Skip to content
Snippets Groups Projects
Commit 1676306e authored by Gijs Schoonderbeek's avatar Gijs Schoonderbeek
Browse files

Cleanup (my way)

parent a523b08a
No related branches found
No related tags found
1 merge request!3Apsct production
'''
"""
Copyright 2021 Stichting Nederlandse Wetenschappelijk Onderzoek Instituten,
ASTRON Netherlands Institute for Radio Astronomy
Licensed under the Apache License, Version 2.0 (the "License");
......@@ -13,7 +13,7 @@ limitations under the License.
Set APSCT_CLK
'''
"""
import sys
import time
sys.path.insert(0, '.')
......@@ -23,244 +23,324 @@ if os.name =="posix":
else:
from I2C_serial import *
DEBUG = False
I2CBUSNR = 5
sleep_time = 0.15
SET_PLL = True
READ_LOCK = True
READ_ALL = False
CHECK_EEPROM = False
PWR_RST = False #True #False
READ_SENSOR = False #True
READ_REGS = False #True
CLK_FREQ = '200MHz'
dev_i2c_eeprom = I2C(0x50)
dev_i2c_eeprom.bus_nr = I2CBUSNR
EEPROM = 0x50
PLL_200M = 0x20
PLL_160M = 0x21
CS = 6
SCLK = 4
SDO = 5
SDI = 7
PLL_200M = 0x20
PLL_160M = 0x21
class ApsctClass()
class ApsctClass:
#
# Toplevel class that contrains all parts of the APSCT
#
def __init__(self):
self.reg_address
def Write_byte_PLL(reg_address, wr_data, ADDRESS=0x20):
self.status = False
self.eeprom = EepromClass()
self.pll_200 = PllClass(PLL_200M)
self.pll_160 = PllClass(PLL_160M)
self.sensors = ApsctSensors()
def read_IO_expanderis(self):
#
# Write Byte to the ADC
# Read both IO-Expander lines and pints on the screen
#
I2C_device = I2C(ADDRESS, BUSNR=I2CBUSNR)
PLL_rw = 0x00 # 0 for write, 1 for read
i2c_addr = [0x20, 0x21]
for addr in i2c_addr:
i2c_device = I2C(addr, BUSNR=I2CBUSNR) # clock selection
for reg_cnt in range(8):
ack, ret_value = i2c_device.read_bytes(reg_cnt, 2)
stri = "Expander : 0x{:0>2x}, Reg 0x{:0>2x}, value 0x{}{}".format(addr, reg_cnt, ret_value[0],
ret_value[1]) # [start+2:start])
print(stri)
def power(self, state):
#
# Set power supply APSCTs in the give state
#
# state is True: Power on
# state is False: Power off
#
stri = "Power to {}".format(state)
print(stri)
I2C_IO_device_A = I2C(0x20, BUSNR=I2CBUSNR)
I2C_IO_device_A.write_bytes(0x06, 0x2C) # '0' is output
I2C_IO_device_A.write_bytes(0x07, 0x00) # '0' is output
I2C_IO_device_B = I2C(0x21, BUSNR=I2CBUSNR)
I2C_IO_device_B.write_bytes(0x06, 0x2C) # '0' is output
if state:
bits_to_set_A1 = 0x02 | (1 << CS) | (0 << SCLK) | (0 << SDI)
bits_to_set_A2 = 0x04
bits_to_set_B1 = 0x02 | (1 << CS) | (0 << SCLK) | (0 << SDI)
else:
bits_to_set_A1 = 0x00 | (1 << CS) | (0 << SCLK) | (0 << SDI)
bits_to_set_A2 = 0x00
bits_to_set_B1 = 0x00 | (1 << CS) | (0 << SCLK) | (0 << SDI)
if DEBUG:
stri = "Bits to reg 0 0x{0:x}".format(bits_to_set_A1)
print(stri)
I2C_IO_device_A.write_bytes(0x02, bits_to_set_A1)
I2C_IO_device_A.write_bytes(0x03, bits_to_set_A2)
I2C_IO_device_B.write_bytes(0x02, bits_to_set_B1)
def set_apsct(self, state):
#
# set APSCT to 200MHz, 160MHz or off
#
if state == "200MHz":
self.power(True)
self.pll_200.setup_pll()
elif state == "160MHz":
self.power(True)
self.pll_160.setup_pll()
else:
self.power(False)
class PllClass:
#
# Toplevel class that contrains all parts of the PLL
#
def __init__(self, address=0x20):
self.status = False
self.i2c_address = address
self.dev_i2c_pll = I2C(self.i2c_address, BUSNR=I2CBUSNR)
if address == 0x20:
self.frequency = '200MHz'
else:
self.frequency = '160MHz'
def Write_byte_PLL(self, reg_address, wr_data):
#
# Write Byte to the PLL
#
pll_rw = 0x00 # 0 for write, 1 for read
stri = "Write to address : 0x{1:{fill}2x} value 0x{0:{fill}2x}".format(wr_data, reg_address, fill='0')
print(stri)
I2C_device.write_bytes(0x06, 0x2C)
self.dev_i2c_pll.write_bytes(0x06, 0x2C)
if DEBUG:
rd_bytes = I2C_device.read_bytes(0x06, 1)
rd_bytes = self.dev_i2c_pll.read_bytes(0x06, 1)
stri = "IO expander wrote 0x{0:x}, read 0x{1}".format(0x2C, rd_bytes[1])
print(stri)
data = (reg_address << 9) + (PLL_rw << 8) + wr_data
data = (reg_address << 9) + (pll_rw << 8) + wr_data
bit_array = "{0:{fill}16b}".format(data, fill='0')
I2C_device.write_bytes(0x02, 0x02 | (0x1 << CS))
self.dev_i2c_pll.write_bytes(0x02, 0x02 | (0x1 << CS))
for bit in bit_array:
for clk in range(2):
Write_data = 0x02 | (0 << CS) | (clk << SCLK) | (int(bit) << SDI)
I2C_device.write_bytes(0x02, Write_data)
self.dev_i2c_pll.write_bytes(0x02, Write_data)
for clk in range(2):
Write_data = 0x02 | (0 << CS) | (clk << SCLK)
I2C_device.write_bytes(0x02, Write_data)
self.dev_i2c_pll.write_bytes(0x02, Write_data)
for clk in range(2):
Write_data = 0x02 | (1 << CS) | (clk << SCLK)
I2C_device.write_bytes(0x02, Write_data)
self.dev_i2c_pll.write_bytes(0x02, Write_data)
Write_data = 0x02 | (1 << CS) | (0 << SCLK) | (0 << SDI)
I2C_device.write_bytes(0x02, Write_data)
if DEBUG:
read_bits = Read_byte_PLL(reg_address, nof_bytes=1, ADDRESS=ADDRESS)
# stri = "Bits written 0x{0:x} to register 0x{1:x} read from PLL are {2}".format(wr_data, reg_address, read_bits)
# print(stri)
self.dev_i2c_pll.write_bytes(0x02, Write_data)
def Read_byte_PLL(reg_address, nof_bytes=1, ADDRESS=0x20 ):
def Read_byte_PLL(self, reg_address, nof_bytes=1):
#
# Read Byte from the ADC
# Read Byte from the PLL
#
I2C_device = I2C(ADDRESS, BUSNR=I2CBUSNR)
PLL_rw = 0x01 # 0 for write, 1 for read
I2C_device.write_bytes(0x06, 0x2C)
data = ( reg_address << 7 ) + PLL_rw
pll_rw = 0x01 # 0 for write, 1 for read
self.dev_i2c_pll.write_bytes(0x06, 0x2C)
data = (reg_address << 7) + pll_rw
bit_array = "{0:{fill}8b}".format(data, fill='0')
for bit in bit_array:
for clk in range(2):
Write_data = 0x02 | (0 << CS) | (clk << SCLK) | (int(bit) << SDI)
I2C_device.write_bytes(0x02, Write_data)
sleep(sleep_time)
# print("read byte")
self.dev_i2c_pll.write_bytes(0x02, Write_data)
time.sleep(sleep_time)
read_bit = ''
for cnt in range(8*nof_bytes):
for clk in [0, 1]: # Read after rizing edge
Write_data = 0x02 | (clk << SCLK) | ( int(bit) << SDI )
I2C_device.write_bytes(0x02, Write_data)
ret_ack, ret_value = I2C_device.read_bytes(0x00, 1)
# stri= "ret_value = {}".format(int(ret_value,16))
# print(stri)
Write_data = 0x02 | (clk << SCLK) | (int(bit_array[-1]) << SDI)
self.dev_i2c_pll.write_bytes(0x02, Write_data)
ret_ack, ret_value = self.dev_i2c_pll.read_bytes(0x00, 1)
if ret_ack:
read_bit += str((int(ret_value, 16) >> SDO) & 0x01)
else:
print("ACK nok")
Write_data = 0x02 | (1 << CS) | (0 << SCLK) | (0 << SDI)
I2C_device.write_bytes(0x02, Write_data)
stri = "Read back at address 0x{0:{fill}2x} result : 0x{1:{fill}2x} ".format(reg_address, int(read_bit, 2), fill='0')
self.dev_i2c_pll.write_bytes(0x02, Write_data)
stri = "Read back at address 0x{0:{fill}2x} result : 0x{1:{fill}2x} ".format(reg_address,
int(read_bit, 2), fill='0')
print(stri)
return read_bit;
return read_bit
def read_all_regs_pll(pll_frequency='200MHz') :
I2C_device = I2C(0x20, BUSNR=I2CBUSNR) #clock selection
I2C_device.write_bytes(0x07, 0x00)
if pll_frequency == '160MHz':
print("Read PLL 160 MHz")
pll_address = PLL_160M
# I2C_device.write_bytes(0x03, 0x0F)
def setup_pll(self):
#
# Set registers on the PLL
#
self.dev_i2c_pll.write_bytes(0x07, 0x00)
if self.frequency == '160MHz':
self.dev_i2c_pll.write_bytes(0x03, 0x08)
else:
self.dev_i2c_pll.write_bytes(0x03, 0x28)
self.Write_byte_PLL(0x03, 0x0C)
sleep(0.5)
self.Write_byte_PLL(0x03, 0x08)
self.Write_byte_PLL(0x03, 0x08)
self.Write_byte_PLL(0x04, 0xCF) # CF disable not used outputs, 00 enable all
self.Write_byte_PLL(0x05, 0x97)
self.Write_byte_PLL(0x06, 0x10) # cp inv = 0xF4 other 0xE4
self.Write_byte_PLL(0x07, 0x04) # Divider R = 1 dec
self.Write_byte_PLL(0x08, 0x01)
self.Write_byte_PLL(0x07, 0x00)
self.Write_byte_PLL(0x09, 0x10) # reset
if self.frequency == '160MHz':
self.Write_byte_PLL(0x0A, 0x10)
else:
print("Read PLL 200 MHz")
pll_address=PLL_200M
# I2C_device.write_bytes(0x03, 0xF8)
# for reg_cnt in range(0x15):
self.Write_byte_PLL(0x0A, 0x14)
self.Write_byte_PLL(0x09, 0x00)
self.Write_byte_PLL(0x0C, 0x8F)
self.Write_byte_PLL(0x0D, 0x88) # Dig CLK = 200/1 = 200 MHz
self.Write_byte_PLL(0x0F, 0x08) # RCU CLK = 200/1 = 200 MHz
self.Write_byte_PLL(0x11, 0x08) # PPS ref CLK = 200/1 = 200 MHz
self.Write_byte_PLL(0x13, 0x88) # T.P. CLK = 200/1 = 200 MHz
def read_all_regs_pll(self):
#
# Read all registers on the PLL and print on screen
#
self.dev_i2c_pll.write_bytes(0x07, 0x00)
bytes_to_read = 24
ret_value = Read_byte_PLL(0, nof_bytes = bytes_to_read, ADDRESS=pll_address)
ret_value = self.Read_byte_PLL(0, nof_bytes=bytes_to_read)
for cnt in range(bytes_to_read):
start = cnt*8
stri = "Reg nr 0x{:0>2x} value: 0x{:0>2x}".format(cnt, int(ret_value[start:start+8], 2))
print(stri)
def read_IO_expanderis():
i2c_addr = [0x20, 0x21]
for addr in i2c_addr:
I2C_device = I2C(addr, BUSNR=I2CBUSNR) #clock selection
for reg_cnt in range(8):
ack, ret_value = I2C_device.read_bytes(reg_cnt, 2)
stri = "Expander : 0x{:0>2x}, Reg 0x{:0>2x}, value 0x{}{}".format(addr, reg_cnt, ret_value[0], ret_value[1]) #[start+2:start])
print(stri)
def setup_pll(pll_frequency='200MHz') :
I2C_device = I2C(0x20, BUSNR=I2CBUSNR) #clock selection
I2C_device.write_bytes(0x07, 0x00)
if pll_frequency == '160MHz':
print("Set PLL to 160 MHz mode")
pll_address = PLL_160M
I2C_device.write_bytes(0x03, 0x08)
else:
print("Set PLL to 200 MHz mode")
pll_address=PLL_200M
I2C_device.write_bytes(0x03, 0x28)
Write_byte_PLL(0x03, 0x0C, pll_address)
sleep(0.5)
Write_byte_PLL(0x03, 0x08, pll_address)
Write_byte_PLL(0x03, 0x08, pll_address)
Write_byte_PLL(0x04, 0xCF, pll_address) # CF disable not used outputs, 00 enable all
Write_byte_PLL(0x05, 0x97, pll_address)
Write_byte_PLL(0x06, 0x10, pll_address) # cp inv = 0xF4 other 0xE4
Write_byte_PLL(0x07, 0x04, pll_address) # Divider R = 1 dec
Write_byte_PLL(0x08, 0x01, pll_address)
Write_byte_PLL(0x07, 0x00, pll_address)
Write_byte_PLL(0x09, 0x10, pll_address) # reset
if pll_frequency == '160MHz' :
Write_byte_PLL(0x0A, 0x10, pll_address)
else:
Write_byte_PLL(0x0A, 0x14, pll_address)
Write_byte_PLL(0x09, 0x00, pll_address)
Write_byte_PLL(0x0C, 0x8F, pll_address)
Write_byte_PLL(0x0D, 0x88, pll_address) # Dig CLK = 200/1 = 200 MHz
Write_byte_PLL(0x0F, 0x08, pll_address) # RCU CLK = 200/1 = 200 MHz
Write_byte_PLL(0x11, 0x08, pll_address) # PPS ref CLK = 200/1 = 200 MHz
Write_byte_PLL(0x13, 0x88, pll_address) # T.P. CLK = 200/1 = 200 MHz
def power(state):
stri = "Power to {}".format(state)
print(stri)
def read_lol(self, pll_frequency='200MHz'):
#
# Read loss of lock status
#
I2C_IO_device_A = I2C(0x20, BUSNR=I2CBUSNR)
I2C_IO_device_A.write_bytes(0x06, 0x2C) # '0' is output
I2C_IO_device_A.write_bytes(0x07, 0x00) # '0' is output
I2C_IO_device_B = I2C(0x21, BUSNR=I2CBUSNR)
I2C_IO_device_B.write_bytes(0x06, 0x2C) # '0' is output
if state:
bits_to_set_A1 = 0x02 | (1 << CS) | (0 << SCLK) | (0 << SDI)
bits_to_set_A2 = 0x04
bits_to_set_B1 = 0x02 | (1 << CS) | (0 << SCLK) | (0 << SDI)
else:
bits_to_set_A1 = 0x00 | (1 << CS) | (0 << SCLK) | (0 << SDI)
bits_to_set_A2 = 0x00
bits_to_set_B1 = 0x00 | (1 << CS) | (0 << SCLK) | (0 << SDI)
if DEBUG :
stri = "Bits to reg 0 0x{0:x}".format(bits_to_set_A1)
print(stri)
I2C_IO_device_A.write_bytes(0x02, bits_to_set_A1)
I2C_IO_device_A.write_bytes(0x03, bits_to_set_A2)
I2C_IO_device_B.write_bytes(0x02, bits_to_set_B1)
I2C_IO_device_B.write_bytes(0x07, 0xFF) # '0' is output
ack, ret_value = I2C_IO_device_B.read_bytes(0x01, 1)
status_reg = int(ret_value, 16)
if (pll_frequency == '200MHz') & ((status_reg & 0x10) > 0):
print("lost lock 200MHz")
if ((status_reg & 0x20) > 0) & (pll_frequency == '160MHz'):
print("lost lock 160MHz")
ack, ret_value = I2C_IO_device_A.read_bytes(0x01, 1)
old_reg = int(ret_value, 16)
I2C_IO_device_A.write_bytes(0x03, (old_reg | 0x10)) # '0' is output
sleep(1)
I2C_IO_device_A.write_bytes(0x03, (old_reg & 0xEF)) # '0' is output
def write_eeprom( data=0x01):
class EepromClass:
#
# Class to handle EEPROM communication
#
def __init__(self):
#
# All monitor. read and write functions for the EEPROM
#
self.dev_i2c_eeprom = I2C(EEPROM)
self.dev_i2c_eeprom.bus_nr = I2CBUSNR
def write_eeprom(self, data="APSPU", address=0):
#
# Write the EEPROM with the serial number etc.
#
ret_ack, ret_value = dev_i2c_eeprom.read_bytes(0)
# Data = data to write in string formal
# Address = address to write the data to
# Return True if successfully
#
ret_ack, ret_value = self.dev_i2c_eeprom.read_bytes(0)
if ret_ack < 1:
print("EEPROM not found during write")
return False
else:
dev_i2c_eeprom.write_bytes(0x00, data)
wr_data = bytearray(data.encode("utf-8", errors="ignore"))
for loc, data_byte in enumerate(wr_data):
self.dev_i2c_eeprom.write_bytes(address + loc, data_byte)
sleep(0.1)
return True
def read_eeprom():
def read_eeprom(self, address=0, nof_bytes=5):
#
# Read the EEPROM with the serial number etc.
#
ret_ack, ret_value = dev_i2c_eeprom.read_last_reg(1)
# Address = address to read from
# nof_bytes = number of bytes to read
# return string with the data from the flash
#
ret_ack, ret_value = self.dev_i2c_eeprom.read_last_reg(1)
if ret_ack < 1:
print("no EEPROM found during read")
return False
else:
ret_ack, ret_value = dev_i2c_eeprom.read_bytes(0x00, 1)
return ret_value
ret_ack, ret_value = self.dev_i2c_eeprom.read_bytes(address, nof_bytes)
str_return = bytes.fromhex(ret_value[:nof_bytes * 2]).decode('UTF-8')
return str_return
def wr_rd_eeprom(value=0x34):
def wr_rd_eeprom(self, value="APSPU-1", address=0):
#
# Write and Read the EEPROM to check functionality
#
if write_eeprom(value):
ret_value = read_eeprom()
stri = "Wrote to EEPROM: 0x{0:X}, Read from EEPROM: 0x{1} ".format(value, ret_value)
# value = string with data to write
# address = address to write the data to
# return True if read back is same as write value
#
if self.write_eeprom(value, address=0):
ret_value = self.read_eeprom(address=0, nof_bytes=len(value))
stri = "Wrote to EEPROM register 0x{2:x} : {0}, Read from EEPROM: {1}".format(value, ret_value, address)
print(stri)
if ret_value == value:
return True
else:
return False
class ApsctSensors:
#
# All monitor. read and write functions for the voltage sensors on APSCT
#
def __init__(self):
#
# All monitor. read and write functions for the EEPROM
#
self.dev_i2c_sensor = I2C(0x74)
self.dev_i2c_sensor.bus_nr = I2CBUSNR
def apsct_sensors():
def apsct_sensors(self):
for sens_line in range(7):
read_voltage(sens_line)
read_temp()
self.read_voltage(sens_line)
self.read_temp()
def read_voltage(input_channel=0):
addr = 0x74
def read_voltage(self, input_channel=0):
#
# Function to read a voltages of APSCT
#
# input_channel = sens port
# return value
#
Vref = 3.0
one_step = Vref/(2**(16))
I2C_device = I2C(addr, BUSNR=I2CBUSNR)
one_step = Vref/(2**16)
channel_select_word = 0xB0 | ((input_channel % 2) << 3) | ((input_channel >> 1) & 0x7)
if DEBUG:
stri = "Word to select sens input is 0x{0:x}".format(channel_select_word)
print(stri)
sleep(0.1)
I2C_device.write_bytes(channel_select_word, 0xB8)
self.dev_i2c_sensor.write_bytes(channel_select_word, 0xB8)
sleep(0.5)
ret_ack, ret_value = I2C_device.read_last_reg(3)
if 1: #ret_ack:
ret_ack, ret_value = self.dev_i2c_sensor.read_last_reg(3)
if DEBUG:
stri = "Return value input 0 : 0x{0} ".format(ret_value)
print(stri)
......@@ -272,20 +352,19 @@ def read_voltage(input_channel=0):
voltage = ((4.7+2.2)/2.2)*2*voltage
string = "Voltage sens line {1} is {0:.4f} V".format(voltage, input_channel)
print(string)
else:
stri = " No ACK on device 0x{0:x} ".format(addr)
print(stri)
def read_temp():
def read_temp(self):
#
# Function to read temperature of APSCT
#
# return value
#
Vref = 3.0
addr = 0x74
one_step = Vref/(2**(16))
I2C_device = I2C(addr, BUSNR=I2CBUSNR)
temp_slope = 93.5E-6 * 2**(16+1) / Vref
sleep(1.0)
I2C_device.write_bytes(0xA0, 0xC0)
self.dev_i2c_sensor.write_bytes(0xA0, 0xC0)
sleep(1.0)
ret_ack, ret_value = I2C_device.read_last_reg(3)
ret_ack, ret_value = self.dev_i2c_sensor.read_last_reg(3)
if ret_ack:
raw_value = (int(ret_value, 16) & 0x1FFFFF) >> 6
temperature_K = (raw_value/temp_slope)
......@@ -295,68 +374,3 @@ def read_temp():
else:
print("Error reading tempeature")
def read_lol(pll_frequency='200MHz'):
I2C_IO_device_A = I2C(0x20, BUSNR=I2CBUSNR)
I2C_IO_device_A.write_bytes(0x06, 0x2C) # '0' is output
I2C_IO_device_A.write_bytes(0x07, 0x00) # '0' is output
I2C_IO_device_B = I2C(0x21, BUSNR=I2CBUSNR)
I2C_IO_device_B.write_bytes(0x06, 0x2C) # '0' is output
I2C_IO_device_B.write_bytes(0x07, 0xFF) # '0' is output
ack, ret_value = I2C_IO_device_B.read_bytes(0x01, 1)
status_reg = int(ret_value,16)
if (pll_frequency=='200MHz') & ((status_reg & 0x10) > 0):
print("lost lock 200MHz")
if ((status_reg & 0x20) > 0) & (pll_frequency=='160MHz'):
print("lost lock 160MHz")
ack, ret_value = I2C_IO_device_A.read_bytes(0x01, 1)
old_reg = int(ret_value,16)
I2C_IO_device_A.write_bytes(0x03, (old_reg | 0x10)) # '0' is output
sleep(1)
I2C_IO_device_A.write_bytes(0x03, (old_reg & 0xEF)) # '0' is output
#if READ_REGS:
# read_all_regs_pll(CLK_FREQ)
read_temp()
if CHECK_EEPROM :
wr_rd_eeprom()
if PWR_RST :
power(False)
sleep(10)
power(True)
if SET_PLL :
setup_pll(CLK_FREQ)
if READ_LOCK:
if CLK_FREQ == '160MHz' :
pll_addr = PLL_160M
else:
pll_addr = PLL_200M
ret_value = Read_byte_PLL(0x00, nof_bytes = 1, ADDRESS=pll_addr)
status_pll = int(ret_value,2)
if status_pll == 0x04:
print("PLL in lock")
elif (status_pll & 0x10) > 0:
print("Not Locked --> No 10 MHz ref")
else:
print("Not locked --> PLL Error")
if READ_REGS:
read_all_regs_pll(CLK_FREQ)
if READ_ALL:
read_all_regs_pll(CLK_FREQ)
read_IO_expanderis()
if READ_SENSOR:
apsct_sensors()
read_lol(CLK_FREQ)
"""
Copyright 2021 Stichting Nederlandse Wetenschappelijk Onderzoek Instituten,
ASTRON Netherlands Institute for Radio Astronomy
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Set APSCT_CLK
"""
import time
import apsct_lib
DEBUG = False
SET_PLL = True
READ_LOCK = True
READ_ALL = True
CHECK_EEPROM = False
PWR_RST = False # True
READ_SENSOR = False # True
READ_REGS = False # True
CLK_FREQ = '200MHz'
apsct = apsct_lib.ApsctClass()
apsct.sensors.read_temp()
if CHECK_EEPROM:
apsct.eeprom.wr_rd_eeprom()
if PWR_RST:
apsct.power(False)
time.sleep(10)
apsct.power(True)
if SET_PLL:
apsct.set_apsct(CLK_FREQ)
if READ_LOCK:
apsct.pll_200.read_lol()
if READ_REGS:
apsct.pll_200.read_all_regs_pll()
if READ_ALL:
apsct.pll_200.read_all_regs_pll()
apsct.pll_160.read_all_regs_pll()
apsct.read_IO_expanderis()
if READ_SENSOR:
apsct.sensors.apsct_sensors()
apsct.pll_200.read_lol(CLK_FREQ)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment