp;
END func_dp_stream_arr_select;
FUNCTION func_dp_stream_arr_select(sel : STD_LOGIC_VECTOR; a : t_dp_siso; b : t_dp_siso_arr) RETURN t_dp_siso_arr IS
VARIABLE v_dp : t_dp_siso_arr(sel'RANGE);
BEGIN
FOR I IN sel'RANGE LOOP
IF sel(I)='1' THEN
v_dp(I) := a;
ELSE
v_dp(I) := b(I);
END IF;
END LOOP;
RETURN v_dp;
END func_dp_stream_arr_select;
FUNCTION func_dp_stream_arr_select(sel : STD_LOGIC_VECTOR; a, b : t_dp_siso_arr) RETURN t_dp_siso_arr IS
VARIABLE v_dp : t_dp_siso_arr(sel'RANGE);
BEGIN
FOR I IN sel'RANGE LOOP
IF sel(I)='1' THEN
v_dp(I) := a(I);
ELSE
v_dp(I) := b(I);
END IF;
END LOOP;
RETURN v_dp;
END func_dp_stream_arr_select;
FUNCTION func_dp_stream_arr_select(sel : STD_LOGIC_VECTOR; a, b : t_dp_sosi) RETURN t_dp_sosi_arr IS
VARIABLE v_dp : t_dp_sosi_arr(sel'RANGE);
BEGIN
FOR I IN sel'RANGE LOOP
IF sel(I)='1' THEN
v_dp(I) := a;
ELSE
v_dp(I) := b;
END IF;
END LOOP;
RETURN v_dp;
END func_dp_stream_arr_select;
FUNCTION func_dp_stream_arr_select(sel : STD_LOGIC_VECTOR; a : t_dp_sosi_arr; b : t_dp_sosi) RETURN t_dp_sosi_arr IS
VARIABLE v_dp : t_dp_sosi_arr(sel'RANGE);
BEGIN
FOR I IN sel'RANGE LOOP
IF sel(I)='1' THEN
v_dp(I) := a(I);
ELSE
v_dp(I) := b;
END IF;
END LOOP;
RETURN v_dp;
END func_dp_stream_arr_select;
FUNCTION func_dp_stream_arr_select(sel : STD_LOGIC_VECTOR; a : t_dp_sosi; b : t_dp_sosi_arr) RETURN t_dp_sosi_arr IS
VARIABLE v_dp : t_dp_sosi_arr(sel'RANGE);
BEGIN
FOR I IN sel'RANGE LOOP
IF sel(I)='1' THEN
v_dp(I) := a;
ELSE
v_dp(I) := b(I);
END IF;
END LOOP;
RETURN v_dp;
END func_dp_stream_arr_select;
FUNCTION func_dp_stream_arr_select(sel : STD_LOGIC_VECTOR; a, b : t_dp_sosi_arr) RETURN t_dp_sosi_arr IS
VARIABLE v_dp : t_dp_sosi_arr(sel'RANGE);
BEGIN
FOR I IN sel'RANGE LOOP
IF sel(I)='1' THEN
v_dp(I) := a(I);
ELSE
v_dp(I) := b(I);
END IF;
END LOOP;
RETURN v_dp;
END func_dp_stream_arr_select;
FUNCTION func_dp_stream_arr_reverse_range(in_arr : t_dp_siso_arr) RETURN t_dp_siso_arr IS
VARIABLE v_to_range : t_dp_siso_arr(0 TO in_arr'HIGH);
VARIABLE v_downto_range : t_dp_siso_arr(in_arr'HIGH DOWNTO 0);
BEGIN
FOR i IN in_arr'RANGE LOOP
v_to_range(i) := in_arr(in_arr'HIGH-i);
v_downto_range(i) := in_arr(in_arr'HIGH-i);
END LOOP;
IF in_arr'LEFT>in_arr'RIGHT THEN
RETURN v_downto_range;
ELSIF in_arr'LEFT<in_arr'RIGHT THEN
RETURN v_to_range;
ELSE
RETURN in_arr;
END IF;
END func_dp_stream_arr_reverse_range;
FUNCTION func_dp_stream_arr_reverse_range(in_arr : t_dp_sosi_arr) RETURN t_dp_sosi_arr IS
VARIABLE v_to_range : t_dp_sosi_arr(0 TO in_arr'HIGH);
VARIABLE v_downto_range : t_dp_sosi_arr(in_arr'HIGH DOWNTO 0);
BEGIN
FOR i IN in_arr'RANGE LOOP
v_to_range(i) := in_arr(in_arr'HIGH-i);
v_downto_range(i) := in_arr(in_arr'HIGH-i);
END LOOP;
IF in_arr'LEFT>in_arr'RIGHT THEN
RETURN v_downto_range;
ELSIF in_arr'LEFT<in_arr'RIGHT THEN
RETURN v_to_range;
ELSE
RETURN in_arr;
END IF;
END func_dp_stream_arr_reverse_range;
-- Functions to combinatorially hold the data fields and to set or reset the info and control fields in an sosi array
FUNCTION func_dp_stream_arr_combine_data_info_ctrl(dp : t_dp_sosi_arr; info, ctrl : t_dp_sosi) RETURN t_dp_sosi_arr IS
VARIABLE v_dp : t_dp_sosi_arr(dp'RANGE) := dp; -- hold sosi data
BEGIN
v_dp := func_dp_stream_arr_set_info( v_dp, info); -- set sosi info
v_dp := func_dp_stream_arr_set_control(v_dp, ctrl); -- set sosi ctrl
RETURN v_dp;
END func_dp_stream_arr_combine_data_info_ctrl;
FUNCTION func_dp_stream_arr_set_info(dp : t_dp_sosi_arr; info : t_dp_sosi) RETURN t_dp_sosi_arr IS
VARIABLE v_dp : t_dp_sosi_arr(dp'RANGE) := dp; -- hold sosi data
BEGIN
FOR I IN dp'RANGE LOOP -- set sosi info
v_dp(I).bsn := info.bsn; -- sop
v_dp(I).channel := info.channel; -- sop
v_dp(I).empty := info.empty; -- eop
v_dp(I).err := info.err; -- eop
END LOOP;
RETURN v_dp;
END func_dp_stream_arr_set_info;
FUNCTION func_dp_stream_arr_set_control(dp : t_dp_sosi_arr; ctrl : t_dp_sosi) RETURN t_dp_sosi_arr IS
VARIABLE v_dp : t_dp_sosi_arr(dp'RANGE) := dp; -- hold sosi data
BEGIN
FOR I IN dp'RANGE LOOP -- set sosi control
v_dp(I).valid := ctrl.valid;
v_dp(I).sop := ctrl.sop;
v_dp(I).eop := ctrl.eop;
v_dp(I).sync := ctrl.sync;
END LOOP;
RETURN v_dp;
END func_dp_stream_arr_set_control;
FUNCTION func_dp_stream_arr_reset_control(dp : t_dp_sosi_arr) RETURN t_dp_sosi_arr IS
VARIABLE v_dp : t_dp_sosi_arr(dp'RANGE) := dp; -- hold sosi data
BEGIN
FOR I IN dp'RANGE LOOP -- reset sosi control
v_dp(I).valid := '0';
v_dp(I).sop := '0';
v_dp(I).eop := '0';
v_dp(I).sync := '0';
END LOOP;
RETURN v_dp;
END func_dp_stream_arr_reset_control;
-- Functions to combinatorially determine the maximum and minimum sosi bsn[w-1:0] value in the sosi array (for all elements or only for the mask[]='1' elements)
FUNCTION func_dp_stream_arr_bsn_max(dp : t_dp_sosi_arr; mask : STD_LOGIC_VECTOR; w : NATURAL) RETURN STD_LOGIC_VECTOR IS
VARIABLE v_bsn : STD_LOGIC_VECTOR(w-1 DOWNTO 0) := (OTHERS=>'0'); -- init max v_bsn with minimum value
BEGIN
FOR I IN dp'RANGE LOOP
IF mask(I)='1' THEN
IF UNSIGNED(v_bsn) < UNSIGNED(dp(I).bsn(w-1 DOWNTO 0)) THEN
v_bsn := dp(I).bsn(w-1 DOWNTO 0);
END IF;
END IF;
END LOOP;
RETURN v_bsn;
END func_dp_stream_arr_bsn_max;
FUNCTION func_dp_stream_arr_bsn_max(dp : t_dp_sosi_arr; w : NATURAL) RETURN STD_LOGIC_VECTOR IS
CONSTANT c_mask : STD_LOGIC_VECTOR(dp'RANGE) := (OTHERS=>'1');
BEGIN
RETURN func_dp_stream_arr_bsn_max(dp, c_mask, w);
END func_dp_stream_arr_bsn_max;
FUNCTION func_dp_stream_arr_bsn_min(dp : t_dp_sosi_arr; mask : STD_LOGIC_VECTOR; w : NATURAL) RETURN STD_LOGIC_VECTOR IS
VARIABLE v_bsn : STD_LOGIC_VECTOR(w-1 DOWNTO 0) := (OTHERS=>'1'); -- init min v_bsn with maximum value
BEGIN
FOR I IN dp'RANGE LOOP
IF mask(I)='1' THEN
IF UNSIGNED(v_bsn) > UNSIGNED(dp(I).bsn(w-1 DOWNTO 0)) THEN
v_bsn := dp(I).bsn(w-1 DOWNTO 0);
END IF;
END IF;
END LOOP;
RETURN v_bsn;
END func_dp_stream_arr_bsn_min;
FUNCTION func_dp_stream_arr_bsn_min(dp : t_dp_sosi_arr; w : NATURAL) RETURN STD_LOGIC_VECTOR IS
CONSTANT c_mask : STD_LOGIC_VECTOR(dp'RANGE) := (OTHERS=>'1');
BEGIN
RETURN func_dp_stream_arr_bsn_min(dp, c_mask, w);
END func_dp_stream_arr_bsn_min;
-- Function to copy the BSN number of one valid stream to all other streams.
FUNCTION func_dp_stream_arr_copy_valid_bsn(dp : t_dp_sosi_arr; mask : STD_LOGIC_VECTOR) RETURN t_dp_sosi_arr IS
VARIABLE v_bsn : STD_LOGIC_VECTOR(c_dp_stream_bsn_w-1 DOWNTO 0) := (OTHERS=>'0');
VARIABLE v_dp : t_dp_sosi_arr(dp'RANGE) := dp; -- hold sosi data
BEGIN
FOR I IN dp'RANGE LOOP
IF mask(I)='1' THEN
v_bsn := dp(I).bsn;
END IF;
END LOOP;
FOR I IN dp'RANGE LOOP
v_dp(I).bsn := v_bsn;
END LOOP;
RETURN v_dp;
END func_dp_stream_arr_copy_valid_bsn;
-- Functions to combinatorially handle channels
FUNCTION func_dp_stream_channel_set(st_sosi : t_dp_sosi; ch : NATURAL) RETURN t_dp_sosi IS
VARIABLE v_rec : t_dp_sosi := st_sosi;
BEGIN
v_rec.channel := TO_UVEC(ch, c_dp_stream_channel_w);
RETURN v_rec;
END func_dp_stream_channel_set;
FUNCTION func_dp_stream_channel_select(st_sosi : t_dp_sosi; ch : NATURAL) RETURN t_dp_sosi IS
VARIABLE v_rec : t_dp_sosi := st_sosi;
BEGIN
IF UNSIGNED(st_sosi.channel)/=ch THEN
v_rec.valid := '0';
v_rec.sop := '0';
v_rec.eop := '0';
END IF;
RETURN v_rec;
END func_dp_stream_channel_select;
FUNCTION func_dp_stream_channel_remove(st_sosi : t_dp_sosi; ch : NATURAL) RETURN t_dp_sosi IS
VARIABLE v_rec : t_dp_sosi := st_sosi;
BEGIN
IF UNSIGNED(st_sosi.channel)=ch THEN
v_rec.valid := '0';
v_rec.sop := '0';
v_rec.eop := '0';
END IF;
RETURN v_rec;
END func_dp_stream_channel_remove;
FUNCTION func_dp_stream_error_set(st_sosi : t_dp_sosi; n : NATURAL) RETURN t_dp_sosi IS
VARIABLE v_rec : t_dp_sosi := st_sosi;
BEGIN
v_rec.err := TO_UVEC(n, c_dp_stream_error_w);
RETURN v_rec;
END func_dp_stream_error_set;
FUNCTION func_dp_stream_combine_info_and_data(info, data : t_dp_sosi) RETURN t_dp_sosi IS
VARIABLE v_rec : t_dp_sosi := data; -- Sosi data fields
BEGIN
-- Combine sosi data with the sosi info fields
v_rec.sync := info.sync AND data.sop; -- force sync only active at data.sop
v_rec.bsn := info.bsn;
v_rec.channel := info.channel;
v_rec.empty := info.empty;
v_rec.err := info.err;
RETURN v_rec;
END func_dp_stream_combine_info_and_data;
FUNCTION func_dp_stream_slv_to_integer(slv_sosi : t_dp_sosi; w : NATURAL) RETURN t_dp_sosi_integer IS
VARIABLE v_rec : t_dp_sosi_integer;
BEGIN
v_rec.sync := slv_sosi.sync;
v_rec.bsn := TO_UINT(slv_sosi.bsn(30 DOWNTO 0)); -- NATURAL'width = 31 bit
v_rec.data := TO_SINT(slv_sosi.data(w-1 DOWNTO 0));
v_rec.re := TO_SINT(slv_sosi.re(w-1 DOWNTO 0));
v_rec.im := TO_SINT(slv_sosi.im(w-1 DOWNTO 0));
v_rec.valid := slv_sosi.valid;
v_rec.sop := slv_sosi.sop;
v_rec.eop := slv_sosi.eop;
v_rec.empty := TO_UINT(slv_sosi.empty);
v_rec.channel := TO_UINT(slv_sosi.channel);
v_rec.err := TO_UINT(slv_sosi.err);
RETURN v_rec;
END func_dp_stream_slv_to_integer;
FUNCTION func_dp_stream_set_data(dp : t_dp_sosi; slv : STD_LOGIC_VECTOR; str : STRING) RETURN t_dp_sosi IS
VARIABLE v_dp : t_dp_sosi := dp;
BEGIN
IF str="DATA" THEN v_dp.data := RESIZE_DP_DATA(slv);
ELSIF str="DSP" THEN v_dp.re := RESIZE_DP_DSP_DATA(slv);
v_dp.im := RESIZE_DP_DSP_DATA(slv);
ELSIF str="RE" THEN v_dp.re := RESIZE_DP_DSP_DATA(slv);
ELSIF str="IM" THEN v_dp.re := RESIZE_DP_DSP_DATA(slv);
ELSIF str="ALL" THEN v_dp.data := RESIZE_DP_DATA(slv);
v_dp.re := RESIZE_DP_DSP_DATA(slv);
v_dp.im := RESIZE_DP_DSP_DATA(slv);
ELSE REPORT "Error in func_dp_stream_set_data for t_dp_sosi";
END IF;
RETURN v_dp;
END;
FUNCTION func_dp_stream_set_data(dp : t_dp_sosi_arr; slv : STD_LOGIC_VECTOR; str : STRING) RETURN t_dp_sosi_arr IS
VARIABLE v_dp : t_dp_sosi_arr(dp'RANGE) := dp;
BEGIN
FOR I IN dp'RANGE LOOP
v_dp(I) := func_dp_stream_set_data(dp(I), slv, str);
END LOOP;
RETURN v_dp;
END;
FUNCTION func_dp_stream_set_data(dp : t_dp_sosi_arr; slv : STD_LOGIC_VECTOR; str : STRING; mask : STD_LOGIC_VECTOR) RETURN t_dp_sosi_arr IS
VARIABLE v_dp : t_dp_sosi_arr(dp'RANGE) := dp;
BEGIN
FOR I IN dp'RANGE LOOP
IF mask(I)='0' THEN
v_dp(I) := func_dp_stream_set_data(dp(I), slv, str);
END IF;
END LOOP;
RETURN v_dp;
END;
-- Concatenate the data (and complex fields) from a SOSI array into a single SOSI stream (assumes streams are in sync)
FUNCTION func_dp_stream_concat(snk_in_arr : t_dp_sosi_arr; data_w : NATURAL) RETURN t_dp_sosi IS
VARIABLE v_src_out : t_dp_sosi := snk_in_arr(0);
VARIABLE v_compl_data_w : NATURAL := data_w/2;
BEGIN
FOR i IN snk_in_arr'RANGE LOOP
v_src_out.data((i+1)* data_w-1 DOWNTO i* data_w) := snk_in_arr(i).data( data_w-1 DOWNTO 0);
v_src_out.re( (i+1)*v_compl_data_w-1 DOWNTO i*v_compl_data_w) := snk_in_arr(i).re(v_compl_data_w-1 DOWNTO 0);
v_src_out.im( (i+1)*v_compl_data_w-1 DOWNTO i*v_compl_data_w) := snk_in_arr(i).im(v_compl_data_w-1 DOWNTO 0);
END LOOP;
RETURN v_src_out;
END;
FUNCTION func_dp_stream_concat(src_in : t_dp_siso; nof_streams : NATURAL) RETURN t_dp_siso_arr IS -- Wire single SISO to SISO_ARR
VARIABLE v_snk_out_arr : t_dp_siso_arr(nof_streams-1 DOWNTO 0);
BEGIN
FOR i IN v_snk_out_arr'RANGE LOOP
v_snk_out_arr(i) := src_in;
END LOOP;
RETURN v_snk_out_arr;
END;
-- Deconcatenate data from SOSI into SOSI array
FUNCTION func_dp_stream_deconcat(snk_in : t_dp_sosi; nof_streams, data_w : NATURAL) RETURN t_dp_sosi_arr IS
VARIABLE v_src_out_arr : t_dp_sosi_arr(nof_streams-1 DOWNTO 0);
VARIABLE v_compl_data_w : NATURAL := data_w/2;
BEGIN
FOR i IN v_src_out_arr'RANGE LOOP
v_src_out_arr(i) := snk_in;
v_src_out_arr(i).data := (OTHERS=>'0');
v_src_out_arr(i).re := (OTHERS=>'0');
v_src_out_arr(i).im := (OTHERS=>'0');
v_src_out_arr(i).data( data_w-1 DOWNTO 0) := snk_in.data((i+1)* data_w-1 DOWNTO i* data_w);
v_src_out_arr(i).re( v_compl_data_w-1 DOWNTO 0) := snk_in.re ((i+1)*v_compl_data_w-1 DOWNTO i*v_compl_data_w);
v_src_out_arr(i).im( v_compl_data_w-1 DOWNTO 0) := snk_in.im ((i+1)*v_compl_data_w-1 DOWNTO i*v_compl_data_w);
END LOOP;
RETURN v_src_out_arr;
END;
FUNCTION func_dp_stream_deconcat(src_out_arr : t_dp_siso_arr) RETURN t_dp_siso IS -- Wire SISO_ARR(0) to single SISO
BEGIN
RETURN src_out_arr(0);
END;
END dp_stream_pkg;