Skip to content
Snippets Groups Projects
Commit 6b01695a authored by Jan David Mol's avatar Jan David Mol
Browse files

Revert "Removed station response packages, which are not used in LOFAR and...

Revert "Removed station response packages, which are not used in LOFAR and externally available as https://github.com/lofar-astron/LOFARBeam". Was still needed by BBSKernel, oops.

This reverts commit 34770298.
parent ddabebc4
No related branches found
No related tags found
1 merge request!1068Remove AWIMage and related packages
Showing
with 2568 additions and 0 deletions
......@@ -2,3 +2,7 @@
lofar_add_package(BBSKernel)
lofar_add_package(BBSControl)
lofar_add_package(ExpIon)
lofar_add_package(pystationresponse)
lofar_add_package(ElementResponse)
lofar_add_package(StationResponse)
# $Id$
lofar_package(ElementResponse 0.1 DEPENDS Common)
# Uncomment to check for unsafe conversions (gcc), for example conversion of
# size_t to unsigned int (truncation).
#add_definitions(-Wconversion)
add_subdirectory(include/ElementResponse)
add_subdirectory(src)
# $Id$
# Create symbolic link to include directory.
execute_process(COMMAND ${CMAKE_COMMAND} -E create_symlink
${CMAKE_CURRENT_SOURCE_DIR}
${CMAKE_BINARY_DIR}/include/${PACKAGE_NAME})
# Install header files.
install(FILES
ElementResponse.h
DESTINATION include/${PACKAGE_NAME})
//# ElementResponse.h: Functions to compute the (idealized) response of a LOFAR
//# LBA or HBA dual dipole antenna.
//#
//# Copyright (C) 2011
//# ASTRON (Netherlands Institute for Radio Astronomy)
//# P.O.Box 2, 7990 AA Dwingeloo, The Netherlands
//#
//# This file is part of the LOFAR software suite.
//# The LOFAR software suite is free software: you can redistribute it and/or
//# modify it under the terms of the GNU General Public License as published
//# by the Free Software Foundation, either version 3 of the License, or
//# (at your option) any later version.
//#
//# The LOFAR software suite is distributed in the hope that it will be useful,
//# but WITHOUT ANY WARRANTY; without even the implied warranty of
//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
//# GNU General Public License for more details.
//#
//# You should have received a copy of the GNU General Public License along
//# with the LOFAR software suite. If not, see <http://www.gnu.org/licenses/>.
//#
//# $Id$
#ifndef LOFAR_ELEMENTRESPONSE_H
#define LOFAR_ELEMENTRESPONSE_H
// \file
// Functions to compute the (idealized) response of a LOFAR LBA or HBA dual
// dipole antenna.
#include <complex>
namespace LOFAR
{
// \addtogroup ElementResponse
// @{
// Compute the response of an idealized LOFAR LBA dual dipole antenna to
// radiation at frequency freq (Hz) arriving from the direction given by theta,
// phi (rad). The antenna model is described in a spherical coordinate system
// with coordinates theta (zenith angle) and phi (azimith). The +X dipole is at
// azimuth zero, the +Y dipole is at azimuth PI / 2.0.
//
// Preconditions:
// --------------
// freq: Frequency in Hz in the range [10 MHz, 100 MHz].
// theta: Zenith angle in rad in the range [0.0, PI / 2.0].
// phi: Azimuth in rad in the range [0.0, 2.0 * PI].
//
void element_response_lba(double freq, double theta, double phi,
std::complex<double> (&response)[2][2]);
// Compute the response of an idealized LOFAR HBA dual dipole antenna to
// radiation at frequency freq (Hz) arriving from the direction given by theta,
// phi (rad). The antenna model is described in a spherical coordinate system
// with coordinates theta (zenith angle) and phi (azimith). The +X dipole is at
// azimuth zero, the +Y dipole is at azimuth PI / 2.0.
//
// Preconditions:
// --------------
// freq: Frequency in Hz in the range [120 MHz, 240 MHz].
// theta: Zenith angle in rad in the range [0.0, PI / 2.0].
// phi: Azimuth in rad in the range [0.0, 2.0 * PI].
//
void element_response_hba(double freq, double theta, double phi,
std::complex<double> (&response)[2][2]);
// Compute the response of an idealized LOFAR dual dipole antenna to radiation
// at frequency freq (Hz) arriving from the direction given by theta, phi (rad).
// The antenna model is described in a spherical coordinate system with
// coordinates theta (zenith angle) and phi (azimith). The +X dipole is at
// azimuth zero, the +Y dipole is at azimuth PI / 2.0.
//
// This function uses a set of user defined coefficients to evaluate the beam
// model. The coeff_shape parameter defines the shape of the coefficient array
// as no. of harmonics x degree in theta x degree in frequency x 2. The last
// dimension is implicit and always equal to 2. The coeff parameter points to an
// array of coefficients of the proper size, stored in row-major order
// ("C"-order). The freq_center and freq_range parameters define the frequency
// range covered by the model described by the set of coefficients.
//
// Preconditions:
// --------------
// freq: Frequency in Hz in the range [freq_center - freq_range,
// freq_center + freq_range].
// theta: Zenith angle in rad in the range [0.0, PI / 2.0].
// phi: Azimuth in rad in the range [0.0, 2.0 * PI].
// freq_range, freq_center: Frequency center and range in Hz, should be > 0.
// coeff_shape: Shape of the coefficient array, all dimensions should be > 0.
//
void element_response(double freq, double theta, double phi,
std::complex<double> (&response)[2][2], double freq_center,
double freq_range, const unsigned int (&coeff_shape)[3],
const std::complex<double> coeff[]);
// @}
} //# namespace LOFAR
#endif
# $Id: CMakeLists.txt 18775 2011-09-06 13:36:45Z zwieten $
include(LofarPackageVersion)
lofar_add_library(elementresponse
Package__Version.cc
ElementResponse.cc)
// Beam model coefficients converted by convert_coeff.py.
// Conversion performed on 2011/09/14/08:23:16 UTC using:
// convert_coeff.py element_beam_HBA.coeff DefaultCoeffHBA.cc default_hba
#include <complex>
// Center frequency, and frequency range for which the beam model coefficients
// are valid. The beam model is parameterized in terms of a normalized
// frequency f' in the range [-1.0, 1.0]. The appropriate conversion is:
//
// f' = (f - center) / range
//
const double default_hba_freq_center = 180e6;
const double default_hba_freq_range = 60e6;
// Shape of the coefficient array: 2x5x5x2 (the size of the last dimension is
// implied, and always equal to 2).
//
const unsigned int default_hba_coeff_shape[3] = {2, 5, 5};
// The array of coefficients in row-major order ("C"-order).
//
const std::complex<double> default_hba_coeff[100] = {
std::complex<double>(0.9989322499459223, 0.0003305895124867), std::complex<double>(1.0030546028872600, 0.0002157249025076),
std::complex<double>(0.0003002209532403, 0.0007909077657054), std::complex<double>(0.0022051270911392, 0.0003834815341981),
std::complex<double>(-0.0003856663268042, 0.0008435910525861), std::complex<double>(0.0004887765294093, 0.0002777796480946),
std::complex<double>(-0.0000699366665322, 0.0005136144371953), std::complex<double>(0.0001520602842105, 0.0001303481681886),
std::complex<double>(0.0000512381993616, 0.0001550785137302), std::complex<double>(0.0000819244737818, 0.0000466470412396),
std::complex<double>(0.0249658150445263, -0.0122024663463393), std::complex<double>(-0.0917825091832822, -0.0062606338208358),
std::complex<double>(-0.0083709499453879, -0.0289759752488368), std::complex<double>(-0.0689260153643395, -0.0111348626546314),
std::complex<double>(0.0116296166994115, -0.0307342946951178), std::complex<double>(-0.0171249717275797, -0.0080642275561593),
std::complex<double>(0.0012408055399100, -0.0191295543986957), std::complex<double>(-0.0051031652662961, -0.0037143632875100),
std::complex<double>(-0.0022414352263751, -0.0060474723525871), std::complex<double>(-0.0024377933436567, -0.0012852163337395),
std::complex<double>(-0.6730977722052307, 0.0940030437973656), std::complex<double>(0.3711597596859299, 0.0557089394867947),
std::complex<double>(0.2119250520015808, 0.2155514942677135), std::complex<double>(0.6727380529527980, 0.0989550572104158),
std::complex<double>(-0.0419944347289523, 0.2355624543349744), std::complex<double>(0.1917656461134636, 0.0732470381581913),
std::complex<double>(0.0048918921441903, 0.1588912409502319), std::complex<double>(0.0575369727210951, 0.0344677222786687),
std::complex<double>(0.0241014578366618, 0.0547046570516960), std::complex<double>(0.0219986510834463, 0.0112189146988984),
std::complex<double>(0.0665319393516388, -0.1418009730472832), std::complex<double>(-0.7576728614553603, -0.0472040122949963),
std::complex<double>(-0.1017024786435272, -0.3302620837788515), std::complex<double>(-0.5600906156274197, -0.0797555201430585),
std::complex<double>(0.0889729243872774, -0.3406964719938829), std::complex<double>(-0.1342560801672904, -0.0515926960946038),
std::complex<double>(-0.0149335262655201, -0.2084962323582034), std::complex<double>(-0.0327252678958813, -0.0172371907472848),
std::complex<double>(-0.0362395089905272, -0.0661322227928722), std::complex<double>(-0.0141568558526096, -0.0042676979206835),
std::complex<double>(0.1121669548152054, 0.0504713119323919), std::complex<double>(0.1882531376700409, 0.0088411256350159),
std::complex<double>(0.0066968933526899, 0.1181452711088882), std::complex<double>(0.0981630367567397, 0.0129921405004959),
std::complex<double>(-0.0347327225501659, 0.1186585563636635), std::complex<double>(0.0102831315790362, 0.0046275244914932),
std::complex<double>(0.0070209144233666, 0.0689639468490938), std::complex<double>(-0.0020239346031291, -0.0025499069613344),
std::complex<double>(0.0132702874173192, 0.0207916487187541), std::complex<double>(0.0004387107229914, -0.0017223838914815),
std::complex<double>(-0.0004916757488397, 0.0000266213616248), std::complex<double>(0.0006516553273188, -0.0000433166563288),
std::complex<double>(-0.0004357897643121, 0.0000320567996700), std::complex<double>(0.0005818285824826, -0.0001021069650381),
std::complex<double>(-0.0001047488648808, -0.0000302146563592), std::complex<double>(0.0001593350153828, -0.0000879125663990),
std::complex<double>(-0.0000141882506567, -0.0000941521783975), std::complex<double>(-0.0000004226298134, -0.0000245060763932),
std::complex<double>(-0.0000177429496833, -0.0000561890408003), std::complex<double>(-0.0000018388829279, 0.0000032387726477),
std::complex<double>(0.0162495046881796, -0.0010736997976255), std::complex<double>(-0.0175635905033026, 0.0012997068962173),
std::complex<double>(0.0138897851110661, -0.0014876219938565), std::complex<double>(-0.0150211436594772, 0.0029712291209158),
std::complex<double>(0.0031705620225488, 0.0004838463688512), std::complex<double>(-0.0034418973689263, 0.0024603729467258),
std::complex<double>(0.0003028387544878, 0.0026905629457281), std::complex<double>(0.0006768121359769, 0.0005901486396051),
std::complex<double>(0.0004634797107989, 0.0016976603895716), std::complex<double>(0.0003344773954073, -0.0001499932789294),
std::complex<double>(-0.1492097398080444, 0.0123735410547393), std::complex<double>(0.1393121453502456, -0.0121117146246749),
std::complex<double>(-0.1217628319418324, 0.0222643129255504), std::complex<double>(0.1108579917761457, -0.0262986164183475),
std::complex<double>(-0.0273147374272124, 0.0098595182007132), std::complex<double>(0.0208992817013466, -0.0205929453727953),
std::complex<double>(-0.0002152227668601, -0.0089220757225133), std::complex<double>(-0.0074792188817697, -0.0043562231368076),
std::complex<double>(-0.0012019994038721, -0.0079939660050373), std::complex<double>(-0.0035807498769946, 0.0014801422733613),
std::complex<double>(0.1567990061437258, -0.0143275575385193), std::complex<double>(-0.1043118778001582, 0.0106756004832779),
std::complex<double>(0.1151024257152241, -0.0225518489392044), std::complex<double>(-0.0593437249231851, 0.0216080058910987),
std::complex<double>(0.0142781186223020, -0.0057037138045721), std::complex<double>(0.0151043140114779, 0.0141435752121475),
std::complex<double>(-0.0057143555179676, 0.0141142700941743), std::complex<double>(0.0251435557201315, -0.0005753615445942),
std::complex<double>(0.0004475745352473, 0.0102135659618127), std::complex<double>(0.0090474375150397, -0.0032177128650026),
std::complex<double>(-0.0459124372023251, 0.0044990718645418), std::complex<double>(0.0135433541303599, -0.0021789296923529),
std::complex<double>(-0.0306136798186735, 0.0064963361606382), std::complex<double>(-0.0046440676338940, -0.0037281688158807),
std::complex<double>(-0.0006372791846825, 0.0008894047150233), std::complex<double>(-0.0181611528840412, -0.0011106177431486),
std::complex<double>(0.0032325387394458, -0.0048123509184894), std::complex<double>(-0.0136340313457176, 0.0021185000810664),
std::complex<double>(0.0001287985092565, -0.0032079544559908), std::complex<double>(-0.0045503800737417, 0.0015366231416036)
};
// Beam model coefficients converted by convert_coeff.py.
// Conversion performed on 2011/09/14/08:23:09 UTC using:
// convert_coeff.py element_beam_LBA.coeff DefaultCoeffLBA.cc default_lba
#include <complex>
// Center frequency, and frequency range for which the beam model coefficients
// are valid. The beam model is parameterized in terms of a normalized
// frequency f' in the range [-1.0, 1.0]. The appropriate conversion is:
//
// f' = (f - center) / range
//
const double default_lba_freq_center = 55e6;
const double default_lba_freq_range = 45e6;
// Shape of the coefficient array: 2x5x5x2 (the size of the last dimension is
// implied, and always equal to 2).
//
const unsigned int default_lba_coeff_shape[3] = {2, 5, 5};
// The array of coefficients in row-major order ("C"-order).
//
const std::complex<double> default_lba_coeff[100] = {
std::complex<double>(0.9982445079290715, 0.0000650863154389), std::complex<double>(1.0006230902158257, -0.0022053287681416),
std::complex<double>(0.0001002692200362, 0.0006838211278268), std::complex<double>(-0.0003660049052840, -0.0008418920419220),
std::complex<double>(-0.0010581424498791, 0.0015237878543047), std::complex<double>(0.0007398729642721, 0.0028468649470433),
std::complex<double>(-0.0039458389254656, -0.0007048354913730), std::complex<double>(0.0007040177887611, 0.0007856369612188),
std::complex<double>(-0.0031701591723043, -0.0010521154166512), std::complex<double>(-0.0007213036752903, -0.0007227764008022),
std::complex<double>(0.0550606068782634, 0.0011958385659938), std::complex<double>(-0.0160912944232080, 0.0703645376267940),
std::complex<double>(0.0033849565901213, -0.0244636379385135), std::complex<double>(0.0234264238829944, 0.0084068836453700),
std::complex<double>(0.0557107413978542, -0.0634701730653090), std::complex<double>(-0.0139549526991330, -0.1175401658864208),
std::complex<double>(0.1336911750356096, 0.0202651327657687), std::complex<double>(-0.0113385668361727, -0.0339262369086247),
std::complex<double>(0.0962263571740972, 0.0440074333288440), std::complex<double>(0.0313595045238824, 0.0230763038515351),
std::complex<double>(-0.8624889445327827, -0.1522883072804402), std::complex<double>(-0.0386800869486029, -0.7569350701887934),
std::complex<double>(0.0891332399420108, 0.1876527151756476), std::complex<double>(-0.1012363483900640, -0.1975118891151966),
std::complex<double>(-0.6404795825927633, 0.7568775384981410), std::complex<double>(0.0767245154665722, 1.3441875993523555),
std::complex<double>(-0.8758406699506004, 0.3350237639226141), std::complex<double>(0.2824832769101577, 0.6821307442669313),
std::complex<double>(-0.3144282315609649, -0.2763869580286276), std::complex<double>(-0.1705959031354030, -0.0712085950559831),
std::complex<double>(0.4039567648146965, 0.0810473144253429), std::complex<double>(-0.0350803390479135, 0.5214591717801087),
std::complex<double>(0.2232030356124932, -0.2248154851829713), std::complex<double>(0.4704343293662089, -0.3552101485419532),
std::complex<double>(0.9646419509627557, -0.8095088593139815), std::complex<double>(0.1635280638865702, -1.4854352979459096),
std::complex<double>(1.0331569921006993, 0.0509705885336283), std::complex<double>(0.1501121326521990, -0.5193414816770609),
std::complex<double>(0.4715775965513117, 0.5077361528286819), std::complex<double>(0.3847391427972284, 0.1136717951238837),
std::complex<double>(-0.0756250564248881, 0.0056622911723172), std::complex<double>(-0.1267444401630109, -0.0349676272376008),
std::complex<double>(-0.1793752883639813, 0.0720222655359702), std::complex<double>(-0.2678542619793421, 0.3152115802895427),
std::complex<double>(-0.3718069213271066, 0.2275266747872172), std::complex<double>(-0.1372223722572021, 0.4314989948093362),
std::complex<double>(-0.3316657641578328, -0.1655909947939444), std::complex<double>(-0.2158100484836540, 0.0614504774034524),
std::complex<double>(-0.1901597954359592, -0.2294955549701665), std::complex<double>(-0.1864961465389693, -0.0486276177310768),
std::complex<double>(-0.0000762326746410, 0.0000118155774181), std::complex<double>(0.0000118903581604, -0.0000251324432498),
std::complex<double>(-0.0002204197663391, -0.0000213776348027), std::complex<double>(0.0001477083861977, 0.0000599750510518),
std::complex<double>(-0.0003281057522772, -0.0000770207588466), std::complex<double>(0.0003478997686964, 0.0001481982639746),
std::complex<double>(-0.0000625695757282, 0.0000249138990722), std::complex<double>(-0.0000960097542525, 0.0002521364065803),
std::complex<double>(0.0001275344578325, 0.0000652362392482), std::complex<double>(-0.0003113309221942, 0.0001956734476566),
std::complex<double>(0.0029807707669629, -0.0003262084082071), std::complex<double>(0.0001639620574332, -0.0000266272685197),
std::complex<double>(0.0076282580587895, 0.0026614359017468), std::complex<double>(-0.0044850263974801, -0.0058337192660638),
std::complex<double>(0.0124258438959177, 0.0067985224235178), std::complex<double>(-0.0126349778957970, -0.0100656881493938),
std::complex<double>(0.0059031372522229, 0.0008660479915339), std::complex<double>(0.0039660364524413, -0.0100356333791398),
std::complex<double>(-0.0020520685193773, -0.0028564379463666), std::complex<double>(0.0121039958869239, -0.0059701468961263),
std::complex<double>(-0.0229975846564195, 0.0010565261888195), std::complex<double>(0.0019573207027441, 0.0050550600926414),
std::complex<double>(-0.0682274156850413, -0.0758159820140411), std::complex<double>(0.0497303968865466, 0.1019681987654797),
std::complex<double>(-0.1757936183439326, -0.1363710820472197), std::complex<double>(0.1765450269056824, 0.1555919358121995),
std::complex<double>(-0.1541299429420569, -0.0281422177614844), std::complex<double>(0.0816399676454817, 0.0691599035109852),
std::complex<double>(-0.0235110916473515, 0.0306385386726702), std::complex<double>(-0.0474273292450285, 0.0116831908947225),
std::complex<double>(0.0333560984394624, -0.0009767086536162), std::complex<double>(0.0141704479374002, -0.0205386534626779),
std::complex<double>(0.0562541280098909, 0.0743149092143081), std::complex<double>(-0.0226634801339250, -0.1439026188572270),
std::complex<double>(0.1238595124159999, 0.1766108700786397), std::complex<double>(-0.1307647072780430, -0.2090615438301942),
std::complex<double>(0.1557916917691289, 0.0646351862895731), std::complex<double>(0.0170294191358757, -0.1027926845803498),
std::complex<double>(0.0543537332385954, -0.0366524906364179), std::complex<double>(0.1127180664279469, -0.0176607923511174),
std::complex<double>(-0.0126732549319889, 0.0002042370658763), std::complex<double>(-0.0101360135082899, 0.0114084024114141),
std::complex<double>(-0.0102147881225462, -0.0176848554302252), std::complex<double>(-0.0051268936720694, 0.0527621533959941),
std::complex<double>(-0.0110701836450407, -0.0593085026046026), std::complex<double>(0.0140598301629874, 0.0738668439833535),
std::complex<double>(-0.0389912915621699, -0.0301364165752433), std::complex<double>(-0.0462331759359031, 0.0405864871628086),
std::complex<double>(-0.0251598701859194, 0.0115712688652445), std::complex<double>(-0.0563476280247398, 0.0079787883434624)
};
//# ElementResponse.cc: Functions to compute the (idealized) response of a LOFAR
//# LBA or HBA dual dipole antenna.
//#
//# Copyright (C) 2011
//# ASTRON (Netherlands Institute for Radio Astronomy)
//# P.O.Box 2, 7990 AA Dwingeloo, The Netherlands
//#
//# This file is part of the LOFAR software suite.
//# The LOFAR software suite is free software: you can redistribute it and/or
//# modify it under the terms of the GNU General Public License as published
//# by the Free Software Foundation, either version 3 of the License, or
//# (at your option) any later version.
//#
//# The LOFAR software suite is distributed in the hope that it will be useful,
//# but WITHOUT ANY WARRANTY; without even the implied warranty of
//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
//# GNU General Public License for more details.
//#
//# You should have received a copy of the GNU General Public License along
//# with the LOFAR software suite. If not, see <http://www.gnu.org/licenses/>.
//#
//# $Id$
#include <lofar_config.h>
#include <ElementResponse/ElementResponse.h>
#include <cmath>
// The coefficients are kept in an unnamed namespace which effectively makes
// them invisible outside this translation unit.
namespace
{
// PI / 2.0
const double pi_2 = 1.570796326794896619231322;
#include "DefaultCoeffLBA.cc"
#include "DefaultCoeffHBA.cc"
}
namespace LOFAR
{
void element_response_lba(double freq, double theta, double phi,
std::complex<double> (&response)[2][2])
{
element_response(freq, theta, phi, response, default_lba_freq_center,
default_lba_freq_range, default_lba_coeff_shape, default_lba_coeff);
}
void element_response_hba(double freq, double theta, double phi,
std::complex<double> (&response)[2][2])
{
element_response(freq, theta, phi, response, default_hba_freq_center,
default_hba_freq_range, default_hba_coeff_shape, default_hba_coeff);
}
void element_response(double freq, double theta, double phi,
std::complex<double> (&response)[2][2], double freq_center,
double freq_range, const unsigned int (&coeff_shape)[3],
const std::complex<double> coeff[])
{
// Initialize the response to zero.
response[0][0] = 0.0;
response[0][1] = 0.0;
response[1][0] = 0.0;
response[1][1] = 0.0;
// Clip directions below the horizon.
if(theta >= pi_2)
{
return;
}
const unsigned int nHarmonics = coeff_shape[0];
const unsigned int nPowerTheta = coeff_shape[1];
const unsigned int nPowerFreq = coeff_shape[2];
// The model is parameterized in terms of a normalized frequency in the
// range [-1, 1]. The appropriate conversion is taken care of below.
freq = (freq - freq_center) / freq_range;
// The variables sign and kappa are used to compute the value of kappa
// mentioned in the description of the beam model [kappa = (-1)^k * (2 * k
//+ 1)] incrementally.
int sign = 1, kappa = 1;
std::complex<double> P[2], Pj[2];
for(unsigned int k = 0; k < nHarmonics; ++k)
{
// Compute the (diagonal) projection matrix P for the current harmonic.
// This requires the evaluation of two polynomials in theta and freq (of
// degree nPowerTheta in theta and nPowerFreq in freq), one for each
// element of P. The polynomials are evaluated using Horner's rule.
// Horner's rule requires backward iteration of the coefficients, so
// move the iterator to the first location past the end of the block of
// coefficients for the current harmonic (k).
coeff += nPowerTheta * nPowerFreq * 2;
// Evaluate the polynomial. Note that the iterator is always decremented
// before it is dereferenced, using the prefix operator--. After
// evaluation of the polynomial, the iterator points exactly to the
// beginning of the block of coefficients for the current harmonic (k),
// that is, all the decrements together exactly cancel the increment
// aplied above.
// Evaluate the highest order term. Note that the order of the
// assigments is important because of the iterator decrement, i.e. P[1]
// should be assigned first.
P[1] = *--coeff;
P[0] = *--coeff;
for(unsigned int i = 0; i < nPowerFreq - 1; ++i)
{
P[1] = P[1] * freq + *--coeff;
P[0] = P[0] * freq + *--coeff;
}
// Evaluate the remaining terms.
for(unsigned int j = 0; j < nPowerTheta - 1; ++j)
{
Pj[1] = *--coeff;
Pj[0] = *--coeff;
for(unsigned int i = 0; i < nPowerFreq - 1; ++i)
{
Pj[1] = Pj[1] * freq + *--coeff;
Pj[0] = Pj[0] * freq + *--coeff;
}
P[1] = P[1] * theta + Pj[1];
P[0] = P[0] * theta + Pj[0];
}
// Because the increment and decrements cancel, the iterator points to
// the same location as at the beginning of this iteration of the outer
// loop. The next iteration should use the coefficients for the next
// harmonic (k), so we move the iterator to the start of that block.
coeff += nPowerTheta * nPowerFreq * 2;
// Compute the Jones matrix for the current harmonic, by rotating P over
// kappa * az, and add it to the result.
const double angle = sign * kappa * phi;
const double caz = std::cos(angle);
const double saz = std::sin(angle);
response[0][0] += caz * P[0];
response[0][1] += -saz * P[1];
response[1][0] += saz * P[0];
response[1][1] += caz * P[1];
// Update sign and kappa.
sign = -sign;
kappa += 2;
}
}
} //# namespace LOFAR
#!/usr/bin/env python3
# Script to convert an ASCII beam model coefficient file to a .cc file for
# inclusion in the library. Whenever the beam model coefficients file are
# updated, this script can be run to automatically update the corresponding .cc
# files.
#
# $Id$
import sys
import time
import re
from functools import reduce
def flat_index(shape, index):
"""
Compute the flat index of the element with the provided (N-dimensional)
index of an N-dimensional array with the provided shape. Row-major order
(or "C"-order) is assumed in the computation of the flattened index. The
index is range checked against the provided shape.
"""
assert len(shape) == len(index)
if len(shape) == 0:
return 0
assert index[0] < shape[0]
flat = index[0]
for i in range(1, len(shape)):
assert index[i] < shape[i]
flat *= shape[i]
flat += index[i]
return flat
def regex(name, type, signed = True):
"""
Return a regular expression to match a (possibly signed) int or float, using
the named group syntax. The matching group will by assigned the provided
name.
"""
expr = None
if type == "int":
expr = "\d+"
elif type == "float":
expr = "(\d+(\.\d*)?|\.\d+)([eE][-+]?\d+)?"
assert expr, "unknown type: %s" % type
if signed:
expr = "[-+]?" + expr
return "(?P<%s>%s)" % (name, expr)
def main(args):
print("converting %s -> %s (variable name: %s)" % (args[0], args[1], args[2]))
HEADER, COEFF = list(range(2))
state = HEADER
shape = None
coeff = None
freqAvg = None
freqRange = None
line_no = 0
count = 0
fin = open(args[0], "r")
for line in fin:
# Remove leading and trailing whitespace.
line = line.strip()
# Skip empty lines and comments.
if len(line) == 0 or line[0] == "#":
line_no += 1
continue
# Parse header information.
if state == HEADER:
match = re.match("^d\s+%s\s+k\s+%s\s+pwrT\s+%s\s+pwrF\s+%s\s+"
"freqAvg\s+%s\s+freqRange\s+%s$" % (regex("d", "int", False),
regex("k", "int", False), regex("pwrT", "int", False),
regex("pwrF", "int", False), regex("freqAvg", "float", False),
regex("freqRange", "float", False)), line)
assert match, "unable to parse header: \"%s\"" % line
shape = (int(match.group("k")), int(match.group("pwrT")),
int(match.group("pwrF")), int(match.group("d")))
assert shape[3] == 2, "unsupported array shape, expected d == 2"
size = reduce(lambda x, y: x * y, shape)
print("coefficient array shape:", shape, "(%d total)" % size)
freqAvg = match.group("freqAvg")
freqRange = match.group("freqRange")
coeff = [None for x in range(size)]
state = COEFF
# Parse coefficients.
elif state == COEFF:
match = re.match("^%s\s+%s\s+%s\s+%s\s+%s\s+%s$"
% (regex("d", "int", False), regex("k", "int", False),
regex("pwrT", "int", False), regex("pwrF", "int", False),
regex("re", "float"), regex("im", "float")), line)
assert match, "unable to parse line #%d" % line_no
d = int(match.group("d"))
k = int(match.group("k"))
pwrT = int(match.group("pwrT"))
pwrF = int(match.group("pwrF"))
index = flat_index(shape, (k, pwrT, pwrF, d))
coeff[index] = "std::complex<double>(%s, %s)" % (match.group("re"), match.group("im"))
count += 1
line_no += 1
fin.close()
assert not (coeff is None) and all(coeff)
# Write the output.
fout = open(args[1], "w")
print("// Beam model coefficients converted by convert_coeff.py.", file=fout)
print("// Conversion performed on %s UTC using: " % time.strftime("%Y/%m/%d/%H:%M:%S", time.gmtime()), file=fout)
print("// convert_coeff.py %s %s %s" % (args[0], args[1], args[2]), file=fout)
print(file=fout)
print("#include <complex>", file=fout)
print(file=fout)
print("// Center frequency, and frequency range for which the beam model coefficients", file=fout)
print("// are valid. The beam model is parameterized in terms of a normalized", file=fout)
print("// frequency f' in the range [-1.0, 1.0]. The appropriate conversion is:", file=fout)
print("//", file=fout)
print("// f' = (f - center) / range", file=fout)
print("//", file=fout)
print("const double %s_freq_center = %s;" % (args[2], freqAvg), file=fout)
print("const double %s_freq_range = %s;" % (args[2], freqRange), file=fout)
print(file=fout)
print("// Shape of the coefficient array: %dx%dx%dx2 (the size of the last dimension is" % (shape[0], shape[1], shape[2]), file=fout)
print("// implied, and always equal to 2).", file=fout)
print("//", file=fout)
print("const unsigned int %s_coeff_shape[3] = {%d, %d, %d};" % (args[2], shape[0], shape[1], shape[2]), file=fout)
print(file=fout)
print("// The array of coefficients in row-major order (\"C\"-order).", file=fout)
print("//", file=fout)
print("const std::complex<double> %s_coeff[%d] = {" % (args[2], len(coeff)), file=fout)
i = 0
while i < len(coeff):
if i + 2 < len(coeff):
print(" %s, %s," % (coeff[i], coeff[i + 1]), file=fout)
i += 2
elif i + 2 == len(coeff):
print(" %s, %s" % (coeff[i], coeff[i + 1]), file=fout)
i += 2
else:
print(" %s" % coeff[i], file=fout)
i += 1
print("};", file=fout)
fout.close()
if __name__ == "__main__":
if len(sys.argv) != 4:
print("convert a beam model coefficient (.coeff) file to a C++ (.cc) file.")
print("usage: convert_coeff.py <input-file> <output-file> <variable-name>")
sys.exit(1)
main(sys.argv[1:])
d 2 k 2 pwrT 5 pwrF 5 freqAvg 180e6 freqRange 60e6
0 0 0 0 0.9989322499459223 0.0003305895124867
1 0 0 0 1.0030546028872600 0.0002157249025076
0 1 0 0 -0.0004916757488397 0.0000266213616248
1 1 0 0 0.0006516553273188 -0.0000433166563288
0 0 1 0 0.0249658150445263 -0.0122024663463393
1 0 1 0 -0.0917825091832822 -0.0062606338208358
0 1 1 0 0.0162495046881796 -0.0010736997976255
1 1 1 0 -0.0175635905033026 0.0012997068962173
0 0 2 0 -0.6730977722052307 0.0940030437973656
1 0 2 0 0.3711597596859299 0.0557089394867947
0 1 2 0 -0.1492097398080444 0.0123735410547393
1 1 2 0 0.1393121453502456 -0.0121117146246749
0 0 3 0 0.0665319393516388 -0.1418009730472832
1 0 3 0 -0.7576728614553603 -0.0472040122949963
0 1 3 0 0.1567990061437258 -0.0143275575385193
1 1 3 0 -0.1043118778001582 0.0106756004832779
0 0 4 0 0.1121669548152054 0.0504713119323919
1 0 4 0 0.1882531376700409 0.0088411256350159
0 1 4 0 -0.0459124372023251 0.0044990718645418
1 1 4 0 0.0135433541303599 -0.0021789296923529
0 0 0 1 0.0003002209532403 0.0007909077657054
1 0 0 1 0.0022051270911392 0.0003834815341981
0 1 0 1 -0.0004357897643121 0.0000320567996700
1 1 0 1 0.0005818285824826 -0.0001021069650381
0 0 1 1 -0.0083709499453879 -0.0289759752488368
1 0 1 1 -0.0689260153643395 -0.0111348626546314
0 1 1 1 0.0138897851110661 -0.0014876219938565
1 1 1 1 -0.0150211436594772 0.0029712291209158
0 0 2 1 0.2119250520015808 0.2155514942677135
1 0 2 1 0.6727380529527980 0.0989550572104158
0 1 2 1 -0.1217628319418324 0.0222643129255504
1 1 2 1 0.1108579917761457 -0.0262986164183475
0 0 3 1 -0.1017024786435272 -0.3302620837788515
1 0 3 1 -0.5600906156274197 -0.0797555201430585
0 1 3 1 0.1151024257152241 -0.0225518489392044
1 1 3 1 -0.0593437249231851 0.0216080058910987
0 0 4 1 0.0066968933526899 0.1181452711088882
1 0 4 1 0.0981630367567397 0.0129921405004959
0 1 4 1 -0.0306136798186735 0.0064963361606382
1 1 4 1 -0.0046440676338940 -0.0037281688158807
0 0 0 2 -0.0003856663268042 0.0008435910525861
1 0 0 2 0.0004887765294093 0.0002777796480946
0 1 0 2 -0.0001047488648808 -0.0000302146563592
1 1 0 2 0.0001593350153828 -0.0000879125663990
0 0 1 2 0.0116296166994115 -0.0307342946951178
1 0 1 2 -0.0171249717275797 -0.0080642275561593
0 1 1 2 0.0031705620225488 0.0004838463688512
1 1 1 2 -0.0034418973689263 0.0024603729467258
0 0 2 2 -0.0419944347289523 0.2355624543349744
1 0 2 2 0.1917656461134636 0.0732470381581913
0 1 2 2 -0.0273147374272124 0.0098595182007132
1 1 2 2 0.0208992817013466 -0.0205929453727953
0 0 3 2 0.0889729243872774 -0.3406964719938829
1 0 3 2 -0.1342560801672904 -0.0515926960946038
0 1 3 2 0.0142781186223020 -0.0057037138045721
1 1 3 2 0.0151043140114779 0.0141435752121475
0 0 4 2 -0.0347327225501659 0.1186585563636635
1 0 4 2 0.0102831315790362 0.0046275244914932
0 1 4 2 -0.0006372791846825 0.0008894047150233
1 1 4 2 -0.0181611528840412 -0.0011106177431486
0 0 0 3 -0.0000699366665322 0.0005136144371953
1 0 0 3 0.0001520602842105 0.0001303481681886
0 1 0 3 -0.0000141882506567 -0.0000941521783975
1 1 0 3 -0.0000004226298134 -0.0000245060763932
0 0 1 3 0.0012408055399100 -0.0191295543986957
1 0 1 3 -0.0051031652662961 -0.0037143632875100
0 1 1 3 0.0003028387544878 0.0026905629457281
1 1 1 3 0.0006768121359769 0.0005901486396051
0 0 2 3 0.0048918921441903 0.1588912409502319
1 0 2 3 0.0575369727210951 0.0344677222786687
0 1 2 3 -0.0002152227668601 -0.0089220757225133
1 1 2 3 -0.0074792188817697 -0.0043562231368076
0 0 3 3 -0.0149335262655201 -0.2084962323582034
1 0 3 3 -0.0327252678958813 -0.0172371907472848
0 1 3 3 -0.0057143555179676 0.0141142700941743
1 1 3 3 0.0251435557201315 -0.0005753615445942
0 0 4 3 0.0070209144233666 0.0689639468490938
1 0 4 3 -0.0020239346031291 -0.0025499069613344
0 1 4 3 0.0032325387394458 -0.0048123509184894
1 1 4 3 -0.0136340313457176 0.0021185000810664
0 0 0 4 0.0000512381993616 0.0001550785137302
1 0 0 4 0.0000819244737818 0.0000466470412396
0 1 0 4 -0.0000177429496833 -0.0000561890408003
1 1 0 4 -0.0000018388829279 0.0000032387726477
0 0 1 4 -0.0022414352263751 -0.0060474723525871
1 0 1 4 -0.0024377933436567 -0.0012852163337395
0 1 1 4 0.0004634797107989 0.0016976603895716
1 1 1 4 0.0003344773954073 -0.0001499932789294
0 0 2 4 0.0241014578366618 0.0547046570516960
1 0 2 4 0.0219986510834463 0.0112189146988984
0 1 2 4 -0.0012019994038721 -0.0079939660050373
1 1 2 4 -0.0035807498769946 0.0014801422733613
0 0 3 4 -0.0362395089905272 -0.0661322227928722
1 0 3 4 -0.0141568558526096 -0.0042676979206835
0 1 3 4 0.0004475745352473 0.0102135659618127
1 1 3 4 0.0090474375150397 -0.0032177128650026
0 0 4 4 0.0132702874173192 0.0207916487187541
1 0 4 4 0.0004387107229914 -0.0017223838914815
0 1 4 4 0.0001287985092565 -0.0032079544559908
1 1 4 4 -0.0045503800737417 0.0015366231416036
d 2 k 2 pwrT 5 pwrF 5 freqAvg 55e6 freqRange 45e6
0 0 0 0 0.9982445079290715 0.0000650863154389
1 0 0 0 1.0006230902158257 -0.0022053287681416
0 1 0 0 -0.0000762326746410 0.0000118155774181
1 1 0 0 0.0000118903581604 -0.0000251324432498
0 0 1 0 0.0550606068782634 0.0011958385659938
1 0 1 0 -0.0160912944232080 0.0703645376267940
0 1 1 0 0.0029807707669629 -0.0003262084082071
1 1 1 0 0.0001639620574332 -0.0000266272685197
0 0 2 0 -0.8624889445327827 -0.1522883072804402
1 0 2 0 -0.0386800869486029 -0.7569350701887934
0 1 2 0 -0.0229975846564195 0.0010565261888195
1 1 2 0 0.0019573207027441 0.0050550600926414
0 0 3 0 0.4039567648146965 0.0810473144253429
1 0 3 0 -0.0350803390479135 0.5214591717801087
0 1 3 0 0.0333560984394624 -0.0009767086536162
1 1 3 0 0.0141704479374002 -0.0205386534626779
0 0 4 0 -0.0756250564248881 0.0056622911723172
1 0 4 0 -0.1267444401630109 -0.0349676272376008
0 1 4 0 -0.0126732549319889 0.0002042370658763
1 1 4 0 -0.0101360135082899 0.0114084024114141
0 0 0 1 0.0001002692200362 0.0006838211278268
1 0 0 1 -0.0003660049052840 -0.0008418920419220
0 1 0 1 -0.0002204197663391 -0.0000213776348027
1 1 0 1 0.0001477083861977 0.0000599750510518
0 0 1 1 0.0033849565901213 -0.0244636379385135
1 0 1 1 0.0234264238829944 0.0084068836453700
0 1 1 1 0.0076282580587895 0.0026614359017468
1 1 1 1 -0.0044850263974801 -0.0058337192660638
0 0 2 1 0.0891332399420108 0.1876527151756476
1 0 2 1 -0.1012363483900640 -0.1975118891151966
0 1 2 1 -0.0682274156850413 -0.0758159820140411
1 1 2 1 0.0497303968865466 0.1019681987654797
0 0 3 1 0.2232030356124932 -0.2248154851829713
1 0 3 1 0.4704343293662089 -0.3552101485419532
0 1 3 1 0.0562541280098909 0.0743149092143081
1 1 3 1 -0.0226634801339250 -0.1439026188572270
0 0 4 1 -0.1793752883639813 0.0720222655359702
1 0 4 1 -0.2678542619793421 0.3152115802895427
0 1 4 1 -0.0102147881225462 -0.0176848554302252
1 1 4 1 -0.0051268936720694 0.0527621533959941
0 0 0 2 -0.0010581424498791 0.0015237878543047
1 0 0 2 0.0007398729642721 0.0028468649470433
0 1 0 2 -0.0003281057522772 -0.0000770207588466
1 1 0 2 0.0003478997686964 0.0001481982639746
0 0 1 2 0.0557107413978542 -0.0634701730653090
1 0 1 2 -0.0139549526991330 -0.1175401658864208
0 1 1 2 0.0124258438959177 0.0067985224235178
1 1 1 2 -0.0126349778957970 -0.0100656881493938
0 0 2 2 -0.6404795825927633 0.7568775384981410
1 0 2 2 0.0767245154665722 1.3441875993523555
0 1 2 2 -0.1757936183439326 -0.1363710820472197
1 1 2 2 0.1765450269056824 0.1555919358121995
0 0 3 2 0.9646419509627557 -0.8095088593139815
1 0 3 2 0.1635280638865702 -1.4854352979459096
0 1 3 2 0.1238595124159999 0.1766108700786397
1 1 3 2 -0.1307647072780430 -0.2090615438301942
0 0 4 2 -0.3718069213271066 0.2275266747872172
1 0 4 2 -0.1372223722572021 0.4314989948093362
0 1 4 2 -0.0110701836450407 -0.0593085026046026
1 1 4 2 0.0140598301629874 0.0738668439833535
0 0 0 3 -0.0039458389254656 -0.0007048354913730
1 0 0 3 0.0007040177887611 0.0007856369612188
0 1 0 3 -0.0000625695757282 0.0000249138990722
1 1 0 3 -0.0000960097542525 0.0002521364065803
0 0 1 3 0.1336911750356096 0.0202651327657687
1 0 1 3 -0.0113385668361727 -0.0339262369086247
0 1 1 3 0.0059031372522229 0.0008660479915339
1 1 1 3 0.0039660364524413 -0.0100356333791398
0 0 2 3 -0.8758406699506004 0.3350237639226141
1 0 2 3 0.2824832769101577 0.6821307442669313
0 1 2 3 -0.1541299429420569 -0.0281422177614844
1 1 2 3 0.0816399676454817 0.0691599035109852
0 0 3 3 1.0331569921006993 0.0509705885336283
1 0 3 3 0.1501121326521990 -0.5193414816770609
0 1 3 3 0.1557916917691289 0.0646351862895731
1 1 3 3 0.0170294191358757 -0.1027926845803498
0 0 4 3 -0.3316657641578328 -0.1655909947939444
1 0 4 3 -0.2158100484836540 0.0614504774034524
0 1 4 3 -0.0389912915621699 -0.0301364165752433
1 1 4 3 -0.0462331759359031 0.0405864871628086
0 0 0 4 -0.0031701591723043 -0.0010521154166512
1 0 0 4 -0.0007213036752903 -0.0007227764008022
0 1 0 4 0.0001275344578325 0.0000652362392482
1 1 0 4 -0.0003113309221942 0.0001956734476566
0 0 1 4 0.0962263571740972 0.0440074333288440
1 0 1 4 0.0313595045238824 0.0230763038515351
0 1 1 4 -0.0020520685193773 -0.0028564379463666
1 1 1 4 0.0121039958869239 -0.0059701468961263
0 0 2 4 -0.3144282315609649 -0.2763869580286276
1 0 2 4 -0.1705959031354030 -0.0712085950559831
0 1 2 4 -0.0235110916473515 0.0306385386726702
1 1 2 4 -0.0474273292450285 0.0116831908947225
0 0 3 4 0.4715775965513117 0.5077361528286819
1 0 3 4 0.3847391427972284 0.1136717951238837
0 1 3 4 0.0543537332385954 -0.0366524906364179
1 1 3 4 0.1127180664279469 -0.0176607923511174
0 0 4 4 -0.1901597954359592 -0.2294955549701665
1 0 4 4 -0.1864961465389693 -0.0486276177310768
0 1 4 4 -0.0251598701859194 0.0115712688652445
1 1 4 4 -0.0563476280247398 0.0079787883434624
# $Id: CMakeLists.txt 14609 2009-12-07 09:10:48Z loose $
# Do not split the following line, otherwise makeversion will fail!
lofar_package(ExpIon 1.0 DEPENDS pyparameterset pyparmdb)
include(LofarFindPackage)
lofar_find_package(Boost REQUIRED COMPONENTS python thread)
lofar_find_package(Casacore REQUIRED COMPONENTS python scimath)
add_subdirectory(src)
# $Id: CMakeLists.txt 14508 2010-03-24 13:18:18Z vdtol $
include(PythonInstall)
lofar_add_bin_scripts(
calibrate-ion
readms-part.sh
readms-part.py
parmdbwriter.py)
lofar_add_library(_baselinefitting MODULE baselinefitting.cc)
set_target_properties(_baselinefitting PROPERTIES
PREFIX ""
LIBRARY_OUTPUT_DIRECTORY ${PYTHON_BUILD_DIR}/lofar/expion)
# This is a quick-and-dirty fix to install the Python binding module in the
# right place. It will now be installed twice, because lofar_add_library()
# will install it in $prefix/$libdir
install(TARGETS _baselinefitting
DESTINATION ${PYTHON_INSTALL_DIR}/lofar/expion)
# Python modules.
python_install(
__init__.py
io.py
format.py
ionosphere.py
acalc.py
client.py
sphere.py
error.py
mpfit.py
readms.py
parmdbmain.py
baselinefitting.py
repairGlobaldb.py
MMionosphere.py
fitClockTEC.py
PosTools.py
read_sagecal.py
DESTINATION lofar/expion)
This diff is collapsed.
from pyrap.measures import measures
from math import *
import pyrap.quanta as qa;
import os
from pyrap import tables as tab
import numpy as np
R_earth=6364.62e3;
earth_ellipsoid_a = 6378137.0;
earth_ellipsoid_a2 = earth_ellipsoid_a*earth_ellipsoid_a;
earth_ellipsoid_b = 6356752.3142;
earth_ellipsoid_b2 = earth_ellipsoid_b*earth_ellipsoid_b;
earth_ellipsoid_e2 = (earth_ellipsoid_a2 - earth_ellipsoid_b2) / earth_ellipsoid_a2;
posCS002=[3826577.1095 ,461022.900196, 5064892.758]
def getMSinfo(MS=None):
print("getting info for",MS)
if MS is None:
print("No measurement set given")
return
if os.path.isdir(MS):
myMS=tab.table(MS)
else:
print("Do not understand the format of MS",MS,"bailing out")
return;
print("opened table",MS)
timerange=[np.amin(myMS.getcol('TIME_CENTROID')),np.amax(myMS.getcol('TIME_CENTROID'))]
timestep=myMS.getcell('INTERVAL',0)
pointing= tab.table(myMS.getkeyword('FIELD')).getcell('PHASE_DIR',0);
stations = tab.table(myMS.getkeyword('ANTENNA')).getcol('NAME')
station_pos = tab.table(myMS.getkeyword('ANTENNA')).getcol('POSITION')
return (timerange,timestep,pointing.flatten(),stations,station_pos)
def getPPsimple(height=[450.e3,],mPosition=[0.,0.,0.],direction=[0.,0.,0.]):
'''get piercepoints for antenna position mPosition in m, direction ITRF in m on unit sphere and for array of heights, assuming a spherical Earth'''
height=np.array(height)
stX=mPosition[0]
stY=mPosition[1]
stZ=mPosition[2]
x=np.divide(stX,(R_earth+height))
y=np.divide(stY,(R_earth+height))
z=np.divide(stZ,(R_earth+height))
c = x*x + y*y + z*z - 1.0;
dx=np.divide(direction[0],(R_earth+height))
dy=np.divide(direction[1],(R_earth+height))
dz=np.divide(direction[2],(R_earth+height))
a = dx*dx + dy*dy + dz*dz;
b = x*dx + y*dy + z*dz;
alpha = (-b + np.sqrt(b*b - a*c))/a;
pp=np.zeros(height.shape+(3,))
pp[:,0]=stX+alpha*direction[0]
pp[:,1]=stY+alpha*direction[1]
pp[:,2]=stZ+alpha*direction[2]
am=np.divide(1.,pp[:,0]*dx+pp[:,1]*dy+pp[:,2]*dz)
return pp,am
def getPPsimpleAngle(height=[450.e3,],mPosition=[0.,0.,0.],direction=[0.,0.,0.]):
'''get (lon,lat,h values) of piercepoints for antenna position mPosition in m, direction ITRF in m on unit sphere and for array of heights, assuming a spherical Earth'''
height=np.array(height)
stX=mPosition[0]
stY=mPosition[1]
stZ=mPosition[2]
x=np.divide(stX,(R_earth+height))
y=np.divide(stY,(R_earth+height))
z=np.divide(stZ,(R_earth+height))
c = x*x + y*y + z*z - 1.0;
dx=np.divide(direction[0],(R_earth+height))
dy=np.divide(direction[1],(R_earth+height))
dz=np.divide(direction[2],(R_earth+height))
a = dx*dx + dy*dy + dz*dz;
b = x*dx + y*dy + z*dz;
alpha = (-b + np.sqrt(b*b - a*c))/a;
pp=np.zeros(height.shape+(3,))
pp[:,0]=stX+alpha*direction[0]
pp[:,1]=stY+alpha*direction[1]
pp[:,2]=stZ+alpha*direction[2]
am=np.divide(1.,pp[:,0]*dx+pp[:,1]*dy+pp[:,2]*dz)
ppl=np.zeros(height.shape+(3,))
ppl[:,0]=np.atan2(pp[:,1],pp[:0])
ppl[:,1]=np.atan2(pp[:,2],np.sqrt(pp[:0]*pp[:,0]+pp[:1]*pp[:,1]))
ppl[:,2]=heigth
return ppl,am
def getPP(h=450e3,mPosition=[0.,0.,0.],direction=[0.,0.,0.]):
stationX = mPosition[0];
stationY = mPosition[1];
stationZ = mPosition[2];
ion_ellipsoid_a = earth_ellipsoid_a + h;
ion_ellipsoid_a2_inv = 1.0 / (ion_ellipsoid_a * ion_ellipsoid_a);
ion_ellipsoid_b = earth_ellipsoid_b + h;
ion_ellipsoid_b2_inv = 1.0 / (ion_ellipsoid_b * ion_ellipsoid_b);
x = stationX/ion_ellipsoid_a;
y = stationY/ion_ellipsoid_a;
z = stationZ/ion_ellipsoid_b;
c = x*x + y*y + z*z - 1.0;
dx = direction [0]/ ion_ellipsoid_a;
dy = direction [1] / ion_ellipsoid_a;
dz = direction [2] / ion_ellipsoid_b;
a = dx*dx + dy*dy + dz*dz;
b = x*dx + y*dy + z*dz;
alpha = (-b + sqrt(b*b - a*c))/a;
pp_x = stationX + alpha*direction[0];
pp_y = stationY + alpha*direction[1]
pp_z = stationZ + alpha*direction[2];
normal_x = pp_x * ion_ellipsoid_a2_inv;
normal_y = pp_y * ion_ellipsoid_a2_inv;
normal_z = pp_z * ion_ellipsoid_b2_inv;
norm_normal2 = normal_x*normal_x + normal_y*normal_y + normal_z*normal_z;
norm_normal = sqrt(norm_normal2);
sin_lat2 = normal_z*normal_z / norm_normal2;
g = 1.0 - earth_ellipsoid_e2*sin_lat2;
sqrt_g = sqrt(g);
M = earth_ellipsoid_b2 / ( earth_ellipsoid_a * g * sqrt_g );
N = earth_ellipsoid_a / sqrt_g;
local_ion_ellipsoid_e2 = (M-N) / ((M+h)*sin_lat2 - N - h);
local_ion_ellipsoid_a = (N+h) * sqrt(1.0 - local_ion_ellipsoid_e2*sin_lat2);
local_ion_ellipsoid_b = local_ion_ellipsoid_a*sqrt(1.0 - local_ion_ellipsoid_e2);
z_offset = ((1.0-earth_ellipsoid_e2)*N + h - (1.0-local_ion_ellipsoid_e2)*(N+h)) * sqrt(sin_lat2);
x1 = stationX/local_ion_ellipsoid_a;
y1 = stationY/local_ion_ellipsoid_a;
z1 = (stationZ-z_offset)/local_ion_ellipsoid_b;
c1 = x1*x1 + y1*y1 + z1*z1 - 1.0;
dx = direction[0] / local_ion_ellipsoid_a;
dy = direction[1] / local_ion_ellipsoid_a;
dz = direction[2] / local_ion_ellipsoid_b;
a = dx*dx + dy*dy + dz*dz;
b = x1*dx + y1*dy + z1*dz;
alpha = (-b + sqrt(b*b - a*c1))/a;
pp_x = stationX + alpha*direction[0];
pp_y = stationY + alpha*direction[1]
pp_z = stationZ + alpha*direction[2];
normal_x = pp_x / (local_ion_ellipsoid_a * local_ion_ellipsoid_a);
normal_y = pp_y / (local_ion_ellipsoid_a * local_ion_ellipsoid_a);
normal_z = (pp_z-z_offset) / (local_ion_ellipsoid_b * local_ion_ellipsoid_b);
norm_normal2 = normal_x*normal_x + normal_y*normal_y + normal_z*normal_z;
norm_normal = sqrt(norm_normal2);
pp_airmass = norm_normal / (direction[0]*normal_x + direction[1]*normal_y + direction[2]*normal_z);
return (np.array([[pp_x,pp_y,pp_z]]),pp_airmass)
class PPdummy:
pass
def getPiercePoints(time,source_positions,station_positions,height=450.e3):
me=measures()
piercepoints=PPdummy()
piercepoints.positions_xyz=np.zeros((source_positions.shape[0],station_positions.shape[0],3),dtype=np.float64)
piercepoints.positions=np.zeros((source_positions.shape[0],station_positions.shape[0],2),dtype=np.float64)
piercepoints.zenith_angles=np.zeros((source_positions.shape[0],station_positions.shape[0]),dtype=np.float64)
for isrc in range(source_positions.shape[0]) :
radec=source_positions[isrc]
for istat in range(station_positions.shape[0]):
stat_pos=station_positions[istat]
azel=radec2azel(radec[0],radec[1],time=str(time)+'s',pos=stat_pos)
az=azel['m0']['value'];
el=azel['m1']['value'];
lonlat=getLonLatStation(az,el,pos=stat_pos);
lon=lonlat['m0']['value'];
lat=lonlat['m1']['value'];
# convert to itrf coordinates on sphere with radius 1
diritrf=[cos(lat)*cos(lon),cos(lat)*sin(lon),sin(lat)]
(pp,am)=getPP(h=height,mPosition=stat_pos,direction=diritrf)
piercepoints.positions_xyz[isrc,istat]=np.array(pp[0])
piercepoints.zenith_angles[isrc,istat]=np.arccos(1./am)
pp1position=me.position("ITRF",str(pp[0,0])+'m',str(pp[0,1])+'m',str(pp[0,2])+'m')
# print "pp", degrees(pp1position['m0']['value']),degrees(pp1position['m1']['value'])
piercepoints.positions[isrc,istat,0] = pp1position['m0']['value'];
piercepoints.positions[isrc,istat,1] = pp1position['m1']['value'];
return piercepoints
def getLonLat(pos):
#converts ITRF pos in xyz to lon lat
me=measures()
a=me.measure(me.position('ITRF',str(pos[0])+'m',str(pos[1])+'m',str(pos[2])+'m'),"ITRF");
return (a['m0']['value'],a['m1']['value'])
def getLonLatStation(az=0,el=0,pos=posCS002):
#gets converts local station direction to ITRF lon/lat
if not isinstance(az,str):
az=str(az)+'rad';
if not isinstance(el,str):
el=str(el)+'rad';
me=measures()
me.do_frame(me.position('ITRF',str(pos[0])+'m',str(pos[1])+'m',str(pos[2])+'m'))
#me.do_frame(me.epoch('utc', 'today'))
direction=me.direction("AZEL",az,el)
return me.measure(direction,"ITRF");
def radec2azel(ra,dec,time, pos):
me=measures();
if type(ra)!=str:
ra=str(ra)+'rad';
if type(dec)!=str:
dec=str(dec)+'rad';
phasedir=me.direction('J2000',ra,dec)
t=me.epoch("UTC",qa.quantity(time));
me.do_frame(t);
p = me.position('ITRF',str(pos[0])+'m',str(pos[1])+'m',str(pos[2])+'m')
me.do_frame(p);
azel = me.measure(phasedir,'azel');
return azel;
def azel2radec(az,el,time, pos):
me=measures();
if type(az)!=str:
az=str(az)+'rad';
if type(el)!=str:
el=str(el)+'rad';
phasedir=me.direction('AZEL',az,el)
t=me.epoch("UTC",qa.quantity(time));
me.do_frame(t);
p = me.position('ITRF',str(pos[0])+'m',str(pos[1])+'m',str(pos[2])+'m')
me.do_frame(p);
radec = me.measure(phasedir,'RADEC');
return radec;
def getStatPos(stations,AFPath='/opt/lofar/etc/StaticMetaData/',Field='LBA'):
StatPos=[];
for st in stations:
antFile=open(AFPath+st+"-AntennaField.conf")
line=antFile.readline()
while len(line)>0 and line[:len(Field)]!=Field:
line=antFile.readline()
if line[:len(Field)]==Field:
StatPos.append([float(stp) for stp in antFile.readline().split()[2:5]])
else:
print("Field",Field,"for",st,"not found,putting zeros")
StatPos.append([0,0,0])
antFile.close()
return StatPos
# -*- coding: iso-8859-1 -*-
# __init__.py: Top level .py file for python solution analysis tools.
#
# Copyright (C) 2010
# ASTRON (Netherlands Institute for Radio Astronomy)
# P.O.Box 2, 7990 AA Dwingeloo, The Netherlands
#
# This file is part of the LOFAR software suite.
# The LOFAR software suite is free software: you can redistribute it and/or
# modify it under the terms of the GNU General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# The LOFAR software suite is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with the LOFAR software suite. If not, see <http://www.gnu.org/licenses/>.
#
# $Id: __init__.py 12729 2010-03-24 13:39:59Z vdtol $
#from ionosphere import *
__all__ = ['ionosphere', 'parmdbmain']
\ No newline at end of file
###############################################################################
# import Python modules
from math import pi, atan2, degrees, radians
# import 3rd party modules
from numpy import *
# import user modules
from .error import *
try:
import _acalc
except:
__acalc = False
else:
__acalc = True
###############################################################################
# NOTE: there are several cases where one needs to preserve the sign of zero,
# e.g. +0 and -0.
###############################################################################
def factorial( n ):
nn = int( n )
if ( nn < 0 ):
fac = None
else:
if __acalc:
fac = _acalc.factorial( nn )
else:
fac = int( 1 )
while ( nn > 0 ):
fac = fac * int( nn )
nn = nn - 1
return fac
###############################################################################
def binomial( n, k ):
nn = int( n )
kk = int( k )
if ( kk < 0 ) or ( kk > nn ):
binom = None
else:
if __acalc:
binom = _acalc.binomial( nn, kk )
else:
binom = factorial( nn ) / ( factorial( kk ) * factorial( nn - kk ) )
return binom
###############################################################################
def complex_to_r_phi( c ):
if __acalc:
[ r, phi ] = _acalc.complex_to_r_phi( [ c.real, c.imag ] )
else:
r = abs( c )
phi = degrees( log( c ).imag )
return [ r, phi ]
###############################################################################
def r_phi_to_complex( rp ):
if __acalc:
[ cr, ci ] = _acalc.r_phi_to_complex( rp )
c = complex( cr, ci )
else:
[ r, phi ] = rp
c = r * exp( complex( 0., 1. ) * radians( phi ) )
return c
###############################################################################
def is_array( a ):
return isinstance( a, type( array( [ 1 ] ) ) )
###############################################################################
def azeros( x ):
if ( len( shape( x ) ) == 0 ):
zero = 0.
else:
zero = zeros( shape = x.shape, dtype = x.dtype )
return zero
###############################################################################
def aones( x ):
if ( len( x.shape ) == 0 ):
one = 1.
else:
one = ones( shape = x.shape, dtype = x.dtype )
return one
###############################################################################
def aatan2( y, x ):
if ( shape( x ) != shape( y ) ):
raise error( 'x and y have different shapes' )
if ( len( shape( x ) ) == 0 ):
z = atan2( y, x )
else:
xx = x.ravel()
yy = y.ravel()
zz = array( [ atan2( yy[ i ], xx[ i ] ) for i in range( len( xx ) ) ], dtype = x.dtype )
z = zz.reshape( x.shape )
return z
###############################################################################
def asign( x ):
# this function also separates between -0 and +0
if ( not is_array( x ) ):
s = ( - 2. * float( aatan2( x, x ) < 0. ) + 1. )
else:
s = ( - 2. * array( aatan2( x, x ) < 0., dtype = x.dtype ) + 1. )
return s
###############################################################################
def amodulo( x, y ):
if ( not is_array( x ) ):
if ( not is_array( y ) ):
m = x - y * floor( x / ( y + float( y == 0. ) ) )
else:
xx = x * aones( y )
m = xx - y * floor( x / ( y + array( y == 0., dtype = y.dtype ) ) )
else:
if ( not is_array( y ) ):
yy = y * aones( x )
m = x - yy * floor( x / ( yy + array( yy == 0., dtype = yy.dtype ) ) )
else:
m = x - y * floor( x / ( y + array( y == 0., dtype = y.dtype ) ) )
return m
###############################################################################
def aradians( x ):
r = x * ( pi / 180. )
return r
###############################################################################
def adegrees( x ):
r = x * ( 180. / pi )
return r
###############################################################################
def awhere( a ):
return transpose( array( where( a ) ) )
###############################################################################
def aput( data, sel, sub ):
# data, sel and sub must be arrays
# check input dimensions
if ( len( sel ) == 0 ):
return data.copy()
if ( len( sel.ravel() ) == 0 ):
return data.copy()
if ( sel.shape[ 1 ] > len( data.shape ) ):
raise error( 'number of dimensions of index array is higher than that of data array' )
asub = array( sub )
if ( len( asub.shape ) == len( data.shape ) - sel.shape[ 1 ] ):
if ( asub.shape != data.shape[ sel.shape[ 1 ] : ] ):
raise error( 'shape of subarray does not match selected data' )
asub = resize( asub, [ sel.shape[ 0 ] ] + list( data.shape[ sel.shape[ 1 ] : ] ) )
elif ( len( asub.shape ) == len( data.shape ) - sel.shape[ 1 ] + 1 ):
if ( list( asub.shape ) != [ sel.shape[ 0 ] ] + list( data.shape[ sel.shape[ 1 ] : ] ) ):
raise error( 'shape of subarray does not match selected data' )
# collapse and write data
coffset = [ int( product( data.shape[ i : sel.shape[ 1 ] ] ) ) for i in range( 1, 1 + sel.shape[ 1 ] ) ]
coffset[ - 1 ] = 1
csel = add.reduce( sel * array( coffset ), 1 )
subsize = int( product( data.shape[ sel.shape[ 1 ] : ] ) )
suboffset = resize( arange( subsize ), [ sel.shape[ 0 ], subsize ] )
csel = ( transpose( resize( csel * subsize, [ subsize, sel.shape[ 0 ] ] ) ) + suboffset ).ravel()
cdata = data.copy().ravel()
csub = asub.ravel()
put( cdata, csel, csub )
return cdata.reshape( data.shape )
###############################################################################
def aget( data, sel ):
# data and sel must be arrays
# check input dimensions
if ( len( sel ) == 0 ):
return array( [], dtype = data.dtype )
if ( len( sel.ravel() ) == 0 ):
return array( [], dtype = data.dtype )
if ( sel.shape[ 1 ] > len( data.shape ) ):
raise error( 'number of dimensions of index array is higher than that of data array' )
# collapse data along sel axes
cdata_len = int( product( data.shape[ 0 : sel.shape[ 1 ] ] ) )
cdata_shape = [ cdata_len ] + list( data.shape[ sel.shape[ 1 ] : ] )
cdata = data.reshape( cdata_shape )
coffset = [ int( product( data.shape[ i : sel.shape[ 1 ] ] ) ) for i in range( 1, 1 + sel.shape[ 1 ] ) ]
coffset[ - 1 ] = 1
csel = add.reduce( sel * array( coffset ), 1 )
return take( cdata, csel, axis = 0 )
###############################################################################
def amean_phase( data ):
# determine phase average (with trick to get around possible phase wrap problems)
phases = array( [ data ], dtype = float64 ).ravel()
offsets = [ 0., 90., 180., 270. ]
mean_phases = [ ( amodulo( ( phases + offsets[ j ] ) + 180., 360. ) - 180. ).mean()
for j in range( len( offsets ) ) ]
var_phases = [ ( ( ( amodulo( ( phases + offsets[ j ] ) + 180., 360. ) - 180. ) -
mean_phases[ j ] )**2 ).mean() for j in range( len( offsets ) ) ]
j = var_phases.index( min( var_phases ) )
mean_phase = mean_phases[ j ] - offsets[ j ]
return float( amodulo( mean_phase + 180, 360. ) - 180. )
###############################################################################
def amedian_phase( data ):
# determine phase average (with trick to get around possible phase wrap problems)
mean_phase = amean_phase( data )
phases = array( [ data ], dtype = float64 ).ravel()
median_phase = median( amodulo( ( phases - mean_phase ) + 180., 360. ) - 180. )
median_phase = amodulo( ( median_phase + mean_phase ) + 180., 360. ) - 180.
return float( median_phase )
###############################################################################
//# fitting.cc: Clock and TEC fitting using cascore
//#
//#
//# Copyright (C) 2012
//# ASTRON (Netherlands Institute for Radio Astronomy)
//# P.O.Box 2, 7990 AA Dwingeloo, The Netherlands
//#
//# This file is part of the LOFAR software suite.
//# The LOFAR software suite is free software: you can redistribute it and/or
//# modify it under the terms of the GNU General Public License as published
//# by the Free Software Foundation, either version 3 of the License, or
//# (at your option) any later version.
//#
//# The LOFAR software suite is distributed in the hope that it will be useful,
//# but WITHOUT ANY WARRANTY; without even the implied warranty of
//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
//# GNU General Public License for more details.
//#
//# You should have received a copy of the GNU General Public License along
//# with the LOFAR software suite. If not, see <http://www.gnu.org/licenses/>.
//#
//# $Id: $
#include <lofar_config.h>
#include <Common/OpenMP.h>
#include <casacore/casa/Containers/ValueHolder.h>
#include <casacore/casa/Containers/Record.h>
#include <casacore/casa/Utilities/CountedPtr.h>
#include <casacore/scimath/Fitting/LSQFit.h>
#if defined(HAVE_CASACORE)
#include <casacore/python/Converters/PycExcp.h>
#include <casacore/python/Converters/PycBasicData.h>
#include <casacore/python/Converters/PycValueHolder.h>
#include <casacore/python/Converters/PycRecord.h>
#define pyrap python
#else
#include <pyrap/Converters/PycExcp.h>
#include <pyrap/Converters/PycBasicData.h>
#include <pyrap/Converters/PycValueHolder.h>
#include <pyrap/Converters/PycRecord.h>
#endif
#include <boost/python.hpp>
#include <boost/python/args.hpp>
using namespace casacore;
using namespace boost::python;
namespace LOFAR
{
namespace ExpIon
{
ValueHolder fit(const ValueHolder &phases_vh, const ValueHolder &A_vh, const ValueHolder &init_vh,
const ValueHolder &flags_vh, const ValueHolder &constant_parm_vh )
{
// Arrays are passed as ValueHolder
// They are Array is extracted by the asArray<Type> methods
// They pointer to the actual data is obtained by the Array.data() method.
// Get the phases
Array<Float> phases = phases_vh.asArrayFloat();
Float *phases_data = phases.data();
// Get the flags
Array<Bool> flags(flags_vh.asArrayBool());
Bool noflags = (flags.ndim() == 0);
Bool *flags_data;
if (!noflags)
{
flags_data = flags.data();
}
IPosition s = phases.shape();
int N_station = s[0];
int N_freq = s[1];
// Get the matrix with basis functions
Array<Float> A = A_vh.asArrayFloat();
Float *A_data = A.data();
IPosition s1 = A.shape();
int N_coeff = s1[0];
int N_parm = N_station * N_coeff;
Float sol[N_parm];
Array<Float> init(init_vh.asArrayFloat());
if (init.ndim() == 0)
{
for(int i = 0; i < N_parm; i++) sol[i] = 0.0;
}
else
{
for(int i = 0; i < N_parm; i++) sol[i] = init.data()[i];
}
// Get the flags indicating which parameters are constant_parm
// i.e. are not a free parameter in the minimization problem
Array<Bool> constant_parm(constant_parm_vh.asArrayBool());
Bool no_constant_parm = (constant_parm.ndim() == 0);
Bool *constant_parm_data;
if (!no_constant_parm)
{
constant_parm_data = constant_parm.data();
}
Float cEq[N_parm];
for(int i=0; i<N_parm; ++i) cEq[i] = 0.0;
int N_thread = OpenMP::maxThreads();
std::vector<LSQFit> lnl(N_thread);
uInt nr = 0;
for (int iter = 0; iter<1000; iter++)
{
for(int i = 0; i<N_thread; i++) {
lnl[i] = LSQFit(N_parm);
}
#pragma omp parallel
{
int threadNum = OpenMP::threadNum();
Float derivatives_re[2*N_coeff];
Float derivatives_im[2*N_coeff];
uInt idx[2*N_coeff];
#pragma omp for
for(int k = 0; k<N_freq; k++)
{
Float *A_data_k = A_data + k*N_coeff;
Float *phases_data_k = phases_data + k*N_station;
Bool *flags_data_k = flags_data + k*N_station;
for(int i = 1; i<N_station; i++)
{
Float phases_data_k_i = phases_data_k[i];
Bool flags_data_k_i = flags_data_k[i];
for(int j = 0; j<i; j++)
{
if (noflags || !(flags_data_k_i || flags_data_k[j]))
{
Float phase_ij_obs = phases_data_k_i - phases_data_k[j];
Float phase_ij_model = 0.0;
for (int l = 0; l<N_coeff; l++)
{
Float coeff = A_data_k[l];
phase_ij_model += (sol[i + l*N_station] - sol[j + l*N_station]) * coeff ;
}
Float sin_dphase, cos_dphase;
#if defined(_LIBCPP_VERSION)
#define sincosf __sincosf
#endif
sincosf(phase_ij_obs - phase_ij_model, &sin_dphase, &cos_dphase);
Float residual_re = cos_dphase - 1.0;
Float residual_im = sin_dphase;
Float derivative_re = -sin_dphase;
Float derivative_im = cos_dphase;
for (int l = 0; l<N_coeff; l++)
{
Float coeff = A_data_k[l];
Float a = derivative_re * coeff;
Float b = derivative_im * coeff;
derivatives_re[l] = a;
derivatives_re[N_coeff + l] = -a;
derivatives_im[l] = b;
derivatives_im[N_coeff + l] = -b;
idx[l] = i+l*N_station;
idx[N_coeff + l] = j+l*N_station;
}
lnl[threadNum].makeNorm(uInt(2*N_coeff), (uInt*) idx, (Float*) derivatives_re, Float(1.0), residual_re);
lnl[threadNum].makeNorm(uInt(2*N_coeff), (uInt*) idx, (Float*) derivatives_im, Float(1.0), residual_im);
}
}
}
}
}
for(int i = 1; i<N_thread; i++)
{
lnl[0].merge(lnl[i]);
}
if ((!no_constant_parm) )
{
for (int i = 0; i<N_parm; i++)
{
if (constant_parm_data[i])
{
cEq[i] = 1.0;
lnl[0].addConstraint( (Float*) cEq, 0.0);
cEq[i] = 0.0;
}
}
}
if (!lnl[0].solveLoop(nr, sol, True))
{
cout << "Error in loop: " << nr << endl;
break;
}
if (lnl[0].isReady())
{
break;
}
}
Array<Float> solutions(IPosition(2, N_station, N_coeff), sol);
ValueHolder result(solutions);
return result;
};
} // namespace ExpIon
} // namespace LOFAR
BOOST_PYTHON_MODULE(_baselinefitting)
{
casacore::pyrap::register_convert_excp();
casacore::pyrap::register_convert_basicdata();
casacore::pyrap::register_convert_casa_valueholder();
casacore::pyrap::register_convert_casa_record();
def("fit", LOFAR::ExpIon::fit);
}
"""Fit basefunctions to phases using all baselines
Application: Clock-TEC separation
The phase can be described by a linear model
.. math::
phases = A p
where the columns of matrix A contain the basefunctions and p are the parameters
The same equation holds for the phases of multiple stations
The dimension of phases is then N_freq x N_station and
the dimension of p is N_freq x N_param
The cost function that will be minimized is
.. math::
\\sum_{i=1}^{N_{station}-1}\\sum_{j=0}^{i-1} \\sum_{k=0}^{N_{freq}} \\| \\exp(\imath(\\Delta phase_{ijk} - \\Delta modelphase_{ijk})) \\|^2
where
.. math::
\\Delta phase_{ijk} =
\\Delta modelphase_{ijk} =
"""
import _baselinefitting
def fit(phases, A, p_0 = None, flags = None, constant_parms = None):
"""see module description for detailed info"""
return _baselinefitting.fit(phases, A, p_0, flags, constant_parms)
\ No newline at end of file
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright (C) 2007
# ASTRON (Netherlands Institute for Radio Astronomy)
# P.O.Box 2, 7990 AA Dwingeloo, The Netherlands
#
# This file is part of the LOFAR software suite.
# The LOFAR software suite is free software: you can redistribute it and/or
# modify it under the terms of the GNU General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# The LOFAR software suite is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with the LOFAR software suite. If not, see <http://www.gnu.org/licenses/>.
#
# $Id$
import sys
import os
import re
import lofar.expion.ionosphere as ionosphere
import lofar.parameterset
from pylab import *
arguments = sys.argv.__iter__()
scriptname = os.path.basename(arguments.next())
def print_error(msg):
print "%s: %s" % (scriptname, msg)
sky_name = 'sky'
instrument_name = 'instrument'
clusterdescfile = "~/CEP.clusterdesc"
globaldb = 'globaldb'
def display_help_and_exit(dummy = None):
print '''usage:
%s [options] <parsetfile> <gdsfiles> ''' % scriptname
print
print '''arguments:
<gdsfiles> gds file(s)'''
print
print '''options:
-h, --help display this help text
--cluster-desc <cluster description file>
Define cluster description file
(default: ~/CEP.clusterdesc)
--sky-name <skyname>
Define basename for the sky model parmdb
(default: sky)
--instrument-name <instrumentname>
Define basename of the instrument parmdb
(default: instrument)
'''
exit()
def set_clusterdesc(arguments):
global clusterdescfile
try:
clusterdescfile = arguments.next()
if clusterdescfile[0] == '-':
raise ValueError
except (KeyError, ValueError):
print_error( "--cluster-desc should be followed by the name of the cluster description file")
exit()
def set_instrument_name(arguments):
global instrument_name
try:
instrument_name = arguments.next()
if instrument_name[0] == '-':
raise ValueError
except (KeyError, ValueError):
print_error( "--instrument-name should be followed by the basename of the instrument parmdb")
exit()
def set_sky_name(arguments):
global sky_name
try:
sky_name = arguments.next()
if sky_name[0] == '-':
raise ValueError
except (KeyError, ValueError):
print_error( "--sky-name should be followed by the basename of the sky parmdb")
exit()
def set_globaldb(arguments):
global globaldb
try:
globaldb = arguments.next()
if globaldb[0] == '-':
raise ValueError
except (KeyError, ValueError):
print_error( "--globaldb should be followed by the global")
exit()
options = { '-h': display_help_and_exit,
'--help': display_help_and_exit,
'--cluster-desc': set_clusterdesc,
'--sky': set_sky_name,
'--instrument-name': set_instrument_name,
'--globaldb': set_globaldb}
while True:
try:
argument = arguments.next()
except StopIteration:
print_error( "No parset file and no gds file(s) specified" )
display_help_and_exit()
if argument[0] == '-':
try:
options[argument](arguments)
except KeyError:
print_error( "Unknown option: " + argument )
display_help_and_exit()
else:
break
parsetfile = argument
parset = lofar.parameterset.parameterset( parsetfile )
print clusterdescfile
clusterdescfile = os.path.expanduser( clusterdescfile )
print clusterdescfile
clusterdesc = lofar.parameterset.parameterset( clusterdescfile )
gdsfiles = []
gdsfiles.extend(arguments)
if len(gdsfiles) == 0 :
print_error( "No gds file(s) or globaldb specified" )
display_help_and_exit()
print "parset-file: " + repr(parsetfile)
print "gds-files: " + repr(gdsfiles)
print "instrument-name: " + repr(instrument_name)
print "sky-name: " + repr(sky_name)
stations = parset.getStringVector("ExpIon.Stations", [])
sources = parset.getStringVector("ExpIon.Sources", [])
d = {'XX' : 0, 'YY' : 1}
l = parset.getStringVector("ExpIon.Polarizations", ['XX', 'YY'])
polarizations = [d[key] for key in l]
DirectionalGainEnable = parset.getBool( "ExpIon.DirectionalGain.Enable", False )
GainEnable = parset.getBool( "ExpIon.Gain.Enable", False )
PhasorsEnable = parset.getBool( "ExpIon.Phasors.Enable", False )
RotationEnable = parset.getBool( "ExpIon.Rotation.Enable", False )
print "RotationEnable:", RotationEnable
print repr(stations)
print repr(sources)
print repr(DirectionalGainEnable)
ion_model = ionosphere.IonosphericModel(gdsfiles, clusterdescfile,
GainEnable = GainEnable,
DirectionalGainEnable = DirectionalGainEnable,
RotationEnable = RotationEnable,
PhasorsEnable = PhasorsEnable,
stations = stations,
sources = sources,
polarizations = polarizations,
instrument_name = instrument_name,
globaldb = globaldb)
def operation_clocktec ( step ):
ClockEnable = parset.getBool('.'.join(["ExpIon.Steps", step, "Clock.Enable"]), True )
TECEnable = parset.getBool('.'.join(["ExpIon.Steps", step, "TEC.Enable"]), True )
print '.'.join(["ExpIon.Steps", step, "Stations"])
stations = parset.getStringVector('.'.join(["ExpIon.Steps", step, "Stations"]), [])
print "stations: ", stations
if ClockEnable or TECEnable :
ion_model.ClockTEC( ClockEnable = ClockEnable, TECEnable = TECEnable, stations = stations )
def operation_fitmodel( step ) :
height = parset.getFloat('.'.join(["ExpIon.Steps", step, "height"]), 200.0e3 )
ion_model.calculate_piercepoints(height = height)
order = parset.getInt('.'.join(["ExpIon.Steps", step, "order"]), 2 )
ion_model.calculate_basevectors( order = order )
ion_model.fit_model()
def operation_makemovie( step ) :
npixels = parset.getInt('.'.join(["ExpIon.Steps", step, "npixels"]), 100 )
extent = parset.getFloat('.'.join(["ExpIon.Steps", step, "extent"]), 0 )
clim = parset.getFloatVector('.'.join(["ExpIon.Steps", step, "clim"]), [] )
if len(clim) == 2:
vmin = clim[0]
vmax = clim[1]
else:
vmin = 0
vmax = 0
ion_model.make_movie(extent = extent, npixels = npixels, vmin = vmin, vmax = vmax)
def operation_store ( step ):
ClockTEC_parmdbname = parset.getString('.'.join(["ExpIon.Steps", step, "ClockTEC.parmdb"]), "ClockTEC.parmdb")
phases_parmdbname = parset.getString('.'.join(["ExpIon.Steps", step, "Phases.parmdb"]), "ionosphere")
ion_model.write_to_parmdb( )
#ion_model.write_phases_to_parmdb( ClockTEC_parmdbname, phases_parmdbname )
def operation_plot ( step ):
print ion_model.TEC.shape
figure(1)
plot(ion_model.Clock[0,:,:])
figure(2)
plot(ion_model.TEC[0,:,:])
show()
Operations = { "CLOCKTEC": operation_clocktec ,
"FITMODEL": operation_fitmodel,
"MAKEMOVIE": operation_makemovie,
"STORE": operation_store,
"PLOT": operation_plot }
steps = parset.getStringVector("ExpIon.Steps", [] )
for step in steps:
operation = parset.getString( '.'.join( [ "ExpIon.Steps", step, "Operation" ] ) )
Operations[ operation ] ( step )
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment