Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
LOFAR
Manage
Activity
Members
Labels
Plan
Issues
Wiki
Jira issues
Open Jira
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Code review analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
RadioObservatory
LOFAR
Commits
822b5bf2
Commit
822b5bf2
authored
14 years ago
by
Joris van Zwieten
Browse files
Options
Downloads
Patches
Plain Diff
Bug 1618: Clamp beam model to zero for elevations <= 0.0 deg
parent
d5880011
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
CEP/Calibration/BBSKernel/src/Expr/HamakerDipole.cc
+38
-34
38 additions, 34 deletions
CEP/Calibration/BBSKernel/src/Expr/HamakerDipole.cc
with
38 additions
and
34 deletions
CEP/Calibration/BBSKernel/src/Expr/HamakerDipole.cc
+
38
−
34
View file @
822b5bf2
...
...
@@ -188,49 +188,53 @@ const JonesMatrix::View HamakerDipole::evaluateImpl(const Grid &grid,
for
(
size_t
f
=
0
;
f
<
nFreq
;
++
f
)
{
// NB: The model is parameterized in terms of a normalized
// frequency in the range [-1, 1]. The appropriate conversion is
// taken care of below.
const
double
normFreq
=
(
grid
[
FREQ
]
->
center
(
f
)
-
itsCoeff
.
center
())
/
itsCoeff
.
width
();
// J-jones matrix (2x2 complex matrix)
dcomplex
J
[
2
][
2
];
J
[
0
][
0
]
=
J
[
0
][
1
]
=
J
[
1
][
0
]
=
J
[
1
][
1
]
=
makedcomplex
(
0.0
,
0.0
);
dcomplex
J
[
2
][
2
]
=
{{
0.0
,
0.0
},
{
0.0
,
0.0
}};
for
(
size_t
k
=
0
;
k
<
nHarmonics
;
++
k
)
// Only compute the beam response for directions above the horizon.
if
(
theta
<
casa
::
C
::
pi_2
)
{
// Compute diagonal projection matrix P for the current
// harmonic.
dcomplex
P
[
2
];
P
[
0
]
=
P
[
1
]
=
makedcomplex
(
0.0
,
0.0
);
// NB: The model is parameterized in terms of a normalized
// frequency in the range [-1, 1]. The appropriate conversion is
// taken care of below.
const
double
normFreq
=
(
grid
[
FREQ
]
->
center
(
f
)
-
itsCoeff
.
center
())
/
itsCoeff
.
width
();
dcomplex
inner
[
2
];
for
(
long
i
=
nPowTheta
-
1
;
i
>=
0
;
--
i
)
for
(
size_t
k
=
0
;
k
<
nHarmonics
;
++
k
)
{
inner
[
0
]
=
itsCoeff
(
0
,
k
,
i
,
nPowFreq
-
1
);
inner
[
1
]
=
itsCoeff
(
1
,
k
,
i
,
nPowFreq
-
1
);
// Compute diagonal projection matrix P for the current
// harmonic.
dcomplex
P
[
2
]
=
{
0.0
,
0.0
};
for
(
long
j
=
nPowFreq
-
2
;
j
>=
0
;
--
j
)
dcomplex
inner
[
2
];
for
(
long
i
=
nPowTheta
-
1
;
i
>=
0
;
--
i
)
{
inner
[
0
]
=
inner
[
0
]
*
normFreq
+
itsCoeff
(
0
,
k
,
i
,
j
);
inner
[
1
]
=
inner
[
1
]
*
normFreq
+
itsCoeff
(
1
,
k
,
i
,
j
);
inner
[
0
]
=
itsCoeff
(
0
,
k
,
i
,
nPowFreq
-
1
);
inner
[
1
]
=
itsCoeff
(
1
,
k
,
i
,
nPowFreq
-
1
);
for
(
long
j
=
nPowFreq
-
2
;
j
>=
0
;
--
j
)
{
inner
[
0
]
=
inner
[
0
]
*
normFreq
+
itsCoeff
(
0
,
k
,
i
,
j
);
inner
[
1
]
=
inner
[
1
]
*
normFreq
+
itsCoeff
(
1
,
k
,
i
,
j
);
}
P
[
0
]
=
P
[
0
]
*
theta
+
inner
[
0
];
P
[
1
]
=
P
[
1
]
*
theta
+
inner
[
1
];
}
P
[
0
]
=
P
[
0
]
*
theta
+
inner
[
0
];
P
[
1
]
=
P
[
1
]
*
theta
+
inner
[
1
];
}
// Compute Jones matrix for this harmonic by rotating P over
// kappa * phi and add it to the result.
const
double
kappa
=
((
k
&
1
)
==
0
?
1.0
:
-
1.0
)
*
(
2.0
*
k
+
1.0
);
const
double
cphi
=
std
::
cos
(
kappa
*
phi
);
const
double
sphi
=
std
::
sin
(
kappa
*
phi
);
J
[
0
][
0
]
+=
cphi
*
P
[
0
];
J
[
0
][
1
]
+=
-
sphi
*
P
[
1
];
J
[
1
][
0
]
+=
sphi
*
P
[
0
];
J
[
1
][
1
]
+=
cphi
*
P
[
1
];
// Compute Jones matrix for this harmonic by rotating P over
// kappa * phi and add it to the result.
const
double
kappa
=
((
k
&
1
)
==
0
?
1.0
:
-
1.0
)
*
(
2.0
*
k
+
1.0
);
const
double
cphi
=
std
::
cos
(
kappa
*
phi
);
const
double
sphi
=
std
::
sin
(
kappa
*
phi
);
J
[
0
][
0
]
+=
cphi
*
P
[
0
];
J
[
0
][
1
]
+=
-
sphi
*
P
[
1
];
J
[
1
][
0
]
+=
sphi
*
P
[
0
];
J
[
1
][
1
]
+=
cphi
*
P
[
1
];
}
}
*
E00_re
++
=
real
(
J
[
0
][
0
]);
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment