Skip to content
Snippets Groups Projects
Select Git revision
  • f99f17fb78113257fa5d1d3bee30a3938f566baf
  • master default protected
  • L2SS-1914-fix_job_dispatch
  • TMSS-3170
  • TMSS-3167
  • TMSS-3161
  • TMSS-3158-Front-End-Only-Allow-Changing-Again
  • TMSS-3133
  • TMSS-3319-Fix-Templates
  • test-fix-deploy
  • TMSS-3134
  • TMSS-2872
  • defer-state
  • add-custom-monitoring-points
  • TMSS-3101-Front-End-Only
  • TMSS-984-choices
  • SDC-1400-Front-End-Only
  • TMSS-3079-PII
  • TMSS-2936
  • check-for-max-244-subbands
  • TMSS-2927---Front-End-Only-PXII
  • Before-Remove-TMSS
  • LOFAR-Release-4_4_318 protected
  • LOFAR-Release-4_4_317 protected
  • LOFAR-Release-4_4_316 protected
  • LOFAR-Release-4_4_315 protected
  • LOFAR-Release-4_4_314 protected
  • LOFAR-Release-4_4_313 protected
  • LOFAR-Release-4_4_312 protected
  • LOFAR-Release-4_4_311 protected
  • LOFAR-Release-4_4_310 protected
  • LOFAR-Release-4_4_309 protected
  • LOFAR-Release-4_4_308 protected
  • LOFAR-Release-4_4_307 protected
  • LOFAR-Release-4_4_306 protected
  • LOFAR-Release-4_4_304 protected
  • LOFAR-Release-4_4_303 protected
  • LOFAR-Release-4_4_302 protected
  • LOFAR-Release-4_4_301 protected
  • LOFAR-Release-4_4_300 protected
  • LOFAR-Release-4_4_299 protected
41 results

CudaRuntimeCompiler.h

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    change_impact_eval.py 2.31 KiB
    import pandas as pd
    from scipy import stats
    from cliffs_delta import cliffs_delta
    
    def evaluate_coupling(coupling_matrix_path, cochange_matrix_path):
        # Load the two separate matrices (dataframes)
        # Example of loading two CSV files (replace with your file paths)
        c_matrix = pd.read_csv(coupling_matrix_path, index_col=[0])  # This matrix contains IFC values
        cochange_matrix = pd.read_csv(cochange_matrix_path, index_col=[0])  # This matrix contains cochange percentages
    
        # Find the common indices (pairs) between the two matrices (both row and column)
        # Here, we are considering both row and column indices for comparison
        common_rows = c_matrix.index.intersection(cochange_matrix.index)
        common_columns = c_matrix.columns.intersection(cochange_matrix.columns)
    
        # Extract the IFC values and cochange percentages for the common pairs
        c_values_common = c_matrix.loc[common_rows, common_columns].values.flatten()
        cochange_values_common = cochange_matrix.loc[common_rows, common_columns].values.flatten()
    
            # Create two groups based on IFC values
        group_c_gt_0 = cochange_values_common[c_values_common > 0]
        group_c_eq_0 = cochange_values_common[c_values_common == 0]
    
        # Perform the Mann-Whitney U test
        statistic, p_value = stats.mannwhitneyu(group_c_gt_0, group_c_eq_0, alternative='greater')
    
        # Output the results
        print("Mann-Whitney U test statistic:", statistic)
        print("P-value:", p_value)
    
        # Interpretation of the result
        if p_value < 0.05:
            print("The difference between the two groups is statistically significant.")
        else:
            print("There is no statistically significant difference between the two groups.")
    
        # Perform the Cliff's Delta test
        delta = cliffs_delta(group_c_gt_0, group_c_eq_0)
        print("Cliff's Delta:", delta)
    
        tau, tau_p_value = stats.kendalltau(c_values_common, cochange_values_common)
    
        # Output Kendall's Tau results
        print("Kendall's Tau coefficient:", tau)
        print("Kendall's Tau p-value:", tau_p_value)
    
        # Interpretation of Kendall's Tau result
        if tau_p_value < 0.05:
            print("There is a statistically significant correlation between coupling values and cochange percentages.")
        else:
            print("There is no statistically significant correlation between coupling values and cochange percentages.")