Skip to content
Snippets Groups Projects
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
common_pkg.vhd 143.40 KiB
-------------------------------------------------------------------------------
--
-- Copyright (C) 2019
-- ASTRON (Netherlands Institute for Radio Astronomy) <http://www.astron.nl/>
-- P.O.Box 2, 7990 AA Dwingeloo, The Netherlands
--
-- This program is free software: you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation, either version 3 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program.  If not, see <http://www.gnu.org/licenses/>.
--
-------------------------------------------------------------------------------
-- Author:
-- . Eric Kooistra
-- Purpose:
-- . Collection of commonly used base funtions
-- Description:
-- . This is a package containing generic constants and functions.
-- . More information can be found in the comments near the code.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.NUMERIC_STD.ALL;
USE IEEE.MATH_REAL.ALL;

PACKAGE common_pkg IS

  -- CONSTANT DECLARATIONS ----------------------------------------------------

  -- some integers
  CONSTANT c_0                    : NATURAL := 0;
  CONSTANT c_zero                 : NATURAL := 0;
  CONSTANT c_1                    : NATURAL := 1;
  CONSTANT c_one                  : NATURAL := 1;
  CONSTANT c_2                    : NATURAL := 2;
  CONSTANT c_dual                 : NATURAL := 2;
  CONSTANT c_4                    : NATURAL := 4;
  CONSTANT c_quad                 : NATURAL := 4;
  CONSTANT c_8                    : NATURAL := 8;
  CONSTANT c_16                   : NATURAL := 16;
  CONSTANT c_32                   : NATURAL := 32;
  CONSTANT c_48                   : NATURAL := 48;
  CONSTANT c_64                   : NATURAL := 64;
  CONSTANT c_128                  : NATURAL := 128;
  CONSTANT c_256                  : NATURAL := 256;
  CONSTANT c_natural_high         : NATURAL := 2147483647;  -- = 2**31 - 1 = NATURAL'HIGH;
  
  -- widths and sizes
  CONSTANT c_halfword_sz          : NATURAL := 2;
  CONSTANT c_word_sz              : NATURAL := 4;
  CONSTANT c_longword_sz          : NATURAL := 8;
  CONSTANT c_nibble_w             : NATURAL := 4;
  CONSTANT c_byte_w               : NATURAL := 8;
  CONSTANT c_octet_w              : NATURAL := 8;
  CONSTANT c_halfword_w           : NATURAL := c_byte_w*c_halfword_sz;
  CONSTANT c_word_w               : NATURAL := c_byte_w*c_word_sz;
  CONSTANT c_integer_w            : NATURAL := 32;              -- unfortunately VHDL integer type is limited to 32 bit values
  CONSTANT c_natural_w            : NATURAL := c_integer_w-1;   -- unfortunately VHDL natural type is limited to 31 bit values (0 and the positive subset of the VHDL integer type0
  CONSTANT c_longword_w           : NATURAL := c_byte_w*c_longword_sz;
  
  -- logic
  CONSTANT c_sl0                  : STD_LOGIC := '0';
  CONSTANT c_sl1                  : STD_LOGIC := '1';
  CONSTANT c_unsigned_0           : UNSIGNED(0 DOWNTO 0) := TO_UNSIGNED(0,1);
  CONSTANT c_unsigned_1           : UNSIGNED(0 DOWNTO 0) := TO_UNSIGNED(1,1);
  CONSTANT c_signed_0             : SIGNED(1 DOWNTO 0) := TO_SIGNED(0,2);
  CONSTANT c_signed_1             : SIGNED(1 DOWNTO 0) := TO_SIGNED(1,2);
  CONSTANT c_slv0                 : STD_LOGIC_VECTOR(255 DOWNTO 0) := (OTHERS=>'0');
  CONSTANT c_slv1                 : STD_LOGIC_VECTOR(255 DOWNTO 0) := (OTHERS=>'1');
  CONSTANT c_word_01              : STD_LOGIC_VECTOR(31 DOWNTO 0) := "01010101010101010101010101010101";
  CONSTANT c_word_10              : STD_LOGIC_VECTOR(31 DOWNTO 0) := "10101010101010101010101010101010";
  CONSTANT c_slv01                : STD_LOGIC_VECTOR(255 DOWNTO 0) := c_word_01 & c_word_01 & c_word_01 & c_word_01 & c_word_01 & c_word_01 & c_word_01 & c_word_01;
  CONSTANT c_slv10                : STD_LOGIC_VECTOR(255 DOWNTO 0) := c_word_10 & c_word_10 & c_word_10 & c_word_10 & c_word_10 & c_word_10 & c_word_10 & c_word_10;

  -- math
  CONSTANT c_nof_complex          : NATURAL := 2;   -- Real and imaginary part of complex number
  CONSTANT c_sign_w               : NATURAL := 1;   -- Sign bit, can be used to skip one of the double sign bits of a product
  CONSTANT c_sum_of_prod_w        : NATURAL := 1;   -- Bit growth for sum of 2 products, can be used in case complex multiply has normalized real and imag inputs instead of normalized amplitude inputs
  CONSTANT c_eps                  : REAL := 1.0e-20;  -- add small epsilon value to avoid 1/0 and log(0), 1e-20 < 1/2**64
      
  -- FF, block RAM, FIFO
  CONSTANT c_meta_delay_len       : NATURAL := 3;   -- default nof flipflops (FF) in meta stability recovery delay line (e.g. for clock domain crossing)
  CONSTANT c_meta_fifo_depth      : NATURAL := 16;  -- default use 16 word deep FIFO to cross clock domain, typically > 2*c_meta_delay_len or >~ 8 is enough

  CONSTANT c_bram_m9k_nof_bits    : NATURAL := 1024*9;  -- size of 1 Altera M9K block RAM in bits
  CONSTANT c_bram_m9k_max_w       : NATURAL := 36;      -- maximum width of 1 Altera M9K block RAM, so the size is then 256 words of 36 bits
  CONSTANT c_bram_m9k_fifo_depth  : NATURAL := c_bram_m9k_nof_bits/c_bram_m9k_max_w;  -- using a smaller FIFO depth than this leaves part of the RAM unused
  
  CONSTANT c_fifo_afull_margin    : NATURAL := 4;       -- default or minimal FIFO almost full margin
  
  -- DSP
  CONSTANT c_dsp_mult_w           : NATURAL := 18;   -- Width of the embedded multipliers in Stratix IV (and Arria 10 for 2 multipliers per DSP block)
  CONSTANT c_dsp_mult_18_w        : NATURAL := 18;   -- Width of the embedded multipliers in Stratix IV (and Arria 10 for 2 multipliers per DSP block)
  CONSTANT c_dsp_mult_27_w        : NATURAL := 27;   -- Width of the embedded multipliers in Arria 10
  
  -- TYPE DECLARATIONS --------------------------------------------------------
  TYPE t_boolean_arr     IS ARRAY (INTEGER RANGE <>) OF BOOLEAN;   -- INTEGER left index starts default at -2**31
  TYPE t_integer_arr     IS ARRAY (INTEGER RANGE <>) OF INTEGER;   -- INTEGER left index starts default at -2**31
  TYPE t_natural_arr     IS ARRAY (INTEGER RANGE <>) OF NATURAL;   -- INTEGER left index starts default at -2**31
  TYPE t_real_arr        IS ARRAY (INTEGER RANGE <>) OF REAL;      -- INTEGER left index starts default at -2**31
  TYPE t_nat_boolean_arr IS ARRAY (NATURAL RANGE <>) OF BOOLEAN;   -- NATURAL left index starts default at 0
  TYPE t_nat_integer_arr IS ARRAY (NATURAL RANGE <>) OF INTEGER;   -- NATURAL left index starts default at 0
  TYPE t_nat_natural_arr IS ARRAY (NATURAL RANGE <>) OF NATURAL;   -- NATURAL left index starts default at 0
  TYPE t_nat_real_arr    IS ARRAY (NATURAL RANGE <>) OF REAL;      -- NATURAL left index starts default at 0
  TYPE t_sl_arr          IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC;
  TYPE t_slv_1_arr       IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(0 DOWNTO 0);
  TYPE t_slv_2_arr       IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(1 DOWNTO 0);
  TYPE t_slv_4_arr       IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(3 DOWNTO 0);
  TYPE t_slv_8_arr       IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(7 DOWNTO 0);
  TYPE t_slv_12_arr      IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(11 DOWNTO 0);
  TYPE t_slv_16_arr      IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(15 DOWNTO 0);
  TYPE t_slv_18_arr      IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(17 DOWNTO 0);
  TYPE t_slv_24_arr      IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(23 DOWNTO 0);
  TYPE t_slv_32_arr      IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(31 DOWNTO 0);
  TYPE t_slv_44_arr      IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(43 DOWNTO 0);
  TYPE t_slv_48_arr      IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(47 DOWNTO 0);
  TYPE t_slv_64_arr      IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(63 DOWNTO 0);
  TYPE t_slv_128_arr     IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(127 DOWNTO 0);
  TYPE t_slv_256_arr     IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(255 DOWNTO 0);
  TYPE t_slv_512_arr     IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(511 DOWNTO 0);
  TYPE t_slv_1024_arr    IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC_VECTOR(1023 DOWNTO 0);
 
  CONSTANT c_boolean_arr     : t_boolean_arr     := (TRUE, FALSE);  -- array the two possible boolean values that can be iterated over
  CONSTANT c_nat_boolean_arr : t_nat_boolean_arr := (TRUE, FALSE);  -- array the two possible boolean values that can be iterated over
 
  TYPE t_integer_matrix IS ARRAY (INTEGER RANGE <>, INTEGER RANGE <>) OF INTEGER;
  TYPE t_boolean_matrix IS ARRAY (INTEGER RANGE <>, INTEGER RANGE <>) OF BOOLEAN;
  TYPE t_sl_matrix      IS ARRAY (INTEGER RANGE <>, INTEGER RANGE <>) OF STD_LOGIC;
  TYPE t_slv_8_matrix   IS ARRAY (INTEGER RANGE <>, INTEGER RANGE <>) OF STD_LOGIC_VECTOR(7 DOWNTO 0);
  TYPE t_slv_16_matrix  IS ARRAY (INTEGER RANGE <>, INTEGER RANGE <>) OF STD_LOGIC_VECTOR(15 DOWNTO 0);
  TYPE t_slv_32_matrix  IS ARRAY (INTEGER RANGE <>, INTEGER RANGE <>) OF STD_LOGIC_VECTOR(31 DOWNTO 0);
  TYPE t_slv_64_matrix  IS ARRAY (INTEGER RANGE <>, INTEGER RANGE <>) OF STD_LOGIC_VECTOR(63 DOWNTO 0);

  -- Multi-dimensional array types with fixed LS-dimension
  -- . 2arr_2
  --   . first '2' indicates two dimensions, so array I of array J, where I is
  --     free in (NATURAL RANGE <>)
  --   . second '_2' indicate that the last dimension J has fixed size 2 is
  --     (1 DOWNTO 0)
  TYPE t_natural_2arr_2 IS ARRAY (NATURAL RANGE <>) OF t_natural_arr(1 DOWNTO 0);
  TYPE t_integer_2arr_2 IS ARRAY (NATURAL RANGE <>) OF t_integer_arr(1 DOWNTO 0);
  TYPE t_real_2arr_2    IS ARRAY (NATURAL RANGE <>) OF t_real_arr(1 DOWNTO 0);

  SUBTYPE t_complex_integer_arr_2 IS t_integer_2arr_2;
  SUBTYPE t_complex_real_arr_2    IS t_real_2arr_2;

  -- STRUCTURE DECLARATIONS ---------------------------------------------------
  
  -- Clock and Reset
  --
  -- . rst   = Reset. Can be used asynchronously to take effect immediately
  --           when used before the clk'EVENT section. May also be used as
  --           synchronous reset using it as first condition in the clk'EVENT
  --           section. As synchronous reset it requires clock activity to take
  --           effect. A synchronous rst may or may not depend on clken,
  --           however typically rst should take priority over clken.
  -- . clk   = Clock. Used in clk'EVENT line via rising_edge(clk) or sometimes
  --           as falling_edge(clk).
  -- . clken = Clock Enable. Used for the whole clk'EVENT section.
  TYPE t_sys_rce IS RECORD
    rst   : STD_LOGIC;
    clk   : STD_LOGIC;
    clken : STD_LOGIC;  -- := '1';
  END RECORD;
  
  TYPE t_sys_ce IS RECORD
    clk   : STD_LOGIC;
    clken : STD_LOGIC;  -- := '1';
  END RECORD;

    
  -- FUNCTION DECLARATIONS ----------------------------------------------------
  
  -- All functions assume [high downto low] input ranges
  
  FUNCTION pow2(n : NATURAL) RETURN NATURAL;  -- = 2**n
  FUNCTION ceil_pow2(n : INTEGER) RETURN NATURAL;  -- = 2**n, returns 1 for n<0

  FUNCTION true_log2(n : NATURAL) RETURN NATURAL;  -- true_log2(n) = log2(n)
  FUNCTION ceil_log2(n : NATURAL) RETURN NATURAL;  -- ceil_log2(n) = log2(n), but force ceil_log2(1) = 1
 
  FUNCTION floor_log10(n : NATURAL) RETURN NATURAL;

  FUNCTION is_pow2(n : NATURAL) RETURN BOOLEAN;        -- return TRUE when n is a power of 2, so 0, 1, 2, 4, 8, 16, ...
  FUNCTION true_log_pow2(n : NATURAL) RETURN NATURAL;  -- 2**true_log2(n), return power of 2 that is >= n
  
  FUNCTION ratio( n, d : NATURAL) RETURN NATURAL;  -- return n/d when n MOD d = 0 else return 0, so ratio * d = n only when integer ratio > 0
  FUNCTION ratio2(n, m : NATURAL) RETURN NATURAL;  -- return integer ratio of n/m or m/n, whichever is the largest

  -- use almost_equal(a/b, 1.0, max_ratio) to verify that a and b differ less than max_ratio/100 percent
  -- use almost_zero(a/b, max_ratio) to verify that a is less than max_ratio/100 percent of b, so almost zero
  FUNCTION almost_equal(a, b, delta : REAL) RETURN BOOLEAN;  -- return TRUE when abs(a - b) < abs(delta), else return FALSE
  FUNCTION almost_equal(a, b, delta : INTEGER) RETURN BOOLEAN;
  FUNCTION almost_zero(a, delta : REAL) RETURN BOOLEAN;      -- return TRUE when abs(a)     < abs(delta), else return FALSE
  FUNCTION almost_zero(a, delta : INTEGER) RETURN BOOLEAN;
  
  FUNCTION ceil_div(   n, d : NATURAL)  RETURN NATURAL;   -- ceil_div    = n/d + (n MOD d)/=0
  FUNCTION ceil_value( n, d : NATURAL)  RETURN NATURAL;   -- ceil_value  = ceil_div(n, d) * d
  FUNCTION floor_value(n, d : NATURAL)  RETURN NATURAL;   -- floor_value = (n/d) * d
  FUNCTION ceil_div(   n : UNSIGNED; d: NATURAL) RETURN UNSIGNED;
  FUNCTION ceil_value( n : UNSIGNED; d: NATURAL) RETURN UNSIGNED;
  FUNCTION floor_value(n : UNSIGNED; d: NATURAL) RETURN UNSIGNED;
  FUNCTION gcd(a, b : NATURAL) RETURN NATURAL;   -- greatest common divider
  
  FUNCTION slv(n: IN STD_LOGIC)        RETURN STD_LOGIC_VECTOR;  -- standard logic to 1 element standard logic vector
  FUNCTION sl( n: IN STD_LOGIC_VECTOR) RETURN STD_LOGIC;         -- 1 element standard logic vector to standard logic

  FUNCTION to_sl(  n: IN BOOLEAN)   RETURN STD_LOGIC;  -- if TRUE       then return '1'   else '0'
  FUNCTION to_bool(n: IN STD_LOGIC) RETURN BOOLEAN;    -- if '1' or 'H' then return TRUE  else FALSE
  FUNCTION to_bool(n: IN INTEGER)   RETURN BOOLEAN;    -- if  0         then return FALSE else TRUE

  FUNCTION not_int(n: IN INTEGER) RETURN INTEGER;  -- if 0 then return 1 else 0

  FUNCTION pack_complex(re, im : INTEGER; w : NATURAL) RETURN INTEGER;  -- pack order: im & re
  FUNCTION unpack_complex_re(data : INTEGER;          w : NATURAL) RETURN INTEGER;  -- pack order: im & re
  FUNCTION unpack_complex_re(data : STD_LOGIC_VECTOR; w : NATURAL) RETURN INTEGER;  -- pack order: im & re
  FUNCTION unpack_complex_im(data : INTEGER;          w : NATURAL) RETURN INTEGER;  -- pack order: im & re
  FUNCTION unpack_complex_im(data : STD_LOGIC_VECTOR; w : NATURAL) RETURN INTEGER;  -- pack order: im & re

  FUNCTION atan2(Y, X: REAL) RETURN REAL;  -- = ARCTAN(Y, X) but returns 0 when Y = X = 0, without reporting Error: ARCTAN(0.0, 0.0) is undetermined

  FUNCTION to_natural_arr(n : t_integer_arr; to_zero : BOOLEAN) RETURN t_natural_arr;  -- if to_zero=TRUE then negative numbers are forced to zero, otherwise they will give a compile range error
  FUNCTION to_natural_arr(n : t_nat_natural_arr)                RETURN t_natural_arr;
  FUNCTION to_integer_arr(n : t_natural_arr)                    RETURN t_integer_arr;
  FUNCTION to_integer_arr(n : t_nat_natural_arr)                RETURN t_integer_arr;
  FUNCTION to_slv_32_arr( n : t_integer_arr)                    RETURN t_slv_32_arr;
  FUNCTION to_slv_32_arr( n : t_natural_arr)                    RETURN t_slv_32_arr;
  
  FUNCTION vector_tree(slv : STD_LOGIC_VECTOR; operation : STRING) RETURN STD_LOGIC;  -- Core operation tree function for vector "AND", "OR", "XOR"
  FUNCTION vector_and(slv : STD_LOGIC_VECTOR) RETURN STD_LOGIC;  -- '1' when all slv bits are '1' else '0'
  FUNCTION vector_or( slv : STD_LOGIC_VECTOR) RETURN STD_LOGIC;  -- '0' when all slv bits are '0' else '1'
  FUNCTION vector_xor(slv : STD_LOGIC_VECTOR) RETURN STD_LOGIC;  -- '1' when the slv has an odd number of '1' bits else '0'
  FUNCTION vector_one_hot(slv : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR; -- Returns slv when it contains one hot bit, else returns 0.
  
  FUNCTION andv(slv : STD_LOGIC_VECTOR) RETURN STD_LOGIC;  -- alias of vector_and
  FUNCTION orv( slv : STD_LOGIC_VECTOR) RETURN STD_LOGIC;  -- alias of vector_or
  FUNCTION xorv(slv : STD_LOGIC_VECTOR) RETURN STD_LOGIC;  -- alias of vector_xor
  
  FUNCTION array_and(arr : t_nat_boolean_arr) RETURN BOOLEAN;
  FUNCTION array_or( arr : t_nat_boolean_arr) RETURN BOOLEAN;
  
  FUNCTION matrix_and(mat : t_sl_matrix; wi, wj : NATURAL) RETURN STD_LOGIC;  -- '1' when all matrix bits are '1' else '0'
  FUNCTION matrix_or( mat : t_sl_matrix; wi, wj : NATURAL) RETURN STD_LOGIC;  -- '0' when all matrix bits are '0' else '1'
  
  FUNCTION smallest(n, m    : INTEGER)       RETURN INTEGER;
  FUNCTION smallest(n, m    : REAL)          RETURN REAL;
  FUNCTION smallest(n, m, l : INTEGER)       RETURN INTEGER;
  FUNCTION smallest(n       : t_natural_arr) RETURN NATURAL;
  FUNCTION smallest(n       : t_nat_natural_arr) RETURN NATURAL;

  FUNCTION largest(n, m : INTEGER)       RETURN INTEGER;
  FUNCTION largest(n, m : REAL)          RETURN REAL;
  FUNCTION largest(n    : t_natural_arr) RETURN NATURAL;
  FUNCTION largest(n    : t_nat_natural_arr) RETURN NATURAL;
  
  FUNCTION func_sum(    n : t_natural_arr)     RETURN NATURAL;      -- sum     of all elements in array
  FUNCTION func_sum(    n : t_nat_natural_arr) RETURN NATURAL;
  FUNCTION func_product(n : t_natural_arr)     RETURN NATURAL;      -- product of all elements in array
  FUNCTION func_product(n : t_nat_natural_arr) RETURN NATURAL;
  
  FUNCTION "+" (L, R: t_natural_arr)               RETURN t_natural_arr;  -- element wise sum
  FUNCTION "+" (L   : t_natural_arr; R : INTEGER)  RETURN t_natural_arr;  -- element wise sum
  FUNCTION "+" (L   : INTEGER; R : t_natural_arr)  RETURN t_natural_arr;  -- element wise sum
  
  FUNCTION "-" (L, R: t_natural_arr)               RETURN t_natural_arr;  -- element wise subtract
  FUNCTION "-" (L, R: t_natural_arr)               RETURN t_integer_arr;  -- element wise subtract, support negative result
  FUNCTION "-" (L   : t_natural_arr; R : INTEGER)  RETURN t_natural_arr;  -- element wise subtract
  FUNCTION "-" (L   : INTEGER; R : t_natural_arr)  RETURN t_natural_arr;  -- element wise subtract
  
  FUNCTION "*" (L, R: t_natural_arr)               RETURN t_natural_arr;  -- element wise product
  FUNCTION "*" (L   : t_natural_arr; R : NATURAL)  RETURN t_natural_arr;  -- element wise product
  FUNCTION "*" (L   : NATURAL; R : t_natural_arr)  RETURN t_natural_arr;  -- element wise product
  
  FUNCTION "/" (L, R: t_natural_arr)               RETURN t_natural_arr;  -- element wise division
  FUNCTION "/" (L   : t_natural_arr; R : POSITIVE) RETURN t_natural_arr;  -- element wise division
  FUNCTION "/" (L   : NATURAL; R : t_natural_arr)  RETURN t_natural_arr;  -- element wise division
  
  FUNCTION is_true(a : STD_LOGIC) RETURN BOOLEAN;
  FUNCTION is_true(a : STD_LOGIC) RETURN NATURAL;
  FUNCTION is_true(a : BOOLEAN)   RETURN STD_LOGIC;
  FUNCTION is_true(a : BOOLEAN)   RETURN NATURAL;
  FUNCTION is_true(a : INTEGER)   RETURN BOOLEAN;    -- also covers NATURAL because it is a subtype of INTEGER
  FUNCTION is_true(a : INTEGER)   RETURN STD_LOGIC;  -- also covers NATURAL because it is a subtype of INTEGER
  
  FUNCTION sel_a_b(sel,           a, b : BOOLEAN)           RETURN BOOLEAN;
  FUNCTION sel_a_b(sel,           a, b : INTEGER)           RETURN INTEGER;
  FUNCTION sel_a_b(sel : BOOLEAN; a, b : INTEGER)           RETURN INTEGER;
  FUNCTION sel_a_b(sel : BOOLEAN; a, b : REAL)              RETURN REAL;
  FUNCTION sel_a_b(sel : BOOLEAN; a, b : STD_LOGIC)         RETURN STD_LOGIC;
  FUNCTION sel_a_b(sel : INTEGER; a, b : STD_LOGIC)         RETURN STD_LOGIC;
  FUNCTION sel_a_b(sel : INTEGER; a, b : STD_LOGIC_VECTOR)  RETURN STD_LOGIC_VECTOR;
  FUNCTION sel_a_b(sel : BOOLEAN; a, b : STD_LOGIC_VECTOR)  RETURN STD_LOGIC_VECTOR;
  FUNCTION sel_a_b(sel : BOOLEAN; a, b : SIGNED)            RETURN SIGNED;
  FUNCTION sel_a_b(sel : BOOLEAN; a, b : UNSIGNED)          RETURN UNSIGNED;
  FUNCTION sel_a_b(sel : BOOLEAN; a, b : t_integer_arr)     RETURN t_integer_arr;
  FUNCTION sel_a_b(sel : BOOLEAN; a, b : t_natural_arr)     RETURN t_natural_arr;
  FUNCTION sel_a_b(sel : BOOLEAN; a, b : t_nat_integer_arr) RETURN t_nat_integer_arr;
  FUNCTION sel_a_b(sel : BOOLEAN; a, b : t_nat_natural_arr) RETURN t_nat_natural_arr;
  FUNCTION sel_a_b(sel : BOOLEAN; a, b : STRING)            RETURN STRING;
  FUNCTION sel_a_b(sel : INTEGER; a, b : STRING)            RETURN STRING;
  FUNCTION sel_a_b(sel : BOOLEAN; a, b : TIME)              RETURN TIME;
  FUNCTION sel_a_b(sel : BOOLEAN; a, b : SEVERITY_LEVEL)    RETURN SEVERITY_LEVEL;
  
  -- sel_n() index sel = 0, 1, 2, ... will return a, b, c, ...
  FUNCTION sel_n(sel : NATURAL; a, b, c                      : BOOLEAN) RETURN BOOLEAN;  --  3
  FUNCTION sel_n(sel : NATURAL; a, b, c, d                   : BOOLEAN) RETURN BOOLEAN;  --  4
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e                : BOOLEAN) RETURN BOOLEAN;  --  5
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f             : BOOLEAN) RETURN BOOLEAN;  --  6
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f, g          : BOOLEAN) RETURN BOOLEAN;  --  7
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f, g, h       : BOOLEAN) RETURN BOOLEAN;  --  8
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f, g, h, i    : BOOLEAN) RETURN BOOLEAN;  --  9
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f, g, h, i, j : BOOLEAN) RETURN BOOLEAN;  -- 10
  
  FUNCTION sel_n(sel : NATURAL; a, b, c                      : INTEGER) RETURN INTEGER;  --  3
  FUNCTION sel_n(sel : NATURAL; a, b, c, d                   : INTEGER) RETURN INTEGER;  --  4
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e                : INTEGER) RETURN INTEGER;  --  5
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f             : INTEGER) RETURN INTEGER;  --  6
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f, g          : INTEGER) RETURN INTEGER;  --  7
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f, g, h       : INTEGER) RETURN INTEGER;  --  8
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f, g, h, i    : INTEGER) RETURN INTEGER;  --  9
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f, g, h, i, j : INTEGER) RETURN INTEGER;  -- 10
  
  FUNCTION sel_n(sel : NATURAL; a, b                         : STRING) RETURN STRING;    --  2
  FUNCTION sel_n(sel : NATURAL; a, b, c                      : STRING) RETURN STRING;    --  3
  FUNCTION sel_n(sel : NATURAL; a, b, c, d                   : STRING) RETURN STRING;    --  4
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e                : STRING) RETURN STRING;    --  5
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f             : STRING) RETURN STRING;    --  6
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f, g          : STRING) RETURN STRING;    --  7
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f, g, h       : STRING) RETURN STRING;    --  8
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f, g, h, i    : STRING) RETURN STRING;    --  9
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f, g, h, i, j : STRING) RETURN STRING;    -- 10
  
  FUNCTION array_init(init : STD_LOGIC; nof              : NATURAL) RETURN STD_LOGIC_VECTOR;  -- useful to init a unconstrained array of size 1
  FUNCTION array_init(init :   BOOLEAN; nof              : NATURAL) RETURN t_nat_boolean_arr; -- useful to init a unconstrained array of size 1
  FUNCTION array_init(init,             nof              : NATURAL) RETURN t_natural_arr;     -- useful to init a unconstrained array of size 1
  FUNCTION array_init(init,             nof              : NATURAL) RETURN t_nat_natural_arr; -- useful to init a unconstrained array of size 1
  FUNCTION array_init(init,             nof, incr        : NATURAL) RETURN t_natural_arr;     -- useful to init an array with incrementing numbers
  FUNCTION array_init(init,             nof, incr        : NATURAL) RETURN t_nat_natural_arr;
  FUNCTION array_init(init,             nof, incr        : INTEGER) RETURN t_slv_16_arr;
  FUNCTION array_init(init,             nof, incr        : INTEGER) RETURN t_slv_32_arr;
  FUNCTION array_init(init,             nof, width       : NATURAL) RETURN STD_LOGIC_VECTOR;  -- useful to init an unconstrained std_logic_vector with repetitive content
  FUNCTION array_init(init,             nof, width, incr : NATURAL) RETURN STD_LOGIC_VECTOR;  -- useful to init an unconstrained std_logic_vector with incrementing content
  FUNCTION array_sinit(init : INTEGER;   nof, width       : NATURAL) RETURN STD_LOGIC_VECTOR;  -- useful to init an unconstrained std_logic_vector with repetitive content
  
  FUNCTION init_slv_64_matrix(nof_a, nof_b, k : INTEGER) RETURN t_slv_64_matrix;  -- initialize all elements in t_slv_64_matrix to value k
  
  -- Concatenate two or more STD_LOGIC_VECTORs into a single STD_LOGIC_VECTOR or extract one of them from a concatenated STD_LOGIC_VECTOR
  -- . Note that using func_slv_concat() without the BOOLEAN use_* is equivalent to using the 
  --   slv concatenation operator & directly. However this overloaded func_slv_concat() is
  --   still nice to have, because it shows the relation with the inverse func_slv_extract().

  FUNCTION func_slv_concat(  use_a, use_b, use_c, use_d, use_e, use_f, use_g, use_h : BOOLEAN; a, b, c, d, e, f, g, h : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_concat(  use_a, use_b, use_c, use_d, use_e, use_f, use_g        : BOOLEAN; a, b, c, d, e, f, g    : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_concat(  use_a, use_b, use_c, use_d, use_e, use_f               : BOOLEAN; a, b, c, d, e, f       : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_concat(  use_a, use_b, use_c, use_d, use_e                      : BOOLEAN; a, b, c, d, e          : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_concat(  use_a, use_b, use_c, use_d                             : BOOLEAN; a, b, c, d             : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_concat(  use_a, use_b, use_c                                    : BOOLEAN; a, b, c                : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_concat(  use_a, use_b                                           : BOOLEAN; a, b                   : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_concat(                                                                    a, b, c, d, e, f, g, h : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_concat(                                                                    a, b, c, d, e, f, g    : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_concat(                                                                    a, b, c, d, e, f       : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_concat(                                                                    a, b, c, d, e          : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_concat(                                                                    a, b, c, d             : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_concat(                                                                    a, b, c                : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_concat(                                                                    a, b                   : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_concat_w(use_a, use_b, use_c, use_d, use_e, use_f, use_g, use_h : BOOLEAN; a_w, b_w, c_w, d_w, e_w, f_w, g_w, h_w : NATURAL) RETURN NATURAL;
  FUNCTION func_slv_concat_w(use_a, use_b, use_c, use_d, use_e, use_f, use_g        : BOOLEAN; a_w, b_w, c_w, d_w, e_w, f_w, g_w      : NATURAL) RETURN NATURAL;
  FUNCTION func_slv_concat_w(use_a, use_b, use_c, use_d, use_e, use_f               : BOOLEAN; a_w, b_w, c_w, d_w, e_w, f_w           : NATURAL) RETURN NATURAL;
  FUNCTION func_slv_concat_w(use_a, use_b, use_c, use_d, use_e                      : BOOLEAN; a_w, b_w, c_w, d_w, e_w                : NATURAL) RETURN NATURAL;
  FUNCTION func_slv_concat_w(use_a, use_b, use_c, use_d                             : BOOLEAN; a_w, b_w, c_w, d_w                     : NATURAL) RETURN NATURAL;
  FUNCTION func_slv_concat_w(use_a, use_b, use_c                                    : BOOLEAN; a_w, b_w, c_w                          : NATURAL) RETURN NATURAL;
  FUNCTION func_slv_concat_w(use_a, use_b                                           : BOOLEAN; a_w, b_w                               : NATURAL) RETURN NATURAL;
  FUNCTION func_slv_extract( use_a, use_b, use_c, use_d, use_e, use_f, use_g, use_h : BOOLEAN; a_w, b_w, c_w, d_w, e_w, f_w, g_w, h_w : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_extract( use_a, use_b, use_c, use_d, use_e, use_f, use_g        : BOOLEAN; a_w, b_w, c_w, d_w, e_w, f_w, g_w      : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_extract( use_a, use_b, use_c, use_d, use_e, use_f               : BOOLEAN; a_w, b_w, c_w, d_w, e_w, f_w           : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_extract( use_a, use_b, use_c, use_d, use_e                      : BOOLEAN; a_w, b_w, c_w, d_w, e_w                : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_extract( use_a, use_b, use_c, use_d                             : BOOLEAN; a_w, b_w, c_w, d_w                     : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_extract( use_a, use_b, use_c                                    : BOOLEAN; a_w, b_w, c_w                          : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_extract( use_a, use_b                                           : BOOLEAN; a_w, b_w                               : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_extract(                                                                   a_w, b_w, c_w, d_w, e_w, f_w, g_w, h_w : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_extract(                                                                   a_w, b_w, c_w, d_w, e_w, f_w, g_w      : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_extract(                                                                   a_w, b_w, c_w, d_w, e_w, f_w           : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_extract(                                                                   a_w, b_w, c_w, d_w, e_w                : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_extract(                                                                   a_w, b_w, c_w, d_w                     : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_extract(                                                                   a_w, b_w, c_w                          : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR;
  FUNCTION func_slv_extract(                                                                   a_w, b_w                               : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR;
  
  -- Number formats, see:
  -- . https://support.astron.nl/confluence/display/L2M/L3+SDP+Decision%3A+Definition+of+fixed+point+numbers
  -- . https://support.astron.nl/confluence/display/L2M/L4+SDPFW+Decision%3A+Number+representation%2C+resizing+and+rounding

  FUNCTION TO_UINT(vec : STD_LOGIC_VECTOR) RETURN NATURAL;  -- beware: NATURAL'HIGH = 2**31-1, not 2*32-1, use TO_SINT to avoid warning
  FUNCTION TO_SINT(vec : STD_LOGIC_VECTOR) RETURN INTEGER;
  
  FUNCTION TO_UVEC(dec, w : NATURAL) RETURN STD_LOGIC_VECTOR;
  FUNCTION TO_SVEC(dec, w : INTEGER) RETURN STD_LOGIC_VECTOR;

  FUNCTION TO_SVEC_32(dec : INTEGER) RETURN STD_LOGIC_VECTOR;  -- = TO_SVEC() with w=32 for t_slv_32_arr slv elements

  FUNCTION TO_UINT(udec : REAL; w, resolution_w : INTEGER) RETURN NATURAL;    -- REAL >= 0 to NATURAL fixed point number
  FUNCTION TO_SINT(sdec : REAL; w, resolution_w : INTEGER) RETURN INTEGER;    -- REAL to INTEGER fixed point number
  FUNCTION TO_UVEC(udec : REAL; w, resolution_w : INTEGER) RETURN STD_LOGIC_VECTOR;  -- REAL >= 0 to unsigned SLV fixed point number
  FUNCTION TO_SVEC(sdec : REAL; w, resolution_w : INTEGER) RETURN STD_LOGIC_VECTOR;  -- REAL to signed SLV fixed point number

  FUNCTION TO_UREAL(uvec : STD_LOGIC_VECTOR) RETURN REAL;  -- convert unsigned slv of any length to REAL, fixed point number with resolution = 1
  FUNCTION TO_SREAL(svec : STD_LOGIC_VECTOR) RETURN REAL;  -- convert signed slv of any length to REAL, fixed point number with resolution = 1
  FUNCTION TO_UREAL(uvec : STD_LOGIC_VECTOR; resolution_w : INTEGER) RETURN REAL; -- convert unsigned fixed point slv of any length, and with resolution of 2**resolution_w, to REAL
  FUNCTION TO_SREAL(svec : STD_LOGIC_VECTOR; resolution_w : INTEGER) RETURN REAL; -- convert signed fixed point slv of any length, and with resolution of 2**resolution_w, to REAL
    
  -- RESIZE_NUM() original description:
  -- The RESIZE for SIGNED in IEEE.NUMERIC_STD extends the sign bit or it keeps the sign bit and LS part. This
  -- behaviour of preserving the sign bit is less suitable for DSP and not necessary in general. A more
  -- appropriate approach is to ignore the MSbit sign and just keep the LS part. For too large values this 
  -- means that the result gets wrapped, but that is fine for default behaviour, because that is also what
  -- happens for RESIZE of UNSIGNED. Therefor this is what the RESIZE_NUM for SIGNED and the RESIZE_SVEC do
  -- and better not use RESIZE for SIGNED anymore.
  --
  -- RESIZE_NUM() updated description (27 oct 2021):
  -- The RESIZE() from IEEE.NUMERIC_STD keeps the sign bit and the w-1 LSbits, this results in a signal that
  -- keeps the sign, but wraps between - and 0 for negative input, and that wraps between + and 0 for
  -- positive input.
  -- The RESIZE_NUM() from in this common_pkg.vhd simply keeps the w LSbits, so it wraps between - and +.
  -- Hence RESIZE_NUM() works the same for SIGNED as for UNSIGNED. For an adder that sums multiple inputs,
  -- it can be better to wrap over the entire -, + range, like RESIZE_NUM() does, because if the final adder
  -- sum again fits in w bits, then any wrapping effects for intermediate sums will cancel in the end sum.
  -- If the number of bit w is sufficient to have no resize overflow, then RESIZE() = RESIZE_NUM(). In an
  -- application overflow should be avoided anyway, so then using either RESIZE() or RESIZE_NUM() is fine.
  -- When w keeps or increases the data width then the values do not change (of course). When w reduces the
  -- data width then overflow can occur in an application, so then use:
  -- * RESIZE() to preserve the sign,
  -- * RESIZE_NUM() to wrap similar for SIGNED as for UNSIGNED,
  -- * common_resize.vhd to clip the overflow (and use symmetrical -, + clipping to avoid introducing DC bias).
  -- The resize functions and component are verified by tb_tb_resize.vhd.
  -- Conclusion:
  -- 1) Keep original RESIZE_NUM(), so resize by selecting the w LSbits for both SIGNED and UNSIGNED.
  -- 2) For applications without overflow RESIZE() = RESIZE_NUM() = common_resize.
  -- 3) For applications with overflow choose to use RESIZE_NUM(), because it wraps similar for SIGNED as
  --    for UNSIGNED (because both keep the w LSbits), instead of behaving differently for SIGNED like
  --    RESIZE() does (keeping the MSbit and the w-1 LSbits). The wrapping of RESIZE_NUM() preserves the
  --    capability of recovering from intermediate overflow in a summator, which can be beneficial for e.g.
  --    a beamformer.
  FUNCTION RESIZE_NUM( u   : UNSIGNED;         w : NATURAL) RETURN UNSIGNED;          -- left extend with '0' or keep LS part (same as RESIZE for UNSIGNED)
  FUNCTION RESIZE_NUM( s   : SIGNED;           w : NATURAL) RETURN SIGNED;            -- extend sign bit or keep LS part
  FUNCTION RESIZE_UVEC(sl  : STD_LOGIC;        w : NATURAL) RETURN STD_LOGIC_VECTOR;  -- left extend with '0' into slv
  FUNCTION RESIZE_UVEC(vec : STD_LOGIC_VECTOR; w : NATURAL) RETURN STD_LOGIC_VECTOR;  -- left extend with '0' or keep LS part
  FUNCTION RESIZE_SVEC(vec : STD_LOGIC_VECTOR; w : NATURAL) RETURN STD_LOGIC_VECTOR;  -- extend sign bit or keep LS part
  FUNCTION RESIZE_UINT(u   : INTEGER;          w : NATURAL) RETURN INTEGER;           -- left extend with '0' or keep LS part
  FUNCTION RESIZE_SINT(s   : INTEGER;          w : NATURAL) RETURN INTEGER;           -- extend sign bit or keep LS part
  
  FUNCTION RESIZE_UVEC_32(vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;  -- = RESIZE_UVEC() with w=32 for t_slv_32_arr slv elements
  FUNCTION RESIZE_SVEC_32(vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;  -- = RESIZE_SVEC() with w=32 for t_slv_32_arr slv elements

  FUNCTION NEGATE_SVEC(vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;               -- assume negated ranges fits within -+max
  FUNCTION NEGATE_SVEC(vec : STD_LOGIC_VECTOR; w : INTEGER) RETURN STD_LOGIC_VECTOR;  -- avoid overflow by forcing -min to +max. Use w <= vec'LENGTH
  
  FUNCTION INCR_UVEC(vec : STD_LOGIC_VECTOR; dec : INTEGER)  RETURN STD_LOGIC_VECTOR;
  FUNCTION INCR_UVEC(vec : STD_LOGIC_VECTOR; dec : UNSIGNED) RETURN STD_LOGIC_VECTOR; 
  FUNCTION INCR_SVEC(vec : STD_LOGIC_VECTOR; dec : INTEGER)  RETURN STD_LOGIC_VECTOR;
  FUNCTION INCR_SVEC(vec : STD_LOGIC_VECTOR; dec : SIGNED)   RETURN STD_LOGIC_VECTOR; 
                                                                                                                   -- Used in common_add_sub.vhd
  FUNCTION ADD_SVEC(l_vec : STD_LOGIC_VECTOR; r_vec : STD_LOGIC_VECTOR; res_w : NATURAL) RETURN STD_LOGIC_VECTOR;  -- l_vec + r_vec, treat slv operands as signed,   slv output width is res_w
  FUNCTION SUB_SVEC(l_vec : STD_LOGIC_VECTOR; r_vec : STD_LOGIC_VECTOR; res_w : NATURAL) RETURN STD_LOGIC_VECTOR;  -- l_vec - r_vec, treat slv operands as signed,   slv output width is res_w
  FUNCTION ADD_UVEC(l_vec : STD_LOGIC_VECTOR; r_vec : STD_LOGIC_VECTOR; res_w : NATURAL) RETURN STD_LOGIC_VECTOR;  -- l_vec + r_vec, treat slv operands as unsigned, slv output width is res_w
  FUNCTION SUB_UVEC(l_vec : STD_LOGIC_VECTOR; r_vec : STD_LOGIC_VECTOR; res_w : NATURAL) RETURN STD_LOGIC_VECTOR;  -- l_vec - r_vec, treat slv operands as unsigned, slv output width is res_w
  
  FUNCTION ADD_SVEC(l_vec : STD_LOGIC_VECTOR; r_vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;                   -- l_vec + r_vec, treat slv operands as signed,   slv output width is l_vec'LENGTH
  FUNCTION SUB_SVEC(l_vec : STD_LOGIC_VECTOR; r_vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;                   -- l_vec - r_vec, treat slv operands as signed,   slv output width is l_vec'LENGTH
  FUNCTION ADD_UVEC(l_vec : STD_LOGIC_VECTOR; r_vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;                   -- l_vec + r_vec, treat slv operands as unsigned, slv output width is l_vec'LENGTH
  FUNCTION SUB_UVEC(l_vec : STD_LOGIC_VECTOR; r_vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;                   -- l_vec - r_vec, treat slv operands as unsigned, slv output width is l_vec'LENGTH

  FUNCTION MULT_SVEC(l_vec : STD_LOGIC_VECTOR; r_vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;                  -- l_vec * r_vec, treat slv operands as signed,   slv output width is l_vec'LENGTH + r_vec'LENGTH
  FUNCTION MULT_UVEC(l_vec : STD_LOGIC_VECTOR; r_vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;                  -- l_vec * r_vec, treat slv operands as unsigned, slv output width is l_vec'LENGTH + r_vec'LENGTH

  FUNCTION COMPLEX_MULT_REAL(a_re, a_im, b_re, b_im : INTEGER) RETURN INTEGER;  -- Calculate real part of complex multiplication: a_re*b_re - a_im*b_im 
  FUNCTION COMPLEX_MULT_IMAG(a_re, a_im, b_re, b_im : INTEGER) RETURN INTEGER;  -- Calculate imag part of complex multiplication: a_im*b_re + a_re*b_im 

  -- Convert between polar and rectangular coordinates
  FUNCTION COMPLEX_RADIUS(re, im : REAL)     RETURN REAL;
  FUNCTION COMPLEX_RADIUS(re, im : INTEGER)  RETURN REAL;

  FUNCTION COMPLEX_PHASE( re, im : REAL;    radians : BOOLEAN) RETURN REAL;  -- phase in radians or degrees
  FUNCTION COMPLEX_PHASE( re, im : INTEGER; radians : BOOLEAN) RETURN REAL;  -- phase in radians or degrees
  FUNCTION COMPLEX_PHASE( re, im : REAL)                       RETURN REAL;  -- phase in degrees
  FUNCTION COMPLEX_PHASE( re, im : INTEGER)                    RETURN REAL;  -- phase in degrees

  FUNCTION COMPLEX_RE(ampl, phase : REAL;    radians : BOOLEAN) RETURN REAL;  -- phase in radians or degrees
  FUNCTION COMPLEX_RE(ampl, phase : INTEGER; radians : BOOLEAN) RETURN REAL;  -- phase in radians or degrees
  FUNCTION COMPLEX_RE(ampl, phase : REAL)                       RETURN REAL;  -- phase in degrees
  FUNCTION COMPLEX_RE(ampl, phase : INTEGER)                    RETURN REAL;  -- phase in degrees

  FUNCTION COMPLEX_IM(ampl, phase : REAL;    radians : BOOLEAN) RETURN REAL;  -- phase in radians or degrees
  FUNCTION COMPLEX_IM(ampl, phase : INTEGER; radians : BOOLEAN) RETURN REAL;  -- phase in radians or degrees
  FUNCTION COMPLEX_IM(ampl, phase : REAL)                       RETURN REAL;  -- phase in degrees
  FUNCTION COMPLEX_IM(ampl, phase : INTEGER)                    RETURN REAL;  -- phase in degrees

  FUNCTION SHIFT_UVEC(vec : STD_LOGIC_VECTOR; shift : INTEGER) RETURN STD_LOGIC_VECTOR;  -- < 0 shift left, > 0 shift right
  FUNCTION SHIFT_SVEC(vec : STD_LOGIC_VECTOR; shift : INTEGER) RETURN STD_LOGIC_VECTOR;  -- < 0 shift left, > 0 shift right

  FUNCTION ROTATE_UVEC(vec : STD_LOGIC_VECTOR; shift : INTEGER) RETURN STD_LOGIC_VECTOR;  -- < 0 rotate left, > 0 rotate right

  FUNCTION offset_binary(a : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;
  
  FUNCTION truncate(                vec : STD_LOGIC_VECTOR; n              : NATURAL) RETURN STD_LOGIC_VECTOR;  -- remove n LSBits from vec, so result has width vec'LENGTH-n
  FUNCTION truncate_and_resize_uvec(vec : STD_LOGIC_VECTOR; n,           w : NATURAL) RETURN STD_LOGIC_VECTOR;  -- remove n LSBits from vec and then resize to width w
  FUNCTION truncate_and_resize_svec(vec : STD_LOGIC_VECTOR; n,           w : NATURAL) RETURN STD_LOGIC_VECTOR;  -- idem for signed values
  FUNCTION scale(                   vec : STD_LOGIC_VECTOR; n:               NATURAL) RETURN STD_LOGIC_VECTOR;  -- add n '0' LSBits to vec
  FUNCTION scale_and_resize_uvec(   vec : STD_LOGIC_VECTOR; n,           w : NATURAL) RETURN STD_LOGIC_VECTOR;  -- add n '0' LSBits to vec and then resize to width w
  FUNCTION scale_and_resize_svec(   vec : STD_LOGIC_VECTOR; n,           w : NATURAL) RETURN STD_LOGIC_VECTOR;  -- idem for signed values
  FUNCTION truncate_or_resize_uvec( vec : STD_LOGIC_VECTOR; b : BOOLEAN; w : NATURAL) RETURN STD_LOGIC_VECTOR;  -- when b=TRUE then truncate to width w, else resize to width w
  FUNCTION truncate_or_resize_svec( vec : STD_LOGIC_VECTOR; b : BOOLEAN; w : NATURAL) RETURN STD_LOGIC_VECTOR;  -- idem for signed values
  
  FUNCTION s_round(   vec : STD_LOGIC_VECTOR; n : NATURAL; clip       : BOOLEAN) RETURN STD_LOGIC_VECTOR;  -- remove n LSBits from vec by rounding away from 0, so result has width vec'LENGTH-n, and clip to avoid wrap
  FUNCTION s_round(   vec : STD_LOGIC_VECTOR; n : NATURAL)                       RETURN STD_LOGIC_VECTOR;  -- remove n LSBits from vec by rounding away from 0, so result has width vec'LENGTH-n
  FUNCTION s_round(   vec : STD_LOGIC_VECTOR; n : NATURAL; clip, even : BOOLEAN) RETURN STD_LOGIC_VECTOR;  -- idem but round half to even for signed
  FUNCTION u_round(   vec : STD_LOGIC_VECTOR; n : NATURAL; clip       : BOOLEAN) RETURN STD_LOGIC_VECTOR;  -- idem round up for unsigned values
  FUNCTION u_round(   vec : STD_LOGIC_VECTOR; n : NATURAL)                       RETURN STD_LOGIC_VECTOR;  -- idem round up for unsigned values
  FUNCTION u_round(   vec : STD_LOGIC_VECTOR; n : NATURAL; clip, even : BOOLEAN) RETURN STD_LOGIC_VECTOR;  -- idem but round half to even for unsigned

  FUNCTION u_to_s(u : NATURAL; w : NATURAL) RETURN INTEGER;   -- interpret w bit unsigned u as w bit   signed, and remove any MSbits
  FUNCTION s_to_u(s : INTEGER; w : NATURAL) RETURN NATURAL;   -- interpret w bit   signed s as w bit unsigned, and remove any MSbits
  
  FUNCTION u_wrap(u : NATURAL; w : NATURAL) RETURN NATURAL;   -- return u & 2**w-1 (bit wise and), so keep w LSbits of unsigned u, and remove MSbits
  FUNCTION s_wrap(s : INTEGER; w : NATURAL) RETURN INTEGER;   -- return s & 2**w-1 (bit wise and), so keep w LSbits of   signed s, and remove MSbits
  
  FUNCTION u_clip(u : NATURAL; max : NATURAL) RETURN NATURAL;                  -- if s < max return s, else return n
  FUNCTION s_clip(s : INTEGER; max : NATURAL; min : INTEGER) RETURN INTEGER;   -- if s <=  min return  min, else if s >= max return max, else return s
  FUNCTION s_clip(s : INTEGER; max : NATURAL               ) RETURN INTEGER;   -- if s <= -max return -max, else if s >= max return max, else return s
  
  FUNCTION hton(a : STD_LOGIC_VECTOR; w, sz : NATURAL) RETURN STD_LOGIC_VECTOR;  -- convert endianity from host to network, sz in symbols of width w
  FUNCTION hton(a : STD_LOGIC_VECTOR;    sz : NATURAL) RETURN STD_LOGIC_VECTOR;  -- convert endianity from host to network, sz in bytes
  FUNCTION hton(a : STD_LOGIC_VECTOR                 ) RETURN STD_LOGIC_VECTOR;  -- convert endianity from host to network, for all bytes in a
  FUNCTION ntoh(a : STD_LOGIC_VECTOR;    sz : NATURAL) RETURN STD_LOGIC_VECTOR;  -- convert endianity from network to host, sz in bytes, ntoh() = hton()
  FUNCTION ntoh(a : STD_LOGIC_VECTOR                 ) RETURN STD_LOGIC_VECTOR;  -- convert endianity from network to host, for all bytes in a, ntoh() = hton()
  
  FUNCTION flip(a : STD_LOGIC_VECTOR)  RETURN STD_LOGIC_VECTOR;  -- bit flip a vector, map a[h:0] to [0:h]
  FUNCTION flip(a, w : NATURAL)        RETURN NATURAL;           -- bit flip a vector, map a[h:0] to [0:h], h = w-1
  FUNCTION flip(a : t_slv_32_arr)      RETURN t_slv_32_arr;
  FUNCTION flip(a : t_integer_arr)     RETURN t_integer_arr;
  FUNCTION flip(a : t_natural_arr)     RETURN t_natural_arr;
  FUNCTION flip(a : t_nat_natural_arr) RETURN t_nat_natural_arr;
  
  FUNCTION transpose(a : STD_LOGIC_VECTOR; row, col : NATURAL) RETURN STD_LOGIC_VECTOR;  -- transpose a vector, map a[i*row+j] to output index [j*col+i]
  FUNCTION transpose(a,                    row, col : NATURAL) RETURN NATURAL;           -- transpose index a = [i*row+j] to output index [j*col+i]

  FUNCTION split_w(input_w: NATURAL; min_out_w: NATURAL; max_out_w: NATURAL) RETURN NATURAL;

  FUNCTION pad(str: STRING; width: NATURAL; pad_char: CHARACTER) RETURN STRING;

  FUNCTION slice_up(str: STRING; width: NATURAL; i: NATURAL) RETURN STRING;
  FUNCTION slice_up(str: STRING; width: NATURAL; i: NATURAL; pad_char: CHARACTER) RETURN STRING;
  FUNCTION slice_dn(str: STRING; width: NATURAL; i: NATURAL) RETURN STRING;
  FUNCTION nat_arr_to_concat_slv(nat_arr: t_natural_arr; nof_elements: NATURAL) RETURN STD_LOGIC_VECTOR;

  ------------------------------------------------------------------------------
  -- Component specific functions
  ------------------------------------------------------------------------------

  -- common_fifo_*  
  PROCEDURE proc_common_fifo_asserts (CONSTANT c_fifo_name   : IN STRING;
                                      CONSTANT c_note_is_ful : IN BOOLEAN;
                                      CONSTANT c_fail_rd_emp : IN BOOLEAN;
                                      SIGNAL   wr_rst        : IN STD_LOGIC;
                                      SIGNAL   wr_clk        : IN STD_LOGIC;
                                      SIGNAL   wr_full       : IN STD_LOGIC;
                                      SIGNAL   wr_en         : IN STD_LOGIC;
                                      SIGNAL   rd_clk        : IN STD_LOGIC;
                                      SIGNAL   rd_empty      : IN STD_LOGIC;
                                      SIGNAL   rd_en         : IN STD_LOGIC);
  
  -- common_fanout_tree  
  FUNCTION func_common_fanout_tree_pipelining(c_nof_stages, c_nof_output_per_cell, c_nof_output : NATURAL;
                                              c_cell_pipeline_factor_arr, c_cell_pipeline_arr : t_natural_arr) RETURN t_natural_arr;
  
  -- common_reorder_symbol 
  FUNCTION func_common_reorder2_is_there(I, J : NATURAL) RETURN BOOLEAN;
  FUNCTION func_common_reorder2_is_active(I, J, N : NATURAL) RETURN BOOLEAN;
  FUNCTION func_common_reorder2_get_select_index(I, J, N : NATURAL) RETURN INTEGER;
  FUNCTION func_common_reorder2_get_select(I, J, N : NATURAL; select_arr : t_natural_arr) RETURN NATURAL;
  FUNCTION func_common_reorder2_inverse_select(N : NATURAL; select_arr : t_natural_arr) RETURN t_natural_arr;
  
  -- Generate faster sample SCLK from digital DCLK for sim only
  PROCEDURE proc_common_dclk_generate_sclk(CONSTANT Pfactor : IN    POSITIVE;
                                           SIGNAL   dclk    : IN    STD_LOGIC;
                                           SIGNAL   sclk    : INOUT STD_LOGIC);
  
END common_pkg;

PACKAGE BODY common_pkg IS

  FUNCTION pow2(n : NATURAL) RETURN NATURAL IS
  BEGIN
    RETURN 2**n;
  END;

  FUNCTION ceil_pow2(n : INTEGER) RETURN NATURAL IS
  -- Also allows negative exponents and rounds up before returning the value
  BEGIN
    RETURN natural(integer(ceil(2**real(n))));
  END;
  
  FUNCTION true_log2(n : NATURAL) RETURN NATURAL IS
  -- Purpose: For calculating extra vector width of existing vector
  -- Description: Return mathematical ceil(log2(n))
  --   n    log2()
  --   0 -> -oo  --> FAILURE
  --   1 ->  0
  --   2 ->  1
  --   3 ->  2
  --   4 ->  2
  --   5 ->  3
  --   6 ->  3
  --   7 ->  3
  --   8 ->  3
  --   9 ->  4
  --   etc, up to n = NATURAL'HIGH = 2**31-1
  BEGIN
    RETURN natural(integer(ceil(log2(real(n)))));
  END;
  
  FUNCTION ceil_log2(n : NATURAL) RETURN NATURAL IS
  -- Purpose: For calculating vector width of new vector 
  -- Description:
  --   Same as true_log2() except ceil_log2(1) = 1, which is needed to support
  --   the vector width width for 1 address, to avoid NULL array for single
  --   word register address.
  --   If n = 0, return 0 so we get a NULL array when using 
  --   STD_LOGIC_VECTOR(ceil_log2(g_addr_w)-1 DOWNTO 0), instead of an error.
  BEGIN
    IF n = 0 THEN
      RETURN 0;  -- Get NULL array
    ELSIF n = 1 THEN
      RETURN 1;  -- avoid NULL array
    ELSE
      RETURN true_log2(n);
    END IF;
  END;

  FUNCTION floor_log10(n : NATURAL) RETURN NATURAL IS
  BEGIN
    RETURN natural(integer(floor(log10(real(n)))));
  END;
  
  FUNCTION is_pow2(n : NATURAL) RETURN BOOLEAN IS
  BEGIN
    RETURN n=2**true_log2(n);
  END;
  
  FUNCTION true_log_pow2(n : NATURAL) RETURN NATURAL IS
  BEGIN
    RETURN 2**true_log2(n);
  END;
  
  FUNCTION ratio(n, d : NATURAL) RETURN NATURAL IS
  BEGIN
    IF n MOD d = 0 THEN
      RETURN n/d;
    ELSE
      RETURN 0;
    END IF;
  END;
  
  FUNCTION ratio2(n, m : NATURAL) RETURN NATURAL IS
  BEGIN
    RETURN largest(ratio(n,m), ratio(m,n));
  END;
  
  FUNCTION almost_equal(a, b, delta : REAL) RETURN BOOLEAN IS
  BEGIN
    IF ABS(a - b) <= ABS(delta) THEN
      RETURN TRUE;
    ELSE
      RETURN FALSE;
    END IF;
  END;

  FUNCTION almost_equal(a, b, delta : INTEGER) RETURN BOOLEAN IS
  BEGIN
    IF ABS(a - b) <= ABS(delta) THEN
      RETURN TRUE;
    ELSE
      RETURN FALSE;
    END IF;
  END;
  
  FUNCTION almost_zero(a, delta : REAL) RETURN BOOLEAN IS
  BEGIN
    RETURN almost_equal(a, 0.0, delta);
  END;
  
  FUNCTION almost_zero(a, delta : INTEGER) RETURN BOOLEAN IS
  BEGIN
    RETURN almost_equal(a, 0, delta);
  END;

  FUNCTION ceil_div(n, d : NATURAL) RETURN NATURAL IS
  BEGIN
    RETURN n/d + sel_a_b(n MOD d = 0, 0, 1);
  END;
  
  FUNCTION ceil_value(n, d : NATURAL) RETURN NATURAL IS
  BEGIN
    RETURN ceil_div(n, d) * d;
  END;
  
  FUNCTION floor_value(n, d : NATURAL) RETURN NATURAL IS
  BEGIN
    RETURN (n / d) * d;
  END;
  
  FUNCTION ceil_div(n : UNSIGNED; d: NATURAL) RETURN UNSIGNED IS
  BEGIN
    RETURN n/d + sel_a_b(n MOD d = 0, 0, 1);  -- "/" returns same width as n
  END;
  
  FUNCTION ceil_value(n : UNSIGNED; d: NATURAL) RETURN UNSIGNED IS
    CONSTANT w : NATURAL := n'LENGTH;
    VARIABLE p : UNSIGNED(2*w-1 DOWNTO 0);
  BEGIN
    p := ceil_div(n, d) * d;
    RETURN p(w-1 DOWNTO 0);  -- return same width as n
  END;
  
  FUNCTION floor_value(n : UNSIGNED; d: NATURAL) RETURN UNSIGNED IS
    CONSTANT w : NATURAL := n'LENGTH;
    VARIABLE p : UNSIGNED(2*w-1 DOWNTO 0);
  BEGIN
    p := (n / d) * d;
    RETURN p(w-1 DOWNTO 0);  -- return same width as n
  END;
  
  FUNCTION gcd(a, b : NATURAL) RETURN NATURAL IS   -- greatest common divider
  BEGIN
    IF b = 0 THEN
      RETURN a;
    ELSE
      RETURN gcd(b, a MOD b);
    END IF;
  END;

  FUNCTION slv(n: IN STD_LOGIC) RETURN STD_LOGIC_VECTOR IS
    VARIABLE r : STD_LOGIC_VECTOR(0 DOWNTO 0);
  BEGIN
    r(0) := n;
    RETURN r;
  END;
  
  FUNCTION sl(n: IN STD_LOGIC_VECTOR) RETURN STD_LOGIC IS
    VARIABLE r : STD_LOGIC;
  BEGIN
    r := n(n'LOW);
    RETURN r;
  END;


  FUNCTION to_sl(n: IN BOOLEAN) RETURN STD_LOGIC IS
  BEGIN
    IF n = TRUE THEN
      RETURN '1';
    ELSE
      RETURN '0';
    END IF;
  END;

  FUNCTION to_bool(n: IN STD_LOGIC) RETURN BOOLEAN IS
  BEGIN
    RETURN n = '1' OR n = 'H';
  END;

  FUNCTION to_bool(n: IN INTEGER) RETURN BOOLEAN IS
  BEGIN
    RETURN NOT (n = 0);
  END;

  FUNCTION not_int(n : INTEGER) RETURN INTEGER IS
  BEGIN
    RETURN sel_a_b(n = 0, 1, 0);
  END;

  FUNCTION pack_complex(re, im : INTEGER; w : NATURAL) RETURN INTEGER IS
    CONSTANT c_complex_w   : NATURAL := 2 * w;
    VARIABLE v_complex_slv : STD_LOGIC_VECTOR(c_complex_w-1 DOWNTO 0) := TO_SVEC(im, w) & TO_SVEC(re, w);
  BEGIN
    ASSERT c_complex_w <= c_word_w REPORT "common_pkg: Complex value to large to pack into 32 bit integer" SEVERITY FAILURE;
    IF c_complex_w < c_word_w THEN  -- fits in 31 bit unsigned NATURAL
      RETURN TO_UINT(v_complex_slv);
    ELSE                            -- need to use 32 bit signed INTEGER
      RETURN TO_SINT(v_complex_slv);
    END IF;
  END;

  FUNCTION unpack_complex_re(data : STD_LOGIC_VECTOR; w : NATURAL) RETURN INTEGER IS
  BEGIN
    ASSERT w <= c_word_w REPORT "common_pkg: Complex value to large to unpack into 32 bit integer parts" SEVERITY FAILURE;
    RETURN TO_SINT(data(w-1 DOWNTO 0));  -- Re in LS part
  END;

  FUNCTION unpack_complex_re(data : INTEGER; w : NATURAL) RETURN INTEGER IS
    CONSTANT c_complex_w   : NATURAL := 2 * w;
    VARIABLE v_complex_slv : STD_LOGIC_VECTOR(c_complex_w-1 DOWNTO 0) := TO_SVEC(data, c_complex_w);
  BEGIN
    RETURN TO_SINT(v_complex_slv(w-1 DOWNTO 0));  -- Re in LS part
  END;

  FUNCTION unpack_complex_im(data : STD_LOGIC_VECTOR; w : NATURAL) RETURN INTEGER IS
  BEGIN
    ASSERT w <= c_word_w REPORT "common_pkg: Complex value to large to unpack into 32 bit integer parts" SEVERITY FAILURE;
    RETURN TO_SINT(data(2*w-1 DOWNTO w));  -- Im in MS part
  END;

  FUNCTION unpack_complex_im(data : INTEGER; w : NATURAL) RETURN INTEGER IS
    CONSTANT c_complex_w   : NATURAL := 2 * w;
    VARIABLE v_complex_slv : STD_LOGIC_VECTOR(c_complex_w-1 DOWNTO 0) := TO_SVEC(data, c_complex_w);
  BEGIN
    RETURN TO_SINT(v_complex_slv(c_complex_w-1 DOWNTO w));  -- Im in MS part
  END;

  FUNCTION atan2(Y, X: REAL) RETURN REAL IS
  BEGIN
    IF Y = 0.0 AND X = 0.0 THEN
      RETURN 0.0;
    ELSE
      RETURN ARCTAN(Y, X);
    END IF;
  END;

  FUNCTION to_natural_arr(n : t_integer_arr; to_zero : BOOLEAN) RETURN t_natural_arr IS
    VARIABLE vN : t_integer_arr(n'LENGTH-1 DOWNTO 0);
    VARIABLE vR : t_natural_arr(n'LENGTH-1 DOWNTO 0);
  BEGIN
    vN := n;
    FOR I IN vN'RANGE LOOP
      IF to_zero=FALSE THEN
        vR(I) := vN(I);
      ELSE
        vR(I) := 0;
        IF vN(I)>0 THEN
          vR(I) := vN(I);
        END IF;
      END IF;
    END LOOP;
    RETURN vR;
  END;
  
  FUNCTION to_natural_arr(n : t_nat_natural_arr) RETURN t_natural_arr IS
    VARIABLE vN : t_nat_natural_arr(n'LENGTH-1 DOWNTO 0);
    VARIABLE vR : t_natural_arr(n'LENGTH-1 DOWNTO 0);
  BEGIN
    vN := n;
    FOR I IN vN'RANGE LOOP
      vR(I) := vN(I);
    END LOOP;
    RETURN vR;
  END;
  
  FUNCTION to_integer_arr(n : t_natural_arr) RETURN t_integer_arr IS
    VARIABLE vN : t_natural_arr(n'LENGTH-1 DOWNTO 0);
    VARIABLE vR : t_integer_arr(n'LENGTH-1 DOWNTO 0);
  BEGIN
    vN := n;
    FOR I IN vN'RANGE LOOP
      vR(I) := vN(I);
    END LOOP;
    RETURN vR;
  END;
  
  FUNCTION to_integer_arr(n : t_nat_natural_arr) RETURN t_integer_arr IS
    VARIABLE vN : t_natural_arr(n'LENGTH-1 DOWNTO 0);
  BEGIN
    vN := to_natural_arr(n);
    RETURN to_integer_arr(vN);
  END;
  
  FUNCTION to_slv_32_arr(n : t_integer_arr) RETURN t_slv_32_arr IS
    VARIABLE vN : t_integer_arr(n'LENGTH-1 DOWNTO 0);
    VARIABLE vR : t_slv_32_arr(n'LENGTH-1 DOWNTO 0);
  BEGIN
    vN := n;
    FOR I IN vN'RANGE LOOP
      vR(I) := TO_SVEC(vN(I), 32);
    END LOOP;
    RETURN vR;
  END;
  
  FUNCTION to_slv_32_arr(n : t_natural_arr) RETURN t_slv_32_arr IS
    VARIABLE vN : t_natural_arr(n'LENGTH-1 DOWNTO 0);
    VARIABLE vR : t_slv_32_arr(n'LENGTH-1 DOWNTO 0);
  BEGIN
    vN := n;
    FOR I IN vN'RANGE LOOP
      vR(I) := TO_UVEC(vN(I), 32);
    END LOOP;
    RETURN vR;
  END;
  
  FUNCTION vector_tree(slv : STD_LOGIC_VECTOR; operation : STRING) RETURN STD_LOGIC IS
    -- Linear loop to determine result takes combinatorial delay that is proportional to slv'LENGTH:
    --   FOR I IN slv'RANGE LOOP
    --     v_result := v_result OPERATION slv(I);
    --   END LOOP;
    --   RETURN v_result;
    -- Instead use binary tree to determine result with smallest combinatorial delay that depends on log2(slv'LENGTH)
    CONSTANT c_slv_w      : NATURAL := slv'LENGTH;
    CONSTANT c_nof_stages : NATURAL := ceil_log2(c_slv_w);
    CONSTANT c_w          : NATURAL := 2**c_nof_stages;  -- extend the input slv to a vector with length power of 2 to ease using binary tree
    TYPE t_stage_arr IS ARRAY (-1 TO c_nof_stages-1) OF STD_LOGIC_VECTOR(c_w-1 DOWNTO 0);
    VARIABLE v_stage_arr  : t_stage_arr;
    VARIABLE v_result     : STD_LOGIC := '0';
  BEGIN
    -- default any unused, the stage results will be kept in the LSBits and the last result in bit 0
    IF    operation="AND" THEN v_stage_arr := (OTHERS=>(OTHERS=>'1'));
    ELSIF operation="OR"  THEN v_stage_arr := (OTHERS=>(OTHERS=>'0'));
    ELSIF operation="XOR" THEN v_stage_arr := (OTHERS=>(OTHERS=>'0'));
    ELSE
      ASSERT TRUE REPORT "common_pkg: Unsupported vector_tree operation" SEVERITY FAILURE;
    END IF;
    v_stage_arr(-1)(c_slv_w-1 DOWNTO 0) := slv;  -- any unused input c_w : c_slv_w bits have void default value
    FOR J IN 0 TO c_nof_stages-1 LOOP
      FOR I IN 0 TO c_w/(2**(J+1))-1 LOOP
        IF    operation="AND" THEN v_stage_arr(J)(I) := v_stage_arr(J-1)(2*I) AND v_stage_arr(J-1)(2*I+1);
        ELSIF operation="OR"  THEN v_stage_arr(J)(I) := v_stage_arr(J-1)(2*I) OR  v_stage_arr(J-1)(2*I+1);
        ELSIF operation="XOR" THEN v_stage_arr(J)(I) := v_stage_arr(J-1)(2*I) XOR v_stage_arr(J-1)(2*I+1);
        END IF;
      END LOOP;
    END LOOP;
    RETURN v_stage_arr(c_nof_stages-1)(0);
  END;  
  
  FUNCTION vector_and(slv : STD_LOGIC_VECTOR) RETURN STD_LOGIC IS
  BEGIN
    RETURN vector_tree(slv, "AND");
  END;
  
  FUNCTION vector_or(slv : STD_LOGIC_VECTOR) RETURN STD_LOGIC IS
  BEGIN
    RETURN vector_tree(slv, "OR");
  END;

  FUNCTION vector_xor(slv : STD_LOGIC_VECTOR) RETURN STD_LOGIC IS
  BEGIN
    RETURN vector_tree(slv, "XOR");
  END;

  FUNCTION vector_one_hot(slv : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
    VARIABLE v_one_hot : BOOLEAN := FALSE;
    VARIABLE v_zeros   : STD_LOGIC_VECTOR(slv'RANGE) := (OTHERS=>'0');
  BEGIN
    FOR i IN slv'RANGE LOOP
      IF slv(i) = '1' THEN
        IF NOT(v_one_hot) THEN
          -- No hot bits found so far
          v_one_hot := TRUE;
        ELSE
          -- This is the second hot bit found; return zeros.
          RETURN v_zeros;
        END IF;
      END IF;
    END LOOP;
    -- No or a single hot bit found in slv; return slv.
    RETURN slv;
  END;
  
  FUNCTION andv(slv : STD_LOGIC_VECTOR) RETURN STD_LOGIC IS
  BEGIN
    RETURN vector_tree(slv, "AND");
  END;
  
  FUNCTION orv(slv : STD_LOGIC_VECTOR) RETURN STD_LOGIC IS
  BEGIN
    RETURN vector_tree(slv, "OR");
  END;
  
  FUNCTION xorv(slv : STD_LOGIC_VECTOR) RETURN STD_LOGIC IS
  BEGIN
    RETURN vector_tree(slv, "XOR");
  END;
  
  FUNCTION array_and(arr : t_nat_boolean_arr) RETURN BOOLEAN IS
    VARIABLE v_slv : STD_LOGIC_VECTOR(arr'RANGE);
  BEGIN
    FOR I IN arr'RANGE LOOP v_slv(I) := sel_a_b(arr(I), '1', '0'); END LOOP;  -- wire map boolean arr to slv
    RETURN sel_a_b(vector_and(v_slv) = '1', TRUE, FALSE);                     -- use vector_tree to determine result
  END;
  
  FUNCTION array_or(arr : t_nat_boolean_arr) RETURN BOOLEAN IS
    VARIABLE v_slv : STD_LOGIC_VECTOR(arr'RANGE);
  BEGIN
    FOR I IN arr'RANGE LOOP v_slv(I) := sel_a_b(arr(I), '1', '0'); END LOOP;  -- wire map boolean arr to slv
    RETURN sel_a_b(vector_or(v_slv) = '1', TRUE, FALSE);                      -- use vector_tree to determine result
  END;
  
  FUNCTION matrix_and(mat : t_sl_matrix; wi, wj : NATURAL) RETURN STD_LOGIC IS
    VARIABLE v_mat    : t_sl_matrix(0 TO wi-1, 0 TO wj-1) := mat;  -- map to fixed range
    VARIABLE v_result : STD_LOGIC := '1';
  BEGIN
    FOR I IN 0 TO wi-1 LOOP
      FOR J IN 0 TO wj-1 LOOP
        v_result := v_result AND v_mat(I,J);
      END LOOP;
    END LOOP;
    RETURN v_result;
  END;
  
  FUNCTION matrix_or(mat : t_sl_matrix; wi, wj : NATURAL) RETURN STD_LOGIC IS
    VARIABLE v_mat    : t_sl_matrix(0 TO wi-1, 0 TO wj-1) := mat;  -- map to fixed range
    VARIABLE v_result : STD_LOGIC := '0';
  BEGIN
    FOR I IN 0 TO wi-1 LOOP
      FOR J IN 0 TO wj-1 LOOP
        v_result := v_result OR v_mat(I,J);
      END LOOP;
    END LOOP;
    RETURN v_result;
  END;
  
  FUNCTION smallest(n, m : INTEGER) RETURN INTEGER IS
  BEGIN
    IF n < m THEN
      RETURN n;
    ELSE
      RETURN m;
    END IF;
  END;
  
  FUNCTION smallest(n, m : REAL) RETURN REAL IS
  BEGIN
    IF n < m THEN
      RETURN n;
    ELSE
      RETURN m;
    END IF;
  END;
  
  FUNCTION smallest(n, m, l : INTEGER) RETURN INTEGER IS
    VARIABLE v : NATURAL;
  BEGIN
                  v := n;
    IF v > m THEN v := m; END IF;
    IF v > l THEN v := l; END IF;
    RETURN v;
  END;
  FUNCTION smallest(n : t_natural_arr) RETURN NATURAL IS
    VARIABLE m : NATURAL := 0;
  BEGIN
    FOR I IN n'RANGE LOOP
      IF n(I) < m THEN
        m := n(I);
      END IF;
    END LOOP;
    RETURN m;
  END;
  
  FUNCTION smallest(n : t_nat_natural_arr) RETURN NATURAL IS
    VARIABLE m : NATURAL := 0;
  BEGIN
    FOR I IN n'RANGE LOOP
      IF n(I) < m THEN
        m := n(I);
      END IF;
    END LOOP;
    RETURN m;
  END;
  
  FUNCTION largest(n, m : INTEGER) RETURN INTEGER IS
  BEGIN
    IF n > m THEN
      RETURN n;
    ELSE
      RETURN m;
    END IF;
  END;
  
  FUNCTION largest(n, m : REAL) RETURN REAL IS
  BEGIN
    IF n > m THEN
      RETURN n;
    ELSE
      RETURN m;
    END IF;
  END;
  
  FUNCTION largest(n : t_natural_arr) RETURN NATURAL IS
    VARIABLE m : NATURAL := 0;
  BEGIN
    FOR I IN n'RANGE LOOP
      IF n(I) > m THEN
        m := n(I);
      END IF;
    END LOOP;
    RETURN m;
  END;
  
  FUNCTION largest(n : t_nat_natural_arr) RETURN NATURAL IS
    VARIABLE m : NATURAL := 0;
  BEGIN
    FOR I IN n'RANGE LOOP
      IF n(I) > m THEN
        m := n(I);
      END IF;
    END LOOP;
    RETURN m;
  END;
  
  FUNCTION func_sum(n : t_natural_arr) RETURN NATURAL IS
    VARIABLE vS : NATURAL;
  BEGIN
    vS := 0;
    FOR I IN n'RANGE LOOP
      vS := vS + n(I);
    END LOOP;
    RETURN vS;
  END;
  
  FUNCTION func_sum(n : t_nat_natural_arr) RETURN NATURAL IS
    VARIABLE vN : t_natural_arr(n'LENGTH-1 DOWNTO 0);
  BEGIN
    vN := to_natural_arr(n);
    RETURN func_sum(vN);
  END;
  
  FUNCTION func_product(n : t_natural_arr) RETURN NATURAL IS
    VARIABLE vP : NATURAL;
  BEGIN
    vP := 1;
    FOR I IN n'RANGE LOOP
      vP := vP * n(I);
    END LOOP;
    RETURN vP;
  END;
  
  FUNCTION func_product(n : t_nat_natural_arr) RETURN NATURAL IS
    VARIABLE vN : t_natural_arr(n'LENGTH-1 DOWNTO 0);
  BEGIN
    vN := to_natural_arr(n);
    RETURN func_product(vN);
  END;
  
  FUNCTION "+" (L, R: t_natural_arr) RETURN t_natural_arr IS
    CONSTANT w  : NATURAL := L'LENGTH;
    VARIABLE vL : t_natural_arr(w-1 DOWNTO 0);
    VARIABLE vR : t_natural_arr(w-1 DOWNTO 0);
    VARIABLE vP : t_natural_arr(w-1 DOWNTO 0);
  BEGIN
    vL := L;
    vR := R;
    FOR I IN vL'RANGE LOOP
      vP(I) := vL(I) + vR(I);
    END LOOP;
    RETURN vP;
  END;
  
  FUNCTION "+" (L: t_natural_arr; R : INTEGER) RETURN t_natural_arr IS
    CONSTANT w  : NATURAL := L'LENGTH;
    VARIABLE vL : t_natural_arr(w-1 DOWNTO 0);
    VARIABLE vP : t_natural_arr(w-1 DOWNTO 0);
  BEGIN
    vL := L;
    FOR I IN vL'RANGE LOOP
      vP(I) := vL(I) + R;
    END LOOP;
    RETURN vP;
  END;
  
  FUNCTION "+" (L: INTEGER; R : t_natural_arr) RETURN t_natural_arr IS
  BEGIN
    RETURN R + L;
  END;
  
  FUNCTION "-" (L, R: t_natural_arr) RETURN t_natural_arr IS
    CONSTANT w  : NATURAL := L'LENGTH;
    VARIABLE vL : t_natural_arr(w-1 DOWNTO 0);
    VARIABLE vR : t_natural_arr(w-1 DOWNTO 0);
    VARIABLE vP : t_natural_arr(w-1 DOWNTO 0);
  BEGIN
    vL := L;
    vR := R;
    FOR I IN vL'RANGE LOOP
      vP(I) := vL(I) - vR(I);
    END LOOP;
    RETURN vP;
  END;
  
  FUNCTION "-" (L, R: t_natural_arr) RETURN t_integer_arr IS
    CONSTANT w  : NATURAL := L'LENGTH;
    VARIABLE vL : t_natural_arr(w-1 DOWNTO 0);
    VARIABLE vR : t_natural_arr(w-1 DOWNTO 0);
    VARIABLE vP : t_integer_arr(w-1 DOWNTO 0);
  BEGIN
    vL := L;
    vR := R;
    FOR I IN vL'RANGE LOOP
      vP(I) := vL(I) - vR(I);
    END LOOP;
    RETURN vP;
  END;
  
  FUNCTION "-" (L: t_natural_arr; R : INTEGER) RETURN t_natural_arr IS
    CONSTANT w  : NATURAL := L'LENGTH;
    VARIABLE vL : t_natural_arr(w-1 DOWNTO 0);
    VARIABLE vP : t_natural_arr(w-1 DOWNTO 0);
  BEGIN
    vL := L;
    FOR I IN vL'RANGE LOOP
      vP(I) := vL(I) - R;
    END LOOP;
    RETURN vP;
  END;
  
  FUNCTION "-" (L: INTEGER; R : t_natural_arr) RETURN t_natural_arr IS
    CONSTANT w  : NATURAL := R'LENGTH;
    VARIABLE vR : t_natural_arr(w-1 DOWNTO 0);
    VARIABLE vP : t_natural_arr(w-1 DOWNTO 0);
  BEGIN
    vR := R;
    FOR I IN vR'RANGE LOOP
      vP(I) := L - vR(I);
    END LOOP;
    RETURN vP;
  END;
  
  FUNCTION "*" (L, R: t_natural_arr) RETURN t_natural_arr IS
    CONSTANT w  : NATURAL := L'LENGTH;
    VARIABLE vL : t_natural_arr(w-1 DOWNTO 0);
    VARIABLE vR : t_natural_arr(w-1 DOWNTO 0);
    VARIABLE vP : t_natural_arr(w-1 DOWNTO 0);
  BEGIN
    vL := L;
    vR := R;
    FOR I IN vL'RANGE LOOP
      vP(I) := vL(I) * vR(I);
    END LOOP;
    RETURN vP;
  END;
  
  FUNCTION "*" (L: t_natural_arr; R : NATURAL) RETURN t_natural_arr IS
    CONSTANT w  : NATURAL := L'LENGTH;
    VARIABLE vL : t_natural_arr(w-1 DOWNTO 0);
    VARIABLE vP : t_natural_arr(w-1 DOWNTO 0);
  BEGIN
    vL := L;
    FOR I IN vL'RANGE LOOP
      vP(I) := vL(I) * R;
    END LOOP;
    RETURN vP;
  END;
  
  FUNCTION "*" (L: NATURAL; R : t_natural_arr) RETURN t_natural_arr IS
  BEGIN
    RETURN R * L;
  END;
  
  FUNCTION "/" (L, R: t_natural_arr) RETURN t_natural_arr IS
    CONSTANT w  : NATURAL := L'LENGTH;
    VARIABLE vL : t_natural_arr(w-1 DOWNTO 0);
    VARIABLE vR : t_natural_arr(w-1 DOWNTO 0);
    VARIABLE vP : t_natural_arr(w-1 DOWNTO 0);
  BEGIN
    vL := L;
    vR := R;
    FOR I IN vL'RANGE LOOP
      vP(I) := vL(I) / vR(I);
    END LOOP;
    RETURN vP;
  END;
  
  FUNCTION "/" (L: t_natural_arr; R : POSITIVE) RETURN t_natural_arr IS
    CONSTANT w  : NATURAL := L'LENGTH;
    VARIABLE vL : t_natural_arr(w-1 DOWNTO 0);
    VARIABLE vP : t_natural_arr(w-1 DOWNTO 0);
  BEGIN
    vL := L;
    FOR I IN vL'RANGE LOOP
      vP(I) := vL(I) / R;
    END LOOP;
    RETURN vP;
  END;
  
  FUNCTION "/" (L: NATURAL; R : t_natural_arr) RETURN t_natural_arr IS
    CONSTANT w  : NATURAL := R'LENGTH;
    VARIABLE vR : t_natural_arr(w-1 DOWNTO 0);
    VARIABLE vP : t_natural_arr(w-1 DOWNTO 0);
  BEGIN
    vR := R;
    FOR I IN vR'RANGE LOOP
      vP(I) := L / vR(I);
    END LOOP;
    RETURN vP;
  END;
  
  FUNCTION is_true(a : STD_LOGIC) RETURN BOOLEAN   IS BEGIN IF a='1'  THEN RETURN TRUE; ELSE RETURN FALSE; END IF; END;
  FUNCTION is_true(a : STD_LOGIC) RETURN NATURAL   IS BEGIN IF a='1'  THEN RETURN 1;    ELSE RETURN 0;     END IF; END;
  FUNCTION is_true(a : BOOLEAN)   RETURN STD_LOGIC IS BEGIN IF a=TRUE THEN RETURN '1';  ELSE RETURN '0';   END IF; END;  
  FUNCTION is_true(a : BOOLEAN)   RETURN NATURAL   IS BEGIN IF a=TRUE THEN RETURN 1;    ELSE RETURN 0;     END IF; END;  
  FUNCTION is_true(a : INTEGER)   RETURN BOOLEAN   IS BEGIN IF a/=0   THEN RETURN TRUE; ELSE RETURN FALSE; END IF; END;
  FUNCTION is_true(a : INTEGER)   RETURN STD_LOGIC IS BEGIN IF a/=0   THEN RETURN '1';  ELSE RETURN '0';   END IF; END;
  
  FUNCTION sel_a_b(sel, a, b : INTEGER) RETURN INTEGER IS
  BEGIN
    IF sel /= 0 THEN
      RETURN a;
    ELSE
      RETURN b;
    END IF;
  END;

  FUNCTION sel_a_b(sel, a, b : BOOLEAN) RETURN BOOLEAN IS
  BEGIN
    IF sel = TRUE THEN
      RETURN a;
    ELSE
      RETURN b;
    END IF;
  END;
  
  FUNCTION sel_a_b(sel : BOOLEAN; a, b : INTEGER) RETURN INTEGER IS
  BEGIN
    IF sel = TRUE THEN
      RETURN a;
    ELSE
      RETURN b;
    END IF;
  END;

  FUNCTION sel_a_b(sel : BOOLEAN; a, b : REAL) RETURN REAL IS
  BEGIN
    IF sel = TRUE THEN
      RETURN a;
    ELSE
      RETURN b;
    END IF;
  END;
  
  FUNCTION sel_a_b(sel : BOOLEAN; a, b : STD_LOGIC) RETURN STD_LOGIC IS
  BEGIN
    IF sel = TRUE THEN
      RETURN a;
    ELSE
      RETURN b;
    END IF;
  END;
  
  FUNCTION sel_a_b(sel : INTEGER; a, b : STD_LOGIC) RETURN STD_LOGIC IS
  BEGIN
    IF sel /= 0 THEN
      RETURN a;
    ELSE
      RETURN b;
    END IF;
  END;
  
  FUNCTION sel_a_b(sel : INTEGER; a, b : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    IF sel /= 0 THEN
      RETURN a;
    ELSE
      RETURN b;
    END IF;
  END;
  
  FUNCTION sel_a_b(sel : BOOLEAN; a, b : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    IF sel = TRUE THEN
      RETURN a;
    ELSE
      RETURN b;
    END IF;
  END;
  
  FUNCTION sel_a_b(sel : BOOLEAN; a, b : SIGNED) RETURN SIGNED IS
  BEGIN
    IF sel = TRUE THEN
      RETURN a;
    ELSE
      RETURN b;
    END IF;
  END;
  
  FUNCTION sel_a_b(sel : BOOLEAN; a, b : UNSIGNED) RETURN UNSIGNED IS
  BEGIN
    IF sel = TRUE THEN
      RETURN a;
    ELSE
      RETURN b;
    END IF;
  END;
  
  FUNCTION sel_a_b(sel : BOOLEAN; a, b : t_integer_arr) RETURN t_integer_arr IS
  BEGIN
    IF sel = TRUE THEN
      RETURN a;
    ELSE
      RETURN b;
    END IF;
  END;
  
  FUNCTION sel_a_b(sel : BOOLEAN; a, b : t_natural_arr) RETURN t_natural_arr IS
  BEGIN
    IF sel = TRUE THEN
      RETURN a;
    ELSE
      RETURN b;
    END IF;
  END;
  
  FUNCTION sel_a_b(sel : BOOLEAN; a, b : t_nat_integer_arr) RETURN t_nat_integer_arr IS
  BEGIN
    IF sel = TRUE THEN
      RETURN a;
    ELSE
      RETURN b;
    END IF;
  END;
  
  FUNCTION sel_a_b(sel : BOOLEAN; a, b : t_nat_natural_arr) RETURN t_nat_natural_arr IS
  BEGIN
    IF sel = TRUE THEN
      RETURN a;
    ELSE
      RETURN b;
    END IF;
  END;
  
  FUNCTION sel_a_b(sel : BOOLEAN; a, b : STRING) RETURN STRING IS
  BEGIN
    IF sel = TRUE THEN
      RETURN a;
    ELSE
      RETURN b;
    END IF;
  END;
  
  FUNCTION sel_a_b(sel : INTEGER; a, b : STRING) RETURN STRING IS
  BEGIN
    IF sel /= 0 THEN
      RETURN a;
    ELSE
      RETURN b;
    END IF;
  END;
  
  FUNCTION sel_a_b(sel : BOOLEAN; a, b : TIME) RETURN TIME IS
  BEGIN
    IF sel = TRUE THEN
      RETURN a;
    ELSE
      RETURN b;
    END IF;
  END;

  FUNCTION sel_a_b(sel : BOOLEAN; a, b : SEVERITY_LEVEL) RETURN SEVERITY_LEVEL IS
  BEGIN
    IF sel = TRUE THEN
      RETURN a;
    ELSE
      RETURN b;
    END IF;
  END;
  
  -- sel_n : boolean
  FUNCTION sel_n(sel : NATURAL; a, b, c : BOOLEAN) RETURN BOOLEAN IS
    CONSTANT c_arr : t_nat_boolean_arr := (a, b, c);
  BEGIN
    RETURN c_arr(sel);
  END;
  
  FUNCTION sel_n(sel : NATURAL; a, b, c, d : BOOLEAN) RETURN BOOLEAN IS
    CONSTANT c_arr : t_nat_boolean_arr := (a, b, c, d);
  BEGIN
    RETURN c_arr(sel);
  END;
  
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e : BOOLEAN) RETURN BOOLEAN IS
    CONSTANT c_arr : t_nat_boolean_arr := (a, b, c, d, e);
  BEGIN
    RETURN c_arr(sel);
  END;
  
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f : BOOLEAN) RETURN BOOLEAN IS
    CONSTANT c_arr : t_nat_boolean_arr := (a, b, c, d, e, f);
  BEGIN
    RETURN c_arr(sel);
  END;
  
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f, g : BOOLEAN) RETURN BOOLEAN IS
    CONSTANT c_arr : t_nat_boolean_arr := (a, b, c, d, e, f, g);
  BEGIN
    RETURN c_arr(sel);
  END;
  
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f, g, h : BOOLEAN) RETURN BOOLEAN IS
    CONSTANT c_arr : t_nat_boolean_arr := (a, b, c, d, e, f, g, h);
  BEGIN
    RETURN c_arr(sel);
  END;
  
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f, g, h, i : BOOLEAN) RETURN BOOLEAN IS
    CONSTANT c_arr : t_nat_boolean_arr := (a, b, c, d, e, f, g, h, i);
  BEGIN
    RETURN c_arr(sel);
  END;
  
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f, g, h, i, j : BOOLEAN) RETURN BOOLEAN IS
    CONSTANT c_arr : t_nat_boolean_arr := (a, b, c, d, e, f, g, h, i, j);
  BEGIN
    RETURN c_arr(sel);
  END;
  
  -- sel_n : integer
  FUNCTION sel_n(sel : NATURAL; a, b, c : INTEGER) RETURN INTEGER IS
    CONSTANT c_arr : t_nat_integer_arr := (a, b, c);
  BEGIN
    RETURN c_arr(sel);
  END;
  
  FUNCTION sel_n(sel : NATURAL; a, b, c, d : INTEGER) RETURN INTEGER IS
    CONSTANT c_arr : t_nat_integer_arr := (a, b, c, d);
  BEGIN
    RETURN c_arr(sel);
  END;
  
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e : INTEGER) RETURN INTEGER IS
    CONSTANT c_arr : t_nat_integer_arr := (a, b, c, d, e);
  BEGIN
    RETURN c_arr(sel);
  END;
  
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f : INTEGER) RETURN INTEGER IS
    CONSTANT c_arr : t_nat_integer_arr := (a, b, c, d, e, f);
  BEGIN
    RETURN c_arr(sel);
  END;
  
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f, g : INTEGER) RETURN INTEGER IS
    CONSTANT c_arr : t_nat_integer_arr := (a, b, c, d, e, f, g);
  BEGIN
    RETURN c_arr(sel);
  END;
  
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f, g, h : INTEGER) RETURN INTEGER IS
    CONSTANT c_arr : t_nat_integer_arr := (a, b, c, d, e, f, g, h);
  BEGIN
    RETURN c_arr(sel);
  END;
  
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f, g, h, i : INTEGER) RETURN INTEGER IS
    CONSTANT c_arr : t_nat_integer_arr := (a, b, c, d, e, f, g, h, i);
  BEGIN
    RETURN c_arr(sel);
  END;
  
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f, g, h, i, j : INTEGER) RETURN INTEGER IS
    CONSTANT c_arr : t_nat_integer_arr := (a, b, c, d, e, f, g, h, i, j);
  BEGIN
    RETURN c_arr(sel);
  END;
  
  -- sel_n : string
  FUNCTION sel_n(sel : NATURAL; a, b                         : STRING) RETURN STRING IS BEGIN IF sel=0 THEN RETURN            a                         ; ELSE RETURN b; END IF; END;
  FUNCTION sel_n(sel : NATURAL; a, b, c                      : STRING) RETURN STRING IS BEGIN IF sel<2 THEN RETURN sel_n(sel, a, b                     ); ELSE RETURN c; END IF; END;
  FUNCTION sel_n(sel : NATURAL; a, b, c, d                   : STRING) RETURN STRING IS BEGIN IF sel<3 THEN RETURN sel_n(sel, a, b, c                  ); ELSE RETURN d; END IF; END;
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e                : STRING) RETURN STRING IS BEGIN IF sel<4 THEN RETURN sel_n(sel, a, b, c, d               ); ELSE RETURN e; END IF; END;
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f             : STRING) RETURN STRING IS BEGIN IF sel<5 THEN RETURN sel_n(sel, a, b, c, d, e            ); ELSE RETURN f; END IF; END;
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f, g          : STRING) RETURN STRING IS BEGIN IF sel<6 THEN RETURN sel_n(sel, a, b, c, d, e, f         ); ELSE RETURN g; END IF; END;
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f, g, h       : STRING) RETURN STRING IS BEGIN IF sel<7 THEN RETURN sel_n(sel, a, b, c, d, e, f, g      ); ELSE RETURN h; END IF; END;
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f, g, h, i    : STRING) RETURN STRING IS BEGIN IF sel<8 THEN RETURN sel_n(sel, a, b, c, d, e, f, g, h   ); ELSE RETURN i; END IF; END;
  FUNCTION sel_n(sel : NATURAL; a, b, c, d, e, f, g, h, i, j : STRING) RETURN STRING IS BEGIN IF sel<9 THEN RETURN sel_n(sel, a, b, c, d, e, f, g, h, i); ELSE RETURN j; END IF; END;
  
  FUNCTION array_init(init : STD_LOGIC; nof : NATURAL) RETURN STD_LOGIC_VECTOR IS
    VARIABLE v_arr : STD_LOGIC_VECTOR(0 TO nof-1);
  BEGIN
    FOR I IN v_arr'RANGE LOOP
      v_arr(I) := init;
    END LOOP;
    RETURN v_arr;
  END;
  
  FUNCTION array_init(init : BOOLEAN; nof : NATURAL) RETURN t_nat_boolean_arr IS
    VARIABLE v_arr : t_nat_boolean_arr(0 TO nof-1);
  BEGIN
    FOR I IN v_arr'RANGE LOOP
      v_arr(I) := init;
    END LOOP;
    RETURN v_arr;
  END;
  
  FUNCTION array_init(init, nof : NATURAL) RETURN t_natural_arr IS
    VARIABLE v_arr : t_natural_arr(0 TO nof-1);
  BEGIN
    FOR I IN v_arr'RANGE LOOP
      v_arr(I) := init;
    END LOOP;
    RETURN v_arr;
  END;
  
  FUNCTION array_init(init, nof : NATURAL) RETURN t_nat_natural_arr IS
    VARIABLE v_arr : t_nat_natural_arr(0 TO nof-1);
  BEGIN
    FOR I IN v_arr'RANGE LOOP
      v_arr(I) := init;
    END LOOP;
    RETURN v_arr;
  END;
  
  FUNCTION array_init(init, nof, incr : NATURAL) RETURN t_natural_arr IS
    VARIABLE v_arr : t_natural_arr(0 TO nof-1);
    VARIABLE v_i   : NATURAL;
  BEGIN
    v_i := 0;
    FOR I IN v_arr'RANGE LOOP
      v_arr(I) := init + v_i * incr;
      v_i := v_i + 1;
    END LOOP;
    RETURN v_arr;
  END;
  
  FUNCTION array_init(init, nof, incr : NATURAL) RETURN t_nat_natural_arr IS
    VARIABLE v_arr : t_nat_natural_arr(0 TO nof-1);
    VARIABLE v_i   : NATURAL;
  BEGIN
    v_i := 0;
    FOR I IN v_arr'RANGE LOOP
      v_arr(I) := init + v_i * incr;
      v_i := v_i + 1;
    END LOOP;
    RETURN v_arr;
  END;
  
  FUNCTION array_init(init, nof, incr : INTEGER) RETURN t_slv_16_arr IS
    VARIABLE v_arr : t_slv_16_arr(0 TO nof-1);
    VARIABLE v_i   : NATURAL;
  BEGIN
    v_i := 0;
    FOR I IN v_arr'RANGE LOOP
      v_arr(I) := TO_SVEC(init + v_i * incr, 16);
      v_i := v_i + 1;
    END LOOP;
    RETURN v_arr;
  END;
  
  FUNCTION array_init(init, nof, incr : INTEGER) RETURN t_slv_32_arr IS
    VARIABLE v_arr : t_slv_32_arr(0 TO nof-1);
    VARIABLE v_i   : NATURAL;
  BEGIN
    v_i := 0;
    FOR I IN v_arr'RANGE LOOP
      v_arr(I) := TO_SVEC(init + v_i * incr, 32);
      v_i := v_i + 1;
    END LOOP;
    RETURN v_arr;
  END;

  FUNCTION array_init(init, nof, width : NATURAL) RETURN STD_LOGIC_VECTOR IS
    VARIABLE v_arr : STD_LOGIC_VECTOR(nof*width-1 DOWNTO 0);
  BEGIN
    FOR I IN 0 TO nof-1 LOOP
      v_arr(width*(I+1)-1 DOWNTO width*I) := TO_UVEC(init, width);
    END LOOP;
    RETURN v_arr;
  END;

  FUNCTION array_init(init, nof, width, incr : NATURAL) RETURN STD_LOGIC_VECTOR IS
    VARIABLE v_arr : STD_LOGIC_VECTOR(nof*width-1 DOWNTO 0);
    VARIABLE v_i   : NATURAL;
  BEGIN
    v_i := 0;
    FOR I IN 0 TO nof-1 LOOP
      v_arr(width*(I+1)-1 DOWNTO width*I) := TO_UVEC(init + v_i * incr, width);
      v_i := v_i + 1;
    END LOOP;
    RETURN v_arr;
  END;
  
  FUNCTION array_sinit(init :INTEGER; nof, width : NATURAL) RETURN STD_LOGIC_VECTOR IS
    VARIABLE v_arr : STD_LOGIC_VECTOR(nof*width-1 DOWNTO 0);
  BEGIN
    FOR I IN 0 TO nof-1 LOOP
      v_arr(width*(I+1)-1 DOWNTO width*I) := TO_SVEC(init, width);
    END LOOP;
    RETURN v_arr;
  END;

  FUNCTION init_slv_64_matrix(nof_a, nof_b, k : INTEGER) RETURN t_slv_64_matrix IS
    VARIABLE v_mat : t_slv_64_matrix(nof_a-1 DOWNTO 0, nof_b-1 DOWNTO 0);
  BEGIN
    FOR I IN 0 TO nof_a-1 LOOP
      FOR J IN 0 TO nof_b-1 LOOP
        v_mat(I,J) := TO_SVEC(k, 64);
      END LOOP;
    END LOOP;
    RETURN v_mat;
  END;
  
  -- Support concatenation of up to 8 slv into 1 slv
  FUNCTION func_slv_concat(use_a, use_b, use_c, use_d, use_e, use_f, use_g, use_h : BOOLEAN; a, b, c, d, e, f, g, h : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
    CONSTANT c_max_w : NATURAL := a'LENGTH + b'LENGTH + c'LENGTH + d'LENGTH + e'LENGTH + f'LENGTH + g'LENGTH + h'LENGTH;
    VARIABLE v_res   : STD_LOGIC_VECTOR(c_max_w-1 DOWNTO 0) := (OTHERS=>'0');
    VARIABLE v_len   : NATURAL := 0;
  BEGIN
    IF use_a = TRUE THEN v_res(a'LENGTH-1 + v_len DOWNTO v_len) := a; v_len := v_len + a'LENGTH; END IF;
    IF use_b = TRUE THEN v_res(b'LENGTH-1 + v_len DOWNTO v_len) := b; v_len := v_len + b'LENGTH; END IF;
    IF use_c = TRUE THEN v_res(c'LENGTH-1 + v_len DOWNTO v_len) := c; v_len := v_len + c'LENGTH; END IF;
    IF use_d = TRUE THEN v_res(d'LENGTH-1 + v_len DOWNTO v_len) := d; v_len := v_len + d'LENGTH; END IF;
    IF use_e = TRUE THEN v_res(e'LENGTH-1 + v_len DOWNTO v_len) := e; v_len := v_len + e'LENGTH; END IF;
    IF use_f = TRUE THEN v_res(f'LENGTH-1 + v_len DOWNTO v_len) := f; v_len := v_len + f'LENGTH; END IF;
    IF use_g = TRUE THEN v_res(g'LENGTH-1 + v_len DOWNTO v_len) := g; v_len := v_len + g'LENGTH; END IF;
    IF use_h = TRUE THEN v_res(h'LENGTH-1 + v_len DOWNTO v_len) := h; v_len := v_len + h'LENGTH; END IF;
    RETURN v_res(v_len-1 DOWNTO 0);
  END func_slv_concat;
    
  FUNCTION func_slv_concat(use_a, use_b, use_c, use_d, use_e, use_f, use_g : BOOLEAN; a, b, c, d, e, f, g : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_concat(use_a, use_b, use_c, use_d, use_e, use_f, use_g, FALSE, a, b, c, d, e, f, g, "0");
  END func_slv_concat;

  FUNCTION func_slv_concat(use_a, use_b, use_c, use_d, use_e, use_f : BOOLEAN; a, b, c, d, e, f : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_concat(use_a, use_b, use_c, use_d, use_e, use_f, FALSE, FALSE, a, b, c, d, e, f, "0", "0");
  END func_slv_concat;
  
  FUNCTION func_slv_concat(use_a, use_b, use_c, use_d, use_e : BOOLEAN; a, b, c, d, e : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_concat(use_a, use_b, use_c, use_d, use_e, FALSE, FALSE, FALSE, a, b, c, d, e, "0", "0", "0");
  END func_slv_concat;
  
  FUNCTION func_slv_concat(use_a, use_b, use_c, use_d : BOOLEAN; a, b, c, d : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_concat(use_a, use_b, use_c, use_d, FALSE, FALSE, FALSE, FALSE, a, b, c, d, "0", "0", "0", "0");
  END func_slv_concat;
  
  FUNCTION func_slv_concat(use_a, use_b, use_c : BOOLEAN; a, b, c : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_concat(use_a, use_b, use_c, FALSE, FALSE, FALSE, FALSE, FALSE, a, b, c, "0", "0", "0", "0", "0");
  END func_slv_concat;
  
  FUNCTION func_slv_concat(use_a, use_b : BOOLEAN; a, b : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_concat(use_a, use_b, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, a, b, "0", "0", "0", "0", "0", "0");
  END func_slv_concat;
    
  FUNCTION func_slv_concat(a, b, c, d, e, f, g, h : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_concat(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, a, b, c, d, e, f, g, h);
  END func_slv_concat;

  FUNCTION func_slv_concat(a, b, c, d, e, f, g : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_concat(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, a, b, c, d, e, f, g);
  END func_slv_concat;
  
  FUNCTION func_slv_concat(a, b, c, d, e, f : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_concat(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, a, b, c, d, e, f);
  END func_slv_concat;
  
  FUNCTION func_slv_concat(a, b, c, d, e: STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_concat(TRUE, TRUE, TRUE, TRUE, TRUE, a, b, c, d, e);
  END func_slv_concat;
  
  FUNCTION func_slv_concat(a, b, c, d : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_concat(TRUE, TRUE, TRUE, TRUE, a, b, c, d);
  END func_slv_concat;
  
  FUNCTION func_slv_concat(a, b, c : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_concat(TRUE, TRUE, TRUE, a, b, c);
  END func_slv_concat;
  
  FUNCTION func_slv_concat(a, b : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_concat(TRUE, TRUE, a, b);
  END func_slv_concat;
  
  FUNCTION func_slv_concat_w(use_a, use_b, use_c, use_d, use_e, use_f, use_g, use_h : BOOLEAN; a_w, b_w, c_w, d_w, e_w, f_w, g_w, h_w : NATURAL) RETURN NATURAL IS
    VARIABLE v_len : NATURAL := 0;
  BEGIN
    IF use_a = TRUE THEN v_len := v_len + a_w; END IF;
    IF use_b = TRUE THEN v_len := v_len + b_w; END IF;
    IF use_c = TRUE THEN v_len := v_len + c_w; END IF;
    IF use_d = TRUE THEN v_len := v_len + d_w; END IF;
    IF use_e = TRUE THEN v_len := v_len + e_w; END IF;
    IF use_f = TRUE THEN v_len := v_len + f_w; END IF;
    IF use_g = TRUE THEN v_len := v_len + g_w; END IF;
    IF use_h = TRUE THEN v_len := v_len + h_w; END IF;
    RETURN v_len;
  END func_slv_concat_w;
    
  FUNCTION func_slv_concat_w(use_a, use_b, use_c, use_d, use_e, use_f, use_g : BOOLEAN; a_w, b_w, c_w, d_w, e_w, f_w, g_w : NATURAL) RETURN NATURAL IS
  BEGIN
    RETURN func_slv_concat_w(use_a, use_b, use_c, use_d, use_e, use_f, use_g, FALSE, a_w, b_w, c_w, d_w, e_w, f_w, g_w, 0);
  END func_slv_concat_w;

  FUNCTION func_slv_concat_w(use_a, use_b, use_c, use_d, use_e, use_f : BOOLEAN; a_w, b_w, c_w, d_w, e_w, f_w : NATURAL) RETURN NATURAL IS
  BEGIN
    RETURN func_slv_concat_w(use_a, use_b, use_c, use_d, use_e, use_f, FALSE, FALSE, a_w, b_w, c_w, d_w, e_w, f_w, 0, 0);
  END func_slv_concat_w;
  
  FUNCTION func_slv_concat_w(use_a, use_b, use_c, use_d, use_e : BOOLEAN; a_w, b_w, c_w, d_w, e_w : NATURAL) RETURN NATURAL IS
  BEGIN
    RETURN func_slv_concat_w(use_a, use_b, use_c, use_d, use_e, FALSE, FALSE, FALSE, a_w, b_w, c_w, d_w, e_w, 0, 0, 0);
  END func_slv_concat_w;
  
  FUNCTION func_slv_concat_w(use_a, use_b, use_c, use_d : BOOLEAN; a_w, b_w, c_w, d_w : NATURAL) RETURN NATURAL IS
  BEGIN
    RETURN func_slv_concat_w(use_a, use_b, use_c, use_d, FALSE, FALSE, FALSE, FALSE, a_w, b_w, c_w, d_w, 0, 0, 0, 0);
  END func_slv_concat_w;
  
  FUNCTION func_slv_concat_w(use_a, use_b, use_c : BOOLEAN; a_w, b_w, c_w : NATURAL) RETURN NATURAL IS
  BEGIN
    RETURN func_slv_concat_w(use_a, use_b, use_c, FALSE, FALSE, FALSE, FALSE, FALSE, a_w, b_w, c_w, 0, 0, 0, 0, 0);
  END func_slv_concat_w;
  
  FUNCTION func_slv_concat_w(use_a, use_b : BOOLEAN; a_w, b_w : NATURAL) RETURN NATURAL IS
  BEGIN
    RETURN func_slv_concat_w(use_a, use_b, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, a_w, b_w, 0, 0, 0, 0, 0, 0);
  END func_slv_concat_w;

  -- extract slv
  FUNCTION func_slv_extract(use_a, use_b, use_c, use_d, use_e, use_f, use_g, use_h : BOOLEAN; a_w, b_w, c_w, d_w, e_w, f_w, g_w, h_w : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR IS
    VARIABLE v_w  : NATURAL := 0;
    VARIABLE v_lo : NATURAL := 0;
  BEGIN
    -- if the selected slv is not used in vec, then return dummy, else return the selected slv from vec
    CASE sel IS
      WHEN 0 =>
        IF use_a = TRUE THEN v_w := a_w; ELSE RETURN c_slv0(a_w-1 DOWNTO 0); END IF;
      WHEN 1 =>
        IF use_b = TRUE THEN v_w := b_w; ELSE RETURN c_slv0(b_w-1 DOWNTO 0); END IF;
        IF use_a = TRUE THEN v_lo := v_lo + a_w; END IF;
      WHEN 2 =>
        IF use_c = TRUE THEN v_w := c_w; ELSE RETURN c_slv0(c_w-1 DOWNTO 0); END IF;
        IF use_a = TRUE THEN v_lo := v_lo + a_w; END IF;
        IF use_b = TRUE THEN v_lo := v_lo + b_w; END IF;
      WHEN 3 =>
        IF use_d = TRUE THEN v_w := d_w; ELSE RETURN c_slv0(d_w-1 DOWNTO 0); END IF;
        IF use_a = TRUE THEN v_lo := v_lo + a_w; END IF;
        IF use_b = TRUE THEN v_lo := v_lo + b_w; END IF;
        IF use_c = TRUE THEN v_lo := v_lo + c_w; END IF;
      WHEN 4 =>
        IF use_e = TRUE THEN v_w := e_w; ELSE RETURN c_slv0(e_w-1 DOWNTO 0); END IF;
        IF use_a = TRUE THEN v_lo := v_lo + a_w; END IF;
        IF use_b = TRUE THEN v_lo := v_lo + b_w; END IF;
        IF use_c = TRUE THEN v_lo := v_lo + c_w; END IF;
        IF use_d = TRUE THEN v_lo := v_lo + d_w; END IF;
      WHEN 5 =>
        IF use_f = TRUE THEN v_w := f_w; ELSE RETURN c_slv0(f_w-1 DOWNTO 0); END IF;
        IF use_a = TRUE THEN v_lo := v_lo + a_w; END IF;
        IF use_b = TRUE THEN v_lo := v_lo + b_w; END IF;
        IF use_c = TRUE THEN v_lo := v_lo + c_w; END IF;
        IF use_d = TRUE THEN v_lo := v_lo + d_w; END IF;
        IF use_e = TRUE THEN v_lo := v_lo + e_w; END IF;
      WHEN 6 =>
        IF use_g = TRUE THEN v_w := g_w; ELSE RETURN c_slv0(g_w-1 DOWNTO 0); END IF;
        IF use_a = TRUE THEN v_lo := v_lo + a_w; END IF;
        IF use_b = TRUE THEN v_lo := v_lo + b_w; END IF;
        IF use_c = TRUE THEN v_lo := v_lo + c_w; END IF;
        IF use_d = TRUE THEN v_lo := v_lo + d_w; END IF;
        IF use_e = TRUE THEN v_lo := v_lo + e_w; END IF;
        IF use_f = TRUE THEN v_lo := v_lo + f_w; END IF;
      WHEN 7 =>
        IF use_h = TRUE THEN v_w := h_w; ELSE RETURN c_slv0(h_w-1 DOWNTO 0); END IF;
        IF use_a = TRUE THEN v_lo := v_lo + a_w; END IF;
        IF use_b = TRUE THEN v_lo := v_lo + b_w; END IF;
        IF use_c = TRUE THEN v_lo := v_lo + c_w; END IF;
        IF use_d = TRUE THEN v_lo := v_lo + d_w; END IF;
        IF use_e = TRUE THEN v_lo := v_lo + e_w; END IF;
        IF use_f = TRUE THEN v_lo := v_lo + f_w; END IF;
        IF use_g = TRUE THEN v_lo := v_lo + g_w; END IF;
      WHEN OTHERS => REPORT "Unknown common_pkg func_slv_extract argument" SEVERITY FAILURE;
    END CASE;
    RETURN vec(v_w-1 + v_lo DOWNTO v_lo);  -- extracted slv
  END func_slv_extract;
    
  FUNCTION func_slv_extract(use_a, use_b, use_c, use_d, use_e, use_f, use_g : BOOLEAN; a_w, b_w, c_w, d_w, e_w, f_w, g_w : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_extract(use_a, use_b, use_c, use_d, use_e, use_f, use_g, FALSE, a_w, b_w, c_w, d_w, e_w, f_w, g_w, 0, vec, sel);
  END func_slv_extract;

  FUNCTION func_slv_extract(use_a, use_b, use_c, use_d, use_e, use_f : BOOLEAN; a_w, b_w, c_w, d_w, e_w, f_w : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_extract(use_a, use_b, use_c, use_d, use_e, use_f, FALSE, FALSE, a_w, b_w, c_w, d_w, e_w, f_w, 0, 0, vec, sel);
  END func_slv_extract;
  
  FUNCTION func_slv_extract(use_a, use_b, use_c, use_d, use_e : BOOLEAN; a_w, b_w, c_w, d_w, e_w : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_extract(use_a, use_b, use_c, use_d, use_e, FALSE, FALSE, FALSE, a_w, b_w, c_w, d_w, e_w, 0, 0, 0, vec, sel);
  END func_slv_extract;
  
  FUNCTION func_slv_extract(use_a, use_b, use_c, use_d : BOOLEAN; a_w, b_w, c_w, d_w : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_extract(use_a, use_b, use_c, use_d, FALSE, FALSE, FALSE, FALSE, a_w, b_w, c_w, d_w, 0, 0, 0, 0, vec, sel);
  END func_slv_extract;
  
  FUNCTION func_slv_extract(use_a, use_b, use_c : BOOLEAN; a_w, b_w, c_w : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_extract(use_a, use_b, use_c, FALSE, FALSE, FALSE, FALSE, FALSE, a_w, b_w, c_w, 0, 0, 0, 0, 0, vec, sel);
  END func_slv_extract;
  
  FUNCTION func_slv_extract(use_a, use_b : BOOLEAN; a_w, b_w : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_extract(use_a, use_b, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, a_w, b_w, 0, 0, 0, 0, 0, 0, vec, sel);
  END func_slv_extract;
    
  FUNCTION func_slv_extract(a_w, b_w, c_w, d_w, e_w, f_w, g_w, h_w : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_extract(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, a_w, b_w, c_w, d_w, e_w, f_w, g_w, h_w, vec, sel);
  END func_slv_extract;

  FUNCTION func_slv_extract(a_w, b_w, c_w, d_w, e_w, f_w, g_w : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_extract(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, a_w, b_w, c_w, d_w, e_w, f_w, g_w, vec, sel);
  END func_slv_extract;

  FUNCTION func_slv_extract(a_w, b_w, c_w, d_w, e_w, f_w : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_extract(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, a_w, b_w, c_w, d_w, e_w, f_w, vec, sel);
  END func_slv_extract;

  FUNCTION func_slv_extract(a_w, b_w, c_w, d_w, e_w : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_extract(TRUE, TRUE, TRUE, TRUE, TRUE, a_w, b_w, c_w, d_w, e_w, vec, sel);
  END func_slv_extract;

  FUNCTION func_slv_extract(a_w, b_w, c_w, d_w : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_extract(TRUE, TRUE, TRUE, TRUE, a_w, b_w, c_w, d_w, vec, sel);
  END func_slv_extract;

  FUNCTION func_slv_extract(a_w, b_w, c_w : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_extract(TRUE, TRUE, TRUE, a_w, b_w, c_w, vec, sel);
  END func_slv_extract;

  FUNCTION func_slv_extract(a_w, b_w : NATURAL; vec : STD_LOGIC_VECTOR; sel : NATURAL) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN func_slv_extract(TRUE, TRUE, a_w, b_w, vec, sel);
  END func_slv_extract;

  FUNCTION TO_UINT(vec : STD_LOGIC_VECTOR) RETURN NATURAL IS
  BEGIN
    RETURN TO_INTEGER(UNSIGNED(vec));
  END;
  
  FUNCTION TO_SINT(vec : STD_LOGIC_VECTOR) RETURN INTEGER IS
  BEGIN
    RETURN TO_INTEGER(SIGNED(vec));
  END;
  
  FUNCTION TO_UVEC(dec, w : NATURAL) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN STD_LOGIC_VECTOR(TO_UNSIGNED(dec, w));
  END;

  FUNCTION TO_SVEC(dec, w : INTEGER) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN STD_LOGIC_VECTOR(TO_SIGNED(dec, w));
  END;

  FUNCTION TO_SVEC_32(dec : INTEGER) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN TO_SVEC(dec, 32);
  END;

  FUNCTION TO_UINT(udec : REAL; w, resolution_w : INTEGER) RETURN NATURAL IS
    CONSTANT c_resolution : REAL := 1.0 / 2.0**REAL(resolution_w);
    CONSTANT c_ureal      : REAL := ROUND(udec / c_resolution);  -- rounds away from zero
  BEGIN
    IF udec >= 0.0 THEN
      RETURN TO_SINT(udec, w + 1, resolution_w);  -- w + 1, because unsigned has no sign bit
    ELSE
      REPORT "Negative REAL clipped to INTEGER 0 : " & REAL'IMAGE(c_ureal) & " --> 0" SEVERITY WARNING;
      RETURN 0;
    END IF;
  END;

  FUNCTION TO_SINT(sdec : REAL; w, resolution_w : INTEGER) RETURN INTEGER IS
    CONSTANT c_max        : REAL :=  2.0**REAL(w - 1) - 1.0;
    CONSTANT c_min        : REAL := -2.0**REAL(w - 1);
    CONSTANT c_resolution : REAL := 1.0 / 2.0**REAL(resolution_w);
    CONSTANT c_sreal      : REAL := ROUND(sdec / c_resolution);  -- rounds away from zero
    CONSTANT c_sint       : INTEGER := INTEGER(c_sreal);
  BEGIN
    IF c_sreal >= c_min THEN
      IF c_sreal <= c_max THEN
        RETURN c_sint;
      ELSE
        REPORT "REAL clipped to INTEGER max : " & REAL'IMAGE(c_sreal) & " --> " & INTEGER'IMAGE(INTEGER(c_max)) SEVERITY WARNING;
        RETURN INTEGER(c_max);  -- clip to max
      END IF;
    ELSE
      REPORT "REAL clipped to INTEGER min : " & REAL'IMAGE(c_sreal) & " --> " & INTEGER'IMAGE(INTEGER(c_min)) SEVERITY WARNING;
      RETURN INTEGER(c_min);  -- clip to min
    END IF;
  END;

  FUNCTION TO_UVEC(udec : REAL; w, resolution_w : INTEGER) RETURN STD_LOGIC_VECTOR IS
    -- Determine range that fits w bits
    CONSTANT c_uvec_max   : STD_LOGIC_VECTOR(w-1 DOWNTO 0) := (OTHERS => '1');
    CONSTANT c_max        : REAL :=  2.0**REAL(w) - 1.0;
    CONSTANT c_resolution : REAL := 1.0 / 2.0**REAL(resolution_w);
    VARIABLE v_ureal      : REAL := ROUND(udec / c_resolution);  -- rounds away from zero
    -- Convert to uvec
    VARIABLE v_floor      : REAL := 0.0;
    VARIABLE v_uvec       : STD_LOGIC_VECTOR(w-1 DOWNTO 0) := (OTHERS => '0');
  BEGIN
    IF udec >= 0.0 THEN
      IF v_ureal <= c_max THEN
        -- Avoid using INTEGER, which is limited to 32 bit, by determining per
        -- bit whether the REAL value contributes to it.
        -- If the REAL, after fixed point scaling by c_resolution, fits in w
        -- bits, then the remainer v_floor after w times dividing by 2.0 will
        -- be 0.0, because 2**w * 0.5 = 2**(w-1). For example u(4,0) = 7.0
        -- yields:
        --                7.0 / 2 = 3.5 --> [0] = '1'
        --   floor(3.5) = 3.0 / 2 = 1.5 --> [1] = '1'
        --   floor(1.5) = 1.0 / 2 = 0.5 --> [2] = '1'
        --   floor(0.5) = 0.0 / 2 = 0.0 --> [3] = '0'
        --      so u(4,0) = 7.0 yields remainder 0.0 and SLV[3:0] = "0111"
        -- similar u(4,0) = 8.0 yields remainder 0.5 and SLV[3:0] = "1000"
        --     and u(4,0) > 8.0 yields remainder >= 0.5
        FOR I IN 0 TO w-1 LOOP
          v_ureal := v_ureal / 2.0;
          v_floor := floor(v_ureal);
          IF v_ureal > v_floor THEN
            v_uvec(I) := '1';
          END IF;
          v_ureal := v_floor;
        END LOOP;
        ASSERT v_floor = 0.0 REPORT "Unexpected TO_UVEC REAL remainder : " & REAL'IMAGE(v_floor) & " /= 0.0" SEVERITY FAILURE;
        RETURN v_uvec;
      ELSE
        REPORT "Positive REAL clipped to UVEC max : " & REAL'IMAGE(v_ureal) & " --> " & REAL'IMAGE(c_max) SEVERITY WARNING;
        RETURN c_uvec_max;
      END IF;
    ELSE
      REPORT "Negative REAL clipped to UVEC 0 : " & REAL'IMAGE(v_ureal) & " --> 0" SEVERITY WARNING;
      RETURN TO_UVEC(0, w);
    END IF;
  END;

  FUNCTION TO_SVEC(sdec : REAL; w, resolution_w : INTEGER) RETURN STD_LOGIC_VECTOR IS
    -- Determine range that fits w bits
    CONSTANT c_svec_max   : STD_LOGIC_VECTOR(w-1 DOWNTO 0) := '0' & (w-2 DOWNTO 0 => '1');
    CONSTANT c_svec_min   : STD_LOGIC_VECTOR(w-1 DOWNTO 0) := '1' & (w-2 DOWNTO 0 => '0');
    CONSTANT c_max        : REAL :=  2.0**REAL(w - 1) - 1.0;
    CONSTANT c_min        : REAL := -2.0**REAL(w - 1);
    CONSTANT c_resolution : REAL := 1.0 / 2.0**REAL(resolution_w);
    CONSTANT c_sreal      : REAL := ROUND(sdec / c_resolution);  -- rounds away from zero
     -- Convert to positive using TO_UVEC, so if sdec is negative, then
     -- negate sdec to have positive c_udec.
    CONSTANT c_pos   : BOOLEAN := sdec >= 0.0;
    CONSTANT c_udec  : REAL := sel_a_b(c_pos, sdec, -sdec);
    -- Determine SLV value for positive REAL, use w+1 to fit negate of most negative value
    CONSTANT c_uvec  : STD_LOGIC_VECTOR(w DOWNTO 0) := TO_UVEC(c_udec, w + 1, resolution_w);
    -- Back to signed, so if sdec is negative, then negate c_uvec to have positive c_svec
    CONSTANT c_svec  : STD_LOGIC_VECTOR(w DOWNTO 0) := sel_a_b(c_pos, c_uvec, NEGATE_SVEC(c_uvec));
  BEGIN
    IF c_sreal >= c_min THEN
      IF c_sreal <= c_max THEN
        RETURN c_svec(w-1 DOWNTO 0);
      ELSE
        REPORT "REAL clipped to SVEC max : " & REAL'IMAGE(c_sreal) & " --> " & REAL'IMAGE(c_max) SEVERITY WARNING;
        RETURN c_svec_max;  -- clip to max
      END IF;
    ELSE
      REPORT "REAL clipped to SVEC min : " & REAL'IMAGE(c_sreal) & " --> " & REAL'IMAGE(c_min) SEVERITY WARNING;
      RETURN c_svec_min;  -- clip to min
    END IF;
  END;

  FUNCTION TO_UREAL(uvec : STD_LOGIC_VECTOR) RETURN REAL IS
    CONSTANT c_len  : NATURAL := uvec'LENGTH;
    CONSTANT c_uvec : STD_LOGIC_VECTOR(c_len-1 DOWNTO 0) := uvec;
    VARIABLE v_real : REAL := 0.0;
  BEGIN
    -- Avoid using INTEGER, which is limited to 32 bit, by determining per bit whether it contributes to the REAL value
    FOR I IN 0 TO c_len-1 LOOP
      IF c_uvec(I)='1' THEN
        v_real := v_real + 2.0**REAL(I);
      END IF;
    END LOOP;
    RETURN v_real;
  END;
  
  FUNCTION TO_SREAL(svec : STD_LOGIC_VECTOR) RETURN REAL IS
    -- Increase vector length by +1 so the c_uvec can also fit abs() of most negative is -1 * -2**(c_len-1)
    CONSTANT c_len  : NATURAL := svec'LENGTH + 1;
    CONSTANT c_svec : STD_LOGIC_VECTOR(c_len-1 DOWNTO 0) := RESIZE_SVEC(svec, c_len);
    -- If c_svec is negative, then negate c_svec to have positive c_uvec.
    CONSTANT c_pos  : BOOLEAN := SIGNED(svec) >= 0;
    CONSTANT c_uvec : STD_LOGIC_VECTOR(c_len-1 DOWNTO 0) := sel_a_b(c_pos, c_svec, NEGATE_SVEC(c_svec));
    -- Determine REAL value for positive
    CONSTANT c_real : REAL := TO_UREAL(c_uvec);
  BEGIN
    -- Update the sign
    RETURN sel_a_b(c_pos, c_real, -c_real);
  END;

  -- Fixed point format
  -- . https://support.astron.nl/confluence/display/L2M/L3+SDP+Decision%3A+Definition+of+fixed+point+numbers

  FUNCTION TO_UREAL(uvec : STD_LOGIC_VECTOR; resolution_w : INTEGER) RETURN REAL IS
  BEGIN
    -- First convert as unsigned integer, then scale to real. See TO_SREAL()
    -- for interpretation of resolution_w
    RETURN TO_UREAL(uvec) / 2.0**REAL(resolution_w);
  END;
  
  FUNCTION TO_SREAL(svec : STD_LOGIC_VECTOR; resolution_w : INTEGER) RETURN REAL IS
  BEGIN
    -- First convert as unsigned integer, then scale to real
    -- . The resolution_w is the number of bits that LSbit 0 in svec(HIGH-1 DOWNTO 0) is after
    --   (when resolution_w > 0), or before (when resolution_w < 0) the fixed point.
    -- . The real value is then scaled by scaling the integer value by 1.0 / 2**(resolution_w):
    --   . resolution_w = 0 : scale by 2**0 = 1, so no scaling and the value is treated as an integer
    --   . resolution_w < 0 : scale up
    --   . resolution_w > 0 : scale down
    RETURN TO_SREAL(svec) / 2.0**REAL(resolution_w);
  END;
    
  
  FUNCTION RESIZE_NUM(u : UNSIGNED; w : NATURAL) RETURN UNSIGNED IS
  BEGIN
    -- left extend with '0' or remove MSbits and keep LS part (= u[w-1:0])
    RETURN RESIZE(u, w);   -- same as RESIZE for UNSIGNED
  END;
  
  FUNCTION RESIZE_NUM(s : SIGNED; w : NATURAL) RETURN SIGNED IS
  BEGIN
    -- extend sign bit or keep LS part
    IF w>s'LENGTH THEN
      RETURN RESIZE(s, w);                    -- extend sign bit
    ELSE
      -- RESIZE() wraps between -, 0 for negative and 0, + for positive, so it keeps the sign and w-1 LSbits
      -- RESIZE_NUM() removes MSbits, so it wraps from + to - and from - to +, and it keeps the w LSbits

      -- remove MSbits and keep LS part (= s[w-1:0])
      -- use RESIZE(UNSIGNED()) rather than s[w-1:0] to be independent of RANGE of s
      RETURN SIGNED(RESIZE(UNSIGNED(s), w));
    END IF;
  END;
  
  FUNCTION RESIZE_UVEC(sl : STD_LOGIC; w : NATURAL) RETURN STD_LOGIC_VECTOR IS
    VARIABLE v_slv0 : STD_LOGIC_VECTOR(w-1 DOWNTO 1) := (OTHERS=>'0');
  BEGIN
    RETURN v_slv0 & sl;
  END;
  
  FUNCTION RESIZE_UVEC(vec : STD_LOGIC_VECTOR; w : NATURAL) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN STD_LOGIC_VECTOR(RESIZE_NUM(UNSIGNED(vec), w));
  END;

  FUNCTION RESIZE_SVEC(vec : STD_LOGIC_VECTOR; w : NATURAL) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN STD_LOGIC_VECTOR(RESIZE_NUM(SIGNED(vec), w));
  END;
  
  FUNCTION RESIZE_UINT(u : INTEGER; w : NATURAL) RETURN INTEGER IS
    VARIABLE v : STD_LOGIC_VECTOR(c_word_w-1 DOWNTO 0);
  BEGIN
    v := TO_UVEC(u, c_word_w);
    RETURN TO_UINT(v(w-1 DOWNTO 0));
  END;
  
  FUNCTION RESIZE_SINT(s : INTEGER; w : NATURAL) RETURN INTEGER IS
    VARIABLE v : STD_LOGIC_VECTOR(c_word_w-1 DOWNTO 0);
  BEGIN
    v := TO_SVEC(s, c_word_w);
    RETURN TO_SINT(v(w-1 DOWNTO 0));
  END;
  
  FUNCTION RESIZE_UVEC_32(vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN RESIZE_UVEC(vec, 32);
  END;
  
  FUNCTION RESIZE_SVEC_32(vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN RESIZE_SVEC(vec, 32);
  END;
  
  -- Negate vec, assume value range fits -+c_max, so no logic needed to check for c_min
  FUNCTION NEGATE_SVEC(vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    -- use NUMERIC_STD to avoid range limitation of 32b INTEGER
    -- default approach
    RETURN STD_LOGIC_VECTOR(-SIGNED(vec));  -- negate by multiplying by -1
    -- alternative equivalent approach
    -- RETURN INCR_UVEC(NOT vec, 1);  -- negate by using two complement negate
  END;

  -- Negate vec, but avoid overflow by forcing -min to +max. Use w <= vec'LENGTH.
  FUNCTION NEGATE_SVEC(vec : STD_LOGIC_VECTOR; w : INTEGER) RETURN STD_LOGIC_VECTOR IS
    CONSTANT c_max   : INTEGER :=  2**(w-1)-1;
    CONSTANT c_min   : INTEGER := -2**(w-1);
    CONSTANT c_vec_w : NATURAL := vec'LENGTH;
    VARIABLE v_vec   : STD_LOGIC_VECTOR(c_vec_w-1 DOWNTO 0) := vec;  -- independent of vec'RANGE
    VARIABLE v_val   : STD_LOGIC_VECTOR(w-1 DOWNTO 0);
  BEGIN
    v_val := v_vec(w-1 DOWNTO 0);  -- operate on width w and resize to c_vec_w for return
    -- use NUMERIC_STD to avoid range limitation of 32b INTEGER
    IF SIGNED(v_val) = c_min THEN
      RETURN STD_LOGIC_VECTOR(TO_SIGNED(c_max, c_vec_w));  -- most negative becomes most positive
    ELSE
      RETURN STD_LOGIC_VECTOR(RESIZE_NUM(-SIGNED(v_val), c_vec_w));  -- negate by multiplying by -1
    END IF;
  END;

  FUNCTION INCR_UVEC(vec : STD_LOGIC_VECTOR; dec : INTEGER) RETURN STD_LOGIC_VECTOR IS
    VARIABLE v_dec : INTEGER;
  BEGIN
    IF dec < 0 THEN
      v_dec := -dec;
      RETURN STD_LOGIC_VECTOR(UNSIGNED(vec) - v_dec);  -- uses function "-" (L : UNSIGNED, R : NATURAL), there is no function + with R : INTEGER argument
    ELSE
      v_dec := dec;
      RETURN STD_LOGIC_VECTOR(UNSIGNED(vec) + v_dec);  -- uses function "+" (L : UNSIGNED, R : NATURAL)
    END IF;
  END;

  FUNCTION INCR_UVEC(vec : STD_LOGIC_VECTOR; dec : UNSIGNED) RETURN STD_LOGIC_VECTOR IS   
  BEGIN
    RETURN STD_LOGIC_VECTOR(UNSIGNED(vec) + dec);
  END;
  
  FUNCTION INCR_SVEC(vec : STD_LOGIC_VECTOR; dec : INTEGER) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN STD_LOGIC_VECTOR(SIGNED(vec) + dec);  -- uses function "+" (L : SIGNED, R : INTEGER)
  END;

  FUNCTION INCR_SVEC(vec : STD_LOGIC_VECTOR; dec : SIGNED) RETURN STD_LOGIC_VECTOR IS   
  BEGIN
    RETURN STD_LOGIC_VECTOR(SIGNED(vec) + dec);
  END;
  
  FUNCTION ADD_SVEC(l_vec : STD_LOGIC_VECTOR; r_vec : STD_LOGIC_VECTOR; res_w : NATURAL) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN STD_LOGIC_VECTOR(RESIZE_NUM(SIGNED(l_vec), res_w) + SIGNED(r_vec));
  END;
  
  FUNCTION SUB_SVEC(l_vec : STD_LOGIC_VECTOR; r_vec : STD_LOGIC_VECTOR; res_w : NATURAL) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN STD_LOGIC_VECTOR(RESIZE_NUM(SIGNED(l_vec), res_w) - SIGNED(r_vec));
  END;
  
  FUNCTION ADD_UVEC(l_vec : STD_LOGIC_VECTOR; r_vec : STD_LOGIC_VECTOR; res_w : NATURAL) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN STD_LOGIC_VECTOR(RESIZE_NUM(UNSIGNED(l_vec), res_w) + UNSIGNED(r_vec));
  END;
  
  FUNCTION SUB_UVEC(l_vec : STD_LOGIC_VECTOR; r_vec : STD_LOGIC_VECTOR; res_w : NATURAL) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN STD_LOGIC_VECTOR(RESIZE_NUM(UNSIGNED(l_vec), res_w) - UNSIGNED(r_vec));
  END;
  
  
  FUNCTION ADD_SVEC(l_vec : STD_LOGIC_VECTOR; r_vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN ADD_SVEC(l_vec, r_vec, l_vec'LENGTH);
  END;
  
  FUNCTION SUB_SVEC(l_vec : STD_LOGIC_VECTOR; r_vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN SUB_SVEC(l_vec, r_vec, l_vec'LENGTH);
  END;
  
  FUNCTION ADD_UVEC(l_vec : STD_LOGIC_VECTOR; r_vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN ADD_UVEC(l_vec, r_vec, l_vec'LENGTH);
  END;
  
  FUNCTION SUB_UVEC(l_vec : STD_LOGIC_VECTOR; r_vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN SUB_UVEC(l_vec, r_vec, l_vec'LENGTH);
  END;

  FUNCTION MULT_SVEC(l_vec : STD_LOGIC_VECTOR; r_vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
    CONSTANT c_product_w : NATURAL := l_vec'LENGTH + r_vec'LENGTH;
    VARIABLE v_product : STD_LOGIC_VECTOR(c_product_w-1 DOWNTO 0);
  BEGIN
    v_product := STD_LOGIC_VECTOR(SIGNED(l_vec) * SIGNED(r_vec));
    RETURN v_product;
  END;

  FUNCTION MULT_UVEC(l_vec : STD_LOGIC_VECTOR; r_vec : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
    CONSTANT c_product_w : NATURAL := l_vec'LENGTH + r_vec'LENGTH;
    VARIABLE v_product : STD_LOGIC_VECTOR(c_product_w-1 DOWNTO 0);
  BEGIN
    v_product := STD_LOGIC_VECTOR(UNSIGNED(l_vec) * UNSIGNED(r_vec));
    RETURN v_product;
  END;
  
  FUNCTION COMPLEX_MULT_REAL(a_re, a_im, b_re, b_im : INTEGER) RETURN INTEGER IS   
  BEGIN
    RETURN (a_re*b_re - a_im*b_im); 
  END;
  
  FUNCTION COMPLEX_MULT_IMAG(a_re, a_im, b_re, b_im : INTEGER) RETURN INTEGER IS
  BEGIN
    RETURN (a_im*b_re + a_re*b_im);
  END;

  
  FUNCTION COMPLEX_RADIUS(re, im : REAL) RETURN REAL IS
  BEGIN
    -- Must use ABS() with ** of real, because (negative)**2.0 yields error and value 0.0.
    -- Must must use brackets (ABS()) to avoid compile error.
    -- Alternative equivalent code would be: SQRT(re * re + im * im).
    RETURN SQRT((ABS(re))**2.0 + (ABS(im))**2.0);
  END;

  FUNCTION COMPLEX_RADIUS(re, im : INTEGER) RETURN REAL IS
  BEGIN
    RETURN COMPLEX_RADIUS(REAL(re), REAL(im));
  END;

  FUNCTION COMPLEX_PHASE(re, im : REAL; radians : BOOLEAN) RETURN REAL IS
  BEGIN
    IF radians = TRUE THEN
      RETURN ATAN2(Y => im, X => re);
    ELSE
      RETURN ATAN2(Y => im, X => re) * 360.0 / MATH_2_PI;
    END IF;
  END;

  FUNCTION COMPLEX_PHASE(re, im : INTEGER; radians : BOOLEAN) RETURN REAL IS
  BEGIN
    RETURN COMPLEX_PHASE(REAL(re), REAL(im), radians);
  END;

  FUNCTION COMPLEX_PHASE(re, im : REAL) RETURN REAL IS
  BEGIN
    RETURN COMPLEX_PHASE(re, im, FALSE);
  END;

  FUNCTION COMPLEX_PHASE(re, im : INTEGER) RETURN REAL IS
  BEGIN
    RETURN COMPLEX_PHASE(REAL(re), REAL(im), FALSE);
  END;

  FUNCTION COMPLEX_RE(ampl, phase : REAL; radians : BOOLEAN) RETURN REAL IS
  BEGIN
    IF radians = TRUE THEN
      RETURN ampl * COS(phase);
    ELSE
      RETURN ampl * COS(phase * MATH_2_PI / 360.0);
    END IF;
  END;

  FUNCTION COMPLEX_RE(ampl, phase : INTEGER; radians : BOOLEAN) RETURN REAL IS
  BEGIN
    RETURN COMPLEX_RE(REAL(ampl), REAL(phase), radians);
  END;

  FUNCTION COMPLEX_RE(ampl, phase : REAL) RETURN REAL IS
  BEGIN
    RETURN COMPLEX_RE(ampl, phase, FALSE);
  END;

  FUNCTION COMPLEX_RE(ampl, phase : INTEGER) RETURN REAL IS
  BEGIN
    RETURN COMPLEX_RE(REAL(ampl), REAL(phase), FALSE);
  END;

  FUNCTION COMPLEX_IM(ampl, phase : REAL; radians : BOOLEAN) RETURN REAL IS
  BEGIN
    IF radians = TRUE THEN
      RETURN ampl * SIN(phase);
    ELSE
      RETURN ampl * SIN(phase * MATH_2_PI / 360.0);
    END IF;
  END;

  FUNCTION COMPLEX_IM(ampl, phase : INTEGER; radians : BOOLEAN) RETURN REAL IS
  BEGIN
    RETURN COMPLEX_IM(REAL(ampl), REAL(phase), radians);
  END;

  FUNCTION COMPLEX_IM(ampl, phase : REAL) RETURN REAL IS
  BEGIN
    RETURN COMPLEX_IM(ampl, phase, FALSE);
  END;

  FUNCTION COMPLEX_IM(ampl, phase : INTEGER) RETURN REAL IS
  BEGIN
    RETURN COMPLEX_IM(REAL(ampl), REAL(phase), FALSE);
  END;


  FUNCTION SHIFT_UVEC(vec : STD_LOGIC_VECTOR; shift : INTEGER) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    IF shift < 0 THEN
      RETURN STD_LOGIC_VECTOR(SHIFT_LEFT(UNSIGNED(vec), -shift));  -- fill zeros from right
    ELSE
      RETURN STD_LOGIC_VECTOR(SHIFT_RIGHT(UNSIGNED(vec), shift));  -- fill zeros from left
    END IF;
  END;
  
  FUNCTION SHIFT_SVEC(vec : STD_LOGIC_VECTOR; shift : INTEGER) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    IF shift < 0 THEN
      RETURN STD_LOGIC_VECTOR(SHIFT_LEFT(SIGNED(vec), -shift));  -- same as SHIFT_LEFT for UNSIGNED
    ELSE
      RETURN STD_LOGIC_VECTOR(SHIFT_RIGHT(SIGNED(vec), shift));  -- extend sign
    END IF;
  END;

  FUNCTION ROTATE_UVEC(vec : STD_LOGIC_VECTOR; shift : INTEGER) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    IF shift < 0 THEN
      RETURN STD_LOGIC_VECTOR(ROTATE_LEFT(UNSIGNED(vec), -shift));  -- /<-- vec <--\
                                                                    -- \---------->/
    ELSE
      RETURN STD_LOGIC_VECTOR(ROTATE_RIGHT(UNSIGNED(vec), shift));  -- /--> vec -->\
                                                                    -- \<----------/
    END IF;
  END;

  --
  -- offset_binary() : maps offset binary to or from two-complement binary.
  --
  --   National ADC08DC1020     offset binary     two-complement binary
  --   + full scale =  127.5 :  11111111 = 255     127 = 01111111
  --     ...                                  
  --   +            =   +0.5 :  10000000 = 128       0 = 00000000
  --   0
  --   -            =   -0.5 :  01111111 = 127      -1 = 11111111
  --     ...                                  
  --   - full scale = -127.5 :  00000000 =   0    -128 = 10000000
  --
  -- To map between the offset binary and two complement binary involves
  -- adding 128 to the binary value or equivalently inverting the sign bit.
  -- The offset_binary() mapping can be done and undone both ways.
  -- The offset_binary() mapping to two-complement binary yields a DC offset
  -- of -0.5 Lsb.
  FUNCTION offset_binary(a : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
    VARIABLE v_res : STD_LOGIC_VECTOR(a'LENGTH-1 DOWNTO 0) := a;
  BEGIN
   v_res(v_res'HIGH) := NOT v_res(v_res'HIGH);  -- invert MSbit to get to from offset binary to two's complement, or vice versa
   RETURN v_res;
  END;
  
  FUNCTION truncate(vec : STD_LOGIC_VECTOR; n : NATURAL) RETURN STD_LOGIC_VECTOR IS
    CONSTANT c_vec_w   : NATURAL := vec'LENGTH;
    CONSTANT c_trunc_w : NATURAL := c_vec_w-n;
    VARIABLE v_vec     : STD_LOGIC_VECTOR(c_vec_w-1 DOWNTO 0) := vec;
    VARIABLE v_res     : STD_LOGIC_VECTOR(c_trunc_w-1 DOWNTO 0);
  BEGIN
   v_res := v_vec(c_vec_w-1 DOWNTO n);  -- keep MS part
   RETURN v_res;
  END;

  FUNCTION truncate_and_resize_uvec(vec : STD_LOGIC_VECTOR; n, w : NATURAL) RETURN STD_LOGIC_VECTOR IS
    CONSTANT c_vec_w   : NATURAL := vec'LENGTH;
    CONSTANT c_trunc_w : NATURAL := c_vec_w-n;
    VARIABLE v_trunc   : STD_LOGIC_VECTOR(c_trunc_w-1 DOWNTO 0);
    VARIABLE v_res     : STD_LOGIC_VECTOR(w-1 DOWNTO 0);
  BEGIN
    v_trunc := truncate(vec, n);       -- first keep MS part
    v_res := RESIZE_UVEC(v_trunc, w);  -- then keep LS part or left extend with '0'
    RETURN v_res;
  END;
  
  FUNCTION truncate_and_resize_svec(vec : STD_LOGIC_VECTOR; n, w : NATURAL) RETURN STD_LOGIC_VECTOR IS
    CONSTANT c_vec_w   : NATURAL := vec'LENGTH;
    CONSTANT c_trunc_w : NATURAL := c_vec_w-n;
    VARIABLE v_trunc   : STD_LOGIC_VECTOR(c_trunc_w-1 DOWNTO 0);
    VARIABLE v_res     : STD_LOGIC_VECTOR(w-1 DOWNTO 0);
  BEGIN
    v_trunc := truncate(vec, n);       -- first keep MS part
    v_res := RESIZE_SVEC(v_trunc, w);  -- then keep sign bit and LS part or left extend sign bit
    RETURN v_res;
  END;
  
  FUNCTION scale(vec : STD_LOGIC_VECTOR; n: NATURAL) RETURN STD_LOGIC_VECTOR IS
    CONSTANT c_vec_w   : NATURAL := vec'LENGTH;
    CONSTANT c_scale_w : NATURAL := c_vec_w+n;
    VARIABLE v_res     : STD_LOGIC_VECTOR(c_scale_w-1 DOWNTO 0) := (OTHERS=>'0');
  BEGIN
    v_res(c_scale_w-1 DOWNTO n) := vec;  -- scale by adding n zero bits at the right
    RETURN v_res;
  END;
  
  FUNCTION scale_and_resize_uvec(vec : STD_LOGIC_VECTOR; n, w : NATURAL) RETURN STD_LOGIC_VECTOR IS
    CONSTANT c_vec_w   : NATURAL := vec'LENGTH;
    CONSTANT c_scale_w : NATURAL := c_vec_w+n;
    VARIABLE v_scale   : STD_LOGIC_VECTOR(c_scale_w-1 DOWNTO 0) := (OTHERS=>'0');
    VARIABLE v_res     : STD_LOGIC_VECTOR(w-1 DOWNTO 0);
  BEGIN
    v_scale(c_scale_w-1 DOWNTO n) := vec;  -- first scale by adding n zero bits at the right
    v_res := RESIZE_UVEC(v_scale, w);      -- then keep LS part or left extend with '0'
    RETURN v_res;
  END;
  
  FUNCTION scale_and_resize_svec(vec : STD_LOGIC_VECTOR; n, w : NATURAL) RETURN STD_LOGIC_VECTOR IS
    CONSTANT c_vec_w   : NATURAL := vec'LENGTH;
    CONSTANT c_scale_w : NATURAL := c_vec_w+n;
    VARIABLE v_scale   : STD_LOGIC_VECTOR(c_scale_w-1 DOWNTO 0) := (OTHERS=>'0');
    VARIABLE v_res     : STD_LOGIC_VECTOR(w-1 DOWNTO 0);
  BEGIN
    v_scale(c_scale_w-1 DOWNTO n) := vec;  -- first scale by adding n zero bits at the right
    v_res := RESIZE_SVEC(v_scale, w);      -- then keep LS part or left extend sign bit
    RETURN v_res;
  END;
  
  FUNCTION truncate_or_resize_uvec(vec : STD_LOGIC_VECTOR; b : BOOLEAN; w : NATURAL) RETURN STD_LOGIC_VECTOR IS
    CONSTANT c_vec_w : NATURAL := vec'LENGTH;
    VARIABLE c_n     : INTEGER := c_vec_w-w;
    VARIABLE v_res   : STD_LOGIC_VECTOR(w-1 DOWNTO 0);
  BEGIN
    IF b=TRUE AND c_n>0 THEN
      v_res := truncate_and_resize_uvec(vec, c_n, w);
    ELSE
      v_res := RESIZE_UVEC(vec, w);
    END IF;
    RETURN v_res;
  END;
  
  FUNCTION truncate_or_resize_svec(vec : STD_LOGIC_VECTOR; b : BOOLEAN; w : NATURAL) RETURN STD_LOGIC_VECTOR IS
    CONSTANT c_vec_w : NATURAL := vec'LENGTH;
    VARIABLE c_n     : INTEGER := c_vec_w-w;
    VARIABLE v_res   : STD_LOGIC_VECTOR(w-1 DOWNTO 0);
  BEGIN
    IF b=TRUE AND c_n>0 THEN
      v_res := truncate_and_resize_svec(vec, c_n, w);
    ELSE
      v_res := RESIZE_SVEC(vec, w);
    END IF;
    RETURN v_res;
  END;
  
  -------------------------------------------------------------------------------------------------
  -- Rounding schemes
  -- . https://support.astron.nl/confluence/display/L2M/L4+SDPFW+Decision%3A+Number+representation%2C+resizing+and+rounding
  -------------------------------------------------------------------------------------------------
  --
  -- From https://en.wikipedia.org/wiki/Rounding it follows that there are three main
  -- categories for rounding to integer:
  --
  -- 1) Direct rounding to integer :
  --    . down           : y = floor(x), is truncate of LSbits
  --    . up             : y = ceil(x),
  --    . towards zero   : y = truncate(x) = int(x), is truncate of fraction, is keep the integer part
  --                         = sgn(x) floor(|x|) = floor(x) when x >= 0, else ceil(x)
  --    . away from zero : y = sgn(x) ceil(|x|) = ceil(x) when x >= 0, else floor(x)
  -- 2) Rounding to nearest integer :
  --    . half down           : y = ceil(x - 0.5),
  --    . half up             : y = floor(x + 0.5),
  --    . half towards zero   : y = sgn(x) ceil(|x| - 0.5) = ceil(x - 0.5) when x >= 0, else floor(x + 0.5)
  --    . half away from zero : y = sgn(x) floor(|x| + 0.5) = floor(x + 0.5) when x >= 0, else ceil(x - 0.5)
  --    . round half to even : rounds to the nearest even integer when fraction = 0.5 else use
  --      either floor(x + 0.5) or ceil(x - 0.5), because they are equivalent then. This avoid
  --      DC bias and bias towards or away from zero.
  --
  -- 3) Randomized rounding to an integer : round to nearest when fraction != 0.5, round up or
  --    down when fraction = 0.5. This avoid DC bias and bias towards or away from zero:
  --    . alternate tie breaking : alternately select round up or round down when fraction = 0.5
  --        else either floor(x + 0.5) or ceil(x - 0.5), because they are equivalent then.
  --    . random tie breaking : idem as alternate tie breaking, but use random selection.
  --    . stochastic rounding : round up or down with a probability that depends on proximity.
  --      This avoids DC bias when the input is not random, e.g. when the input has a constant
  --      fraction > 0. For DSP with ADC related data with sufficient dynamic range this does
  --      not occur.
  --
  --  The advantage of round half to even, over round with tie breaking is, that for tie
  --  breaking an external signal is needed to hold the alternate or random selector state,
  --  whereas for round half to even the current input signal itself determines the
  --  selection. Hence round half to even can be fully implemented in a function, whereas
  --  a function for round using tie breaking requires an external state to manage the
  --  selection.
  --
  --  * Half up introduces +DC bias when fraction 0.5 occurs.
  --  * Half away from zero is also used by round() in VHDL math_real, Matlab, Python, TCL.
  --  * Half away avoids DC bias, but does introduce bias away from zero, which can show
  --    as a up bias in power values because (negative)**2 > 0 and (positive)**2 > 0.
  --
  -- Functions s_round() and u_round():
  --
  -- . u_round() supports half up (= half away) and half even.
  -- . s_round() supports half away and half even.
  -- . The returned output width is input width - n.
  -- . If n=0 then the return value is the same as the input value so only
  --   wires (NOP, no operation).
  -- . Both have the same implementation but different c_max and c_clip values.
  -- . Round up for unsigned so +2.5 becomes 3
  -- . Round away from zero for signed so round up for positive and round down for negative,
  --   so +2.5 becomes 3 and -2.5 becomes -3.
  -- . Round away from zero is also used by round() in VHDL math_real, Matlab, Python, TCL
  -- . Rounding up implies adding 0.5 and then truncation, use clip = TRUE to
  --   clip the potential overflow due to adding 0.5 to +max.
  -- . For negative values overflow due to rounding can not occur, because c_half-1 >= 0 for n>0
  -- . If the input comes from a product and is rounded to the input width then
  --   clip can safely be FALSE, because e.g. for unsigned 4b*4b=8b->4b the
  --   maximum product is 15*15=225 <= 255-8, and for signed 4b*4b=8b->4b the
  --   maximum product is -8*-8=+64 <= 127-8, so wrapping due to rounding
  --   overflow will never occur.

  FUNCTION s_round(vec : STD_LOGIC_VECTOR; n : NATURAL; clip, even : BOOLEAN) RETURN STD_LOGIC_VECTOR IS
    -- # Round half away from zero when even = FALSE, else round half to even.
    -- # Round half to even algorithm:
    -- #                vec: -3.5  -2.5  -1.5  -0.5  0.5  1.5  2.5  3.5
    -- #   floor(vec + 0.5)  -4    -3    -2    -1    1    2    3    4
    -- #   round even        -4    -2    -2     0    0    2    2    4
    -- #   round even clip   -4    -2    -2     0    0    2    2    3, clip to c_clip = 3 when c_out_w = 3
    -- Use SIGNED instead of NATURAL for c_half to avoid INTEGER (32 bit range) overflow error
    CONSTANT c_in_w     : NATURAL := vec'LENGTH;
    CONSTANT c_out_w    : NATURAL := vec'LENGTH - n;
    CONSTANT c_one      : SIGNED(c_in_w-1 DOWNTO 0) := TO_SIGNED(1, c_in_w);
    CONSTANT c_half     : SIGNED(c_in_w-1 DOWNTO 0) := SHIFT_LEFT(c_one, n-1);                            -- = 2**(n-1)
    CONSTANT c_max      : SIGNED(c_in_w-1 DOWNTO 0) := SIGNED('0' & c_slv1(c_in_w-2 DOWNTO 0)) - c_half;  -- = 2**(c_in_w-1)-1 - c_half
    -- When c_out_w = 1, then c_clip = 0, because a 1 bit signed value is -1 or 0
    CONSTANT c_clip     : SIGNED(c_out_w-1 DOWNTO 0) := SIGNED('0' & c_slv1(c_out_w-2 DOWNTO 0));         -- = 2**(c_out_w-1)-1
    VARIABLE v_in       : SIGNED(c_in_w-1 DOWNTO 0);
    CONSTANT u_half     : UNSIGNED(n-1 DOWNTO 0) := UNSIGNED(STD_LOGIC_VECTOR(c_half(n-1 DOWNTO 0)));     -- convert to UNSIGNED to compare with u_fraction
    VARIABLE u_fraction : UNSIGNED(n-1 DOWNTO 0);
    VARIABLE v_out      : SIGNED(c_out_w-1 DOWNTO 0);
  BEGIN
    v_in := SIGNED(vec);
    IF n > 0 THEN
      IF clip = TRUE AND v_in > c_max THEN
        v_out := c_clip;  -- Round clip to maximum positive to avoid wrap to negative
      ELSE
        IF even = FALSE THEN
          -- Round half away
          IF vec(vec'HIGH)='0' THEN
            v_out := RESIZE_NUM(SHIFT_RIGHT(v_in + c_half + 0, n), c_out_w);  -- Round half up for positive
          ELSE
            v_out := RESIZE_NUM(SHIFT_RIGHT(v_in + c_half - 1, n), c_out_w);  -- Round half down for negative
          END IF;
        ELSE
          -- Round half to even
          v_out := RESIZE_NUM(SHIFT_RIGHT(v_in + c_half, n), c_out_w);  -- Round to nearest using floor(vec + 0.5)
          u_fraction := UNSIGNED(vec(n-1 DOWNTO 0));
          IF u_fraction = u_half AND v_out(0) = '1' THEN  -- Round half to even, so when odd subtract 1
            v_out := v_out - 1;                           -- to make v_out even
          END IF;
        END IF;
      END IF;
    ELSE
      v_out := RESIZE_NUM(v_in, c_out_w);  -- NOP
    END IF;
    RETURN STD_LOGIC_VECTOR(v_out);
  END;

  FUNCTION s_round(vec : STD_LOGIC_VECTOR; n : NATURAL; clip : BOOLEAN) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN s_round(vec, n, clip, FALSE);  -- no round half to even
  END;
  FUNCTION s_round(vec : STD_LOGIC_VECTOR; n : NATURAL) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN s_round(vec, n, FALSE);  -- no round clip
  END;
  
  -- for unsigned round half away and round half up are equivalent
  FUNCTION u_round(vec : STD_LOGIC_VECTOR; n : NATURAL; clip, even : BOOLEAN) RETURN STD_LOGIC_VECTOR IS
    CONSTANT c_in_w     : NATURAL := vec'LENGTH;
    CONSTANT c_out_w    : NATURAL := vec'LENGTH - n;
    VARIABLE in_vec     : STD_LOGIC_VECTOR(c_in_w DOWNTO 0);
    VARIABLE out_vec    : STD_LOGIC_VECTOR(c_out_w DOWNTO 0);
  BEGIN
    -- Convert unsigned to positive signed and back to be able to reuse s_round()
    in_vec := '0' & vec;
    out_vec := s_round(in_vec, n, clip, even);
    RETURN out_vec(c_out_w-1 DOWNTO 0);
  END;

  FUNCTION u_round(vec : STD_LOGIC_VECTOR; n : NATURAL; clip : BOOLEAN) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN u_round(vec, n, clip, FALSE);  -- no round half to even
  END;

  FUNCTION u_round(vec : STD_LOGIC_VECTOR; n : NATURAL) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN u_round(vec, n, FALSE);  -- no round clip
  END;

  FUNCTION u_to_s(u : NATURAL; w : NATURAL) RETURN INTEGER IS
    VARIABLE v_u : STD_LOGIC_VECTOR(31 DOWNTO 0) := TO_UVEC(u, 32);  -- via 32 bit word to avoid NUMERIC_STD.TO_SIGNED: vector truncated warming
  BEGIN
    RETURN TO_SINT(v_u(w-1 DOWNTO 0));
  END;
      
  FUNCTION s_to_u(s : INTEGER; w : NATURAL) RETURN NATURAL IS
    VARIABLE v_s : STD_LOGIC_VECTOR(31 DOWNTO 0) := TO_SVEC(s, 32);  -- via 32 bit word to avoid NUMERIC_STD.TO_SIGNED: vector truncated warming
  BEGIN
    RETURN TO_UINT(v_s(w-1 DOWNTO 0));
  END;

  FUNCTION u_wrap(u : NATURAL; w : NATURAL) RETURN NATURAL IS
    VARIABLE v_u : STD_LOGIC_VECTOR(31 DOWNTO 0) := TO_UVEC(u, 32);  -- via 32 bit word to avoid NUMERIC_STD.TO_SIGNED: vector truncated warming
  BEGIN
    RETURN TO_UINT(v_u(w-1 DOWNTO 0));
  END;
  
  FUNCTION s_wrap(s : INTEGER; w : NATURAL) RETURN INTEGER IS
    VARIABLE v_s : STD_LOGIC_VECTOR(31 DOWNTO 0) := TO_SVEC(s, 32);  -- via 32 bit word to avoid NUMERIC_STD.TO_SIGNED: vector truncated warming
  BEGIN
    RETURN TO_SINT(v_s(w-1 DOWNTO 0));
  END;
  
  FUNCTION u_clip(u : NATURAL; max : NATURAL) RETURN NATURAL IS
  BEGIN
    IF u > max THEN
      RETURN max;
    ELSE
      RETURN u;
    END IF;
  END;
  
  FUNCTION s_clip(s : INTEGER; max : NATURAL; min : INTEGER) RETURN INTEGER IS
  BEGIN
    IF s < min THEN
      RETURN min;
    ELSE
      IF s > max THEN
        RETURN max;
      ELSE
        RETURN s;
      END IF;
    END IF;
  END;
  
  FUNCTION s_clip(s : INTEGER; max : NATURAL) RETURN INTEGER IS
  BEGIN
    RETURN s_clip(s, max, -max);
  END;

  FUNCTION hton(a : STD_LOGIC_VECTOR; w, sz : NATURAL) RETURN STD_LOGIC_VECTOR IS
    VARIABLE v_a : STD_LOGIC_VECTOR(a'LENGTH-1 DOWNTO 0) := a;  -- map a to range [h:0]
    VARIABLE v_b : STD_LOGIC_VECTOR(a'LENGTH-1 DOWNTO 0) := a;  -- default b = a
    VARIABLE vL  : NATURAL;
    VARIABLE vK  : NATURAL;
  BEGIN
    -- Note:
    -- . if sz = 1          then v_b = v_a
    -- . if a'LENGTH > sz*w then v_b(a'LENGTH:sz*w) = v_a(a'LENGTH:sz*w)
    FOR vL IN 0 TO sz-1 LOOP
      vK := sz-1 - vL;
      v_b((vL+1)*w-1 DOWNTO vL*w) := v_a((vK+1)*w-1 DOWNTO vK*w);
    END LOOP;
    RETURN v_b;
  END FUNCTION;
  
  FUNCTION hton(a : STD_LOGIC_VECTOR; sz : NATURAL) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN hton(a, c_byte_w, sz);  -- symbol width w = c_byte_w = 8
  END FUNCTION;
  
  FUNCTION hton(a : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
    CONSTANT c_sz : NATURAL := a'LENGTH/ c_byte_w;
  BEGIN
    RETURN hton(a, c_byte_w, c_sz);  -- symbol width w = c_byte_w = 8
  END FUNCTION;
  
  FUNCTION ntoh(a : STD_LOGIC_VECTOR; sz : NATURAL) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN hton(a, sz);  -- i.e. ntoh() = hton()
  END FUNCTION;
  
  FUNCTION ntoh(a : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
  BEGIN
    RETURN hton(a);  -- i.e. ntoh() = hton()
  END FUNCTION;
  
  FUNCTION flip(a : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS
    VARIABLE v_a : STD_LOGIC_VECTOR(a'LENGTH-1 DOWNTO 0) := a;
    VARIABLE v_b : STD_LOGIC_VECTOR(a'LENGTH-1 DOWNTO 0);
  BEGIN
    FOR I IN v_a'RANGE LOOP
      v_b(a'LENGTH-1-I) := v_a(I);
    END LOOP;
    RETURN v_b;
  END;
  
  FUNCTION flip(a, w : NATURAL) RETURN NATURAL IS
  BEGIN
    RETURN TO_UINT(flip(TO_UVEC(a, w)));
  END;
  
  FUNCTION flip(a : t_slv_32_arr) RETURN t_slv_32_arr IS
    VARIABLE v_a : t_slv_32_arr(a'LENGTH-1 DOWNTO 0) := a;
    VARIABLE v_b : t_slv_32_arr(a'LENGTH-1 DOWNTO 0);
  BEGIN
    FOR I IN v_a'RANGE LOOP
      v_b(a'LENGTH-1-I) := v_a(I);
    END LOOP;
    RETURN v_b;
  END;
  
  FUNCTION flip(a : t_integer_arr) RETURN t_integer_arr IS
    VARIABLE v_a : t_integer_arr(a'LENGTH-1 DOWNTO 0) := a;
    VARIABLE v_b : t_integer_arr(a'LENGTH-1 DOWNTO 0);
  BEGIN
    FOR I IN v_a'RANGE LOOP
      v_b(a'LENGTH-1-I) := v_a(I);
    END LOOP;
    RETURN v_b;
  END;

  FUNCTION flip(a : t_natural_arr) RETURN t_natural_arr IS
    VARIABLE v_a : t_natural_arr(a'LENGTH-1 DOWNTO 0) := a;
    VARIABLE v_b : t_natural_arr(a'LENGTH-1 DOWNTO 0);
  BEGIN
    FOR I IN v_a'RANGE LOOP
      v_b(a'LENGTH-1-I) := v_a(I);
    END LOOP;
    RETURN v_b;
  END;
  
  FUNCTION flip(a : t_nat_natural_arr) RETURN t_nat_natural_arr IS
    VARIABLE v_a : t_nat_natural_arr(a'LENGTH-1 DOWNTO 0) := a;
    VARIABLE v_b : t_nat_natural_arr(a'LENGTH-1 DOWNTO 0);
  BEGIN
    FOR I IN v_a'RANGE LOOP
      v_b(a'LENGTH-1-I) := v_a(I);
    END LOOP;
    RETURN v_b;
  END;
    
  FUNCTION transpose(a : STD_LOGIC_VECTOR; row, col : NATURAL) RETURN STD_LOGIC_VECTOR IS
    VARIABLE vIn  : STD_LOGIC_VECTOR(a'LENGTH-1 DOWNTO 0);
    VARIABLE vOut : STD_LOGIC_VECTOR(a'LENGTH-1 DOWNTO 0);
  BEGIN
    vIn  := a;    -- map input vector to h:0 range
    vOut := vIn;  -- default leave any unused MSbits the same
    FOR J IN 0 TO row-1 LOOP
      FOR I IN 0 TO col-1 LOOP
        vOut(J*col + I) := vIn(I*row + J);  -- transpose vector, map input index [i*row+j] to output index [j*col+i]
      END LOOP;
    END LOOP;
    RETURN vOut;
  END FUNCTION;
  
  FUNCTION transpose(a, row, col : NATURAL) RETURN NATURAL IS  -- transpose index a = [i*row+j] to output index [j*col+i]
    VARIABLE vI  : NATURAL;
    VARIABLE vJ  : NATURAL;
  BEGIN
    vI := a / row;
    vJ := a MOD row;
    RETURN vJ * col + vI;
  END;
 
  FUNCTION split_w(input_w: NATURAL; min_out_w: NATURAL; max_out_w: NATURAL) RETURN NATURAL IS -- Calculate input_w in multiples as close as possible to max_out_w
    -- Examples: split_w(256, 8, 32) = 32;  split_w(16, 8, 32) = 16; split_w(72, 8, 32) = 18;    -- Input_w must be multiple of 2.
    VARIABLE r: NATURAL;
  BEGIN
    r := input_w;
    FOR i IN 1 TO ceil_log2(input_w) LOOP -- Useless to divide the number beyond this       
      IF r <= max_out_w AND r >= min_out_w THEN
        RETURN r;
      ELSIF i = ceil_log2(input_w) THEN -- last iteration
        RETURN 0; -- Indicates wrong values were used
      END IF;
      r := r / 2;
    END LOOP;
  END;

  FUNCTION pad(str: STRING; width: NATURAL; pad_char: CHARACTER) RETURN STRING IS
    VARIABLE v_str : STRING(1 TO width) := (OTHERS => pad_char);
  BEGIN
    v_str(width-str'LENGTH+1 TO width) := str;
    RETURN v_str;
  END;

  FUNCTION slice_up(str: STRING; width: NATURAL; i: NATURAL) RETURN STRING IS
  BEGIN
    RETURN str(i*width+1 TO (i+1)*width);
  END;

  -- If the input value is not a multiple of the desired width, the return value is padded with
  -- the passed pad value. E.g. if input='10' and desired width is 4, return value is '0010'.
  FUNCTION slice_up(str: STRING; width: NATURAL; i: NATURAL; pad_char: CHARACTER) RETURN STRING IS
    VARIABLE padded_str : STRING(1 TO width) := (OTHERS=>'0');
  BEGIN
    padded_str := pad(str(i*width+1 TO (i+1)*width), width, '0');
    RETURN padded_str;
  END;

  FUNCTION slice_dn(str: STRING; width: NATURAL; i: NATURAL) RETURN STRING IS
  BEGIN
    RETURN str((i+1)*width-1 DOWNTO i*width);
  END;

 
  FUNCTION nat_arr_to_concat_slv(nat_arr: t_natural_arr; nof_elements: NATURAL) RETURN STD_LOGIC_VECTOR IS
    VARIABLE v_concat_slv : STD_LOGIC_VECTOR(nof_elements*32-1 DOWNTO 0) := (OTHERS=>'0');
  BEGIN
    FOR i IN 0 TO nof_elements-1 LOOP
      v_concat_slv(i*32+32-1 DOWNTO i*32) :=  TO_UVEC(nat_arr(i), 32);
    END LOOP;
    RETURN v_concat_slv;
  END;

  
  ------------------------------------------------------------------------------
  -- common_fifo_*  
  ------------------------------------------------------------------------------
  
  PROCEDURE proc_common_fifo_asserts (CONSTANT c_fifo_name   : IN STRING;
                                      CONSTANT c_note_is_ful : IN BOOLEAN;
                                      CONSTANT c_fail_rd_emp : IN BOOLEAN;
                                      SIGNAL   wr_rst        : IN STD_LOGIC;
                                      SIGNAL   wr_clk        : IN STD_LOGIC;
                                      SIGNAL   wr_full       : IN STD_LOGIC;
                                      SIGNAL   wr_en         : IN STD_LOGIC;
                                      SIGNAL   rd_clk        : IN STD_LOGIC;
                                      SIGNAL   rd_empty      : IN STD_LOGIC;
                                      SIGNAL   rd_en         : IN STD_LOGIC) IS
  BEGIN
    -- c_fail_rd_emp : when TRUE report FAILURE when read from an empty FIFO, important when FIFO rd_val is not used
    -- c_note_is_ful : when TRUE report NOTE when FIFO goes full, to note that operation is on the limit
    -- FIFO overflow is always reported as FAILURE

    -- The FIFO wr_full goes high at reset to indicate that it can not be written and it goes low a few cycles after reset.
    -- Therefore only check on wr_full going high when wr_rst='0'.
    
    --synthesis translate_off
    ASSERT NOT(c_fail_rd_emp=TRUE AND rising_edge(rd_clk)  AND rd_empty='1' AND rd_en='1')  REPORT c_fifo_name & " : read from empty fifo occurred!" SEVERITY FAILURE;
    ASSERT NOT(c_note_is_ful=TRUE AND rising_edge(wr_full) AND wr_rst='0')                  REPORT c_fifo_name & " : fifo is full now"               SEVERITY NOTE;
    ASSERT NOT(                       rising_edge(wr_clk)  AND wr_full='1'  AND wr_en='1')  REPORT c_fifo_name & " : fifo overflow occurred!"        SEVERITY FAILURE;
    --synthesis translate_on
  END PROCEDURE proc_common_fifo_asserts;
  
  
  ------------------------------------------------------------------------------
  -- common_fanout_tree 
  ------------------------------------------------------------------------------
  
  FUNCTION func_common_fanout_tree_pipelining(c_nof_stages, c_nof_output_per_cell, c_nof_output : NATURAL;
                                              c_cell_pipeline_factor_arr, c_cell_pipeline_arr : t_natural_arr) RETURN t_natural_arr IS
    CONSTANT k_cell_pipeline_factor_arr : t_natural_arr(c_nof_stages-1 DOWNTO 0) := c_cell_pipeline_factor_arr;
    CONSTANT k_cell_pipeline_arr        : t_natural_arr(c_nof_output_per_cell-1 DOWNTO 0) := c_cell_pipeline_arr;
    VARIABLE v_stage_pipeline_arr       : t_natural_arr(c_nof_output-1 DOWNTO 0) := (OTHERS=>0);
    VARIABLE v_prev_stage_pipeline_arr  : t_natural_arr(c_nof_output-1 DOWNTO 0) := (OTHERS=>0);
  BEGIN
    loop_stage : FOR j IN 0 TO c_nof_stages-1 LOOP
      v_prev_stage_pipeline_arr := v_stage_pipeline_arr;
      loop_cell : FOR i IN 0 TO c_nof_output_per_cell**j-1 LOOP
        v_stage_pipeline_arr((i+1)*c_nof_output_per_cell-1 DOWNTO i*c_nof_output_per_cell) := v_prev_stage_pipeline_arr(i) + (k_cell_pipeline_factor_arr(j) * k_cell_pipeline_arr);
      END LOOP;
    END LOOP;
    RETURN v_stage_pipeline_arr; 
  END FUNCTION func_common_fanout_tree_pipelining;
  
  
  ------------------------------------------------------------------------------
  -- common_reorder_symbol 
  ------------------------------------------------------------------------------
  
  -- Determine whether the stage I and row J index refer to any (active or redundant) 2-input reorder cell instantiation
  FUNCTION func_common_reorder2_is_there(I, J : NATURAL) RETURN BOOLEAN IS
    VARIABLE v_odd  : BOOLEAN;
    VARIABLE v_even : BOOLEAN;
  BEGIN
    v_odd  := (I MOD 2 = 1) AND (J MOD 2 = 1);  -- for odd  stage at each odd  row
    v_even := (I MOD 2 = 0) AND (J MOD 2 = 0);  -- for even stage at each even row
    RETURN v_odd OR v_even;
  END func_common_reorder2_is_there;
  
  -- Determine whether the stage I and row J index refer to an active 2-input reorder cell instantiation in a reorder network with N stages
  FUNCTION func_common_reorder2_is_active(I, J, N : NATURAL) RETURN BOOLEAN IS
    VARIABLE v_inst : BOOLEAN;
    VARIABLE v_act  : BOOLEAN;
  BEGIN
    v_inst := func_common_reorder2_is_there(I, J);
    v_act  := (I > 0) AND (I <= N) AND (J > 0) AND (J < N);
    RETURN v_inst AND v_act;
  END func_common_reorder2_is_active;
  
  -- Get the index K in the select setting array for the reorder2 cell on stage I and row J in a reorder network with N stages
  FUNCTION func_common_reorder2_get_select_index(I, J, N : NATURAL) RETURN INTEGER IS
    CONSTANT c_nof_reorder2_per_odd_stage  : NATURAL := N/2;
    CONSTANT c_nof_reorder2_per_even_stage : NATURAL := (N-1)/2;
    VARIABLE v_nof_odd_stages  : NATURAL;
    VARIABLE v_nof_even_stages : NATURAL;
    VARIABLE v_offset          : NATURAL;
    VARIABLE v_K               : INTEGER;
  BEGIN
    -- for I, J that do not refer to an reorder cell instance for -1 as dummy return value.
    -- for the redundant two port reorder cells at the border rows for -1 to indicate that the cell should pass on the input.
    v_K := -1;
    IF func_common_reorder2_is_active(I, J, N) THEN
      -- for the active two port reorder cells use the setting at index v_K from the select setting array
      v_nof_odd_stages  :=  I/2;
      v_nof_even_stages := (I-1)/2;
      v_offset          := (J-1)/2;  -- suits both odd stage and even stage
      v_K := v_nof_odd_stages * c_nof_reorder2_per_odd_stage + v_nof_even_stages * c_nof_reorder2_per_even_stage + v_offset;
    END IF;
    RETURN v_K;
  END func_common_reorder2_get_select_index;
  
  -- Get the select setting for the reorder2 cell on stage I and row J in a reorder network with N stages
  FUNCTION func_common_reorder2_get_select(I, J, N : NATURAL; select_arr : t_natural_arr) RETURN NATURAL IS
    CONSTANT c_nof_select : NATURAL := select_arr'LENGTH;
    CONSTANT c_select_arr : t_natural_arr(c_nof_select-1 DOWNTO 0) := select_arr;  -- force range downto 0
    VARIABLE v_sel        : NATURAL;
    VARIABLE v_K          : INTEGER;
  BEGIN
    v_sel := 0;
    v_K := func_common_reorder2_get_select_index(I, J, N);
    IF v_K>=0 THEN
      v_sel := c_select_arr(v_K);
    END IF;
    RETURN v_sel;
  END func_common_reorder2_get_select;
  
  -- Determine the inverse of a reorder network by using two reorder networks in series
  FUNCTION func_common_reorder2_inverse_select(N : NATURAL; select_arr : t_natural_arr) RETURN t_natural_arr IS
    CONSTANT c_nof_select      : NATURAL := select_arr'LENGTH;
    CONSTANT c_select_arr      : t_natural_arr(c_nof_select-1 DOWNTO 0) := select_arr;  -- force range downto 0
    VARIABLE v_sel             : NATURAL;
    VARIABLE v_Ki              : INTEGER;
    VARIABLE v_Ii              : NATURAL;
    VARIABLE v_inverse_arr     : t_natural_arr(2*c_nof_select-1 DOWNTO 0) := (OTHERS=>0);  -- default set identity for the reorder2 cells in both reorder instances
  BEGIN
    -- the inverse select consists of inverse_in reorder and inverse_out reorder in series
    IF N MOD 2 = 1 THEN
      -- N is odd so only need to fill in the inverse_in reorder, the inverse_out reorder remains at default pass on
      FOR I IN 1 TO N LOOP
        FOR J IN 0 TO N-1 LOOP
          -- get the DUT setting
          v_sel := func_common_reorder2_get_select(I, J, N, c_select_arr);
          -- map DUT I to inverse v_Ii stage index and determine the index for the inverse setting
          v_Ii := 1+N-I;
          v_Ki := func_common_reorder2_get_select_index(v_Ii, J, N);
          IF v_Ki>=0 THEN
            v_inverse_arr(v_Ki) := v_sel;
          END IF;
        END LOOP;
      END LOOP;
    ELSE
      -- N is even so only use stage 1 of the inverse_out reorder, the other stages remain at default pass on
      FOR K IN 0 TO N/2-1 LOOP
         v_Ki := c_nof_select + K;  -- stage 1 of the inverse_out reorder
         v_inverse_arr(v_Ki) := c_select_arr(K);
      END LOOP;
      -- N is even so leave stage 1 of the inverse_in reorder at default pass on, and do inverse the other stages
      FOR I IN 2 TO N LOOP
        FOR J IN 0 TO N-1 LOOP
          -- get the DUT setting
          v_sel := func_common_reorder2_get_select(I, J, N, c_select_arr);
          -- map DUT I to inverse v_Ii stage index and determine the index for the inverse setting
          v_Ii := 2+N-I;
          v_Ki := func_common_reorder2_get_select_index(v_Ii, J, N);
          IF v_Ki>=0 THEN
            v_inverse_arr(v_Ki) := v_sel;
          END IF;
        END LOOP;
      END LOOP;
    END IF;
    RETURN v_inverse_arr;
  END func_common_reorder2_inverse_select;
  
  ------------------------------------------------------------------------------
  -- PROCEDURE: Generate faster sample SCLK from digital DCLK for sim only
  -- Description:
  --   The SCLK kan be used to serialize Pfactor >= 1 symbols per word and then 
  --   view them in a scope component that is use internally in the design.
  --   The scope component is only instantiated for simulation, to view the
  --   serialized symbols, typically with decimal radix and analogue format.
  --   The scope component will not be synthesized, because the SCLK can not
  --   be synthesized.
  --   
  --   Pfactor = 4
  --            _______         _______         _______         _______
  --   DCLK ___|       |_______|       |_______|       |_______|       |_______
  --        ___________________   _   _   _   _   _   _   _   _   _   _   _   _
  --   SCLK                    |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_|
  --
  --   The rising edges of SCLK occur after the rising edge of DCLK, to ensure
  --   that they all apply to the same wide data word that was clocked by the
  --   rising edge of the DCLK.
  ------------------------------------------------------------------------------
  PROCEDURE proc_common_dclk_generate_sclk(CONSTANT Pfactor : IN    POSITIVE;
                                           SIGNAL   dclk    : IN    STD_LOGIC;
                                           SIGNAL   sclk    : INOUT STD_LOGIC) IS
    VARIABLE v_dperiod : TIME;
    VARIABLE v_speriod : TIME;
  BEGIN
    SCLK <= '1';
    -- Measure DCLK period
    WAIT UNTIL rising_edge(DCLK);
    v_dperiod := NOW;
    WAIT UNTIL rising_edge(DCLK);
    v_dperiod := NOW - v_dperiod;
    v_speriod := v_dperiod / Pfactor;
    -- Generate Pfactor SCLK periods per DCLK period
    WHILE TRUE LOOP
      -- Realign at every DCLK
      WAIT UNTIL rising_edge(DCLK);
      -- Create Pfactor SCLK periods within this DCLK period
      SCLK <= '0';
      IF Pfactor>1 THEN
        FOR I IN 0 TO 2*Pfactor-1-2 LOOP
          WAIT FOR v_speriod/2;
          SCLK <= NOT SCLK;
        END LOOP;
      END IF;
      WAIT FOR v_speriod/2;
      SCLK <= '1';
      -- Wait for next DCLK
    END LOOP;
    WAIT;
  END proc_common_dclk_generate_sclk;
  
END common_pkg;