Select Git revision
apsct_lib.py
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
fpga.cpp 42.80 KiB
/* *************************************************************************
* Copyright 2020
* ASTRON (Netherlands Institute for Radio Astronomy) <http://www.astron.nl/>
* P.O.Box 2, 7990 AA Dwingeloo, The Netherlands
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* *********************************************************************** */
/* *************************************************************************
* Author:
* . Leon Hiemstra
* . Pieter Donker
* Purpose:
* . opc-ua to ucp translator
* Description:
* . class for fpga registers (peripherals) that need some more actions
* *********************************************************************** */
#ifndef _REENTRANT
#error ACK! You need to compile with _REENTRANT defined since this uses threads
#endif
#include <string>
#include <cstdint>
#include <algorithm>
#include <cstdlib>
#include <stdexcept>
#include <iostream>
#include <iomanip>
#include <exception>
#include <unistd.h>
#include <sys/time.h>
#include <arpa/inet.h> // htons, inet_pton
#include "fpga.h"
#include "../tools/mmap.h"
#include "../tools/util.h"
#include<fstream>
using namespace std;
extern int debug;
#define M_CACHE 0
#define M_UCP 1
Periph_fpga::Periph_fpga(string ipaddr,
string expected_design_name,
uint expected_firmware_version,
bool enabled)
{
my_expected_design_name = expected_design_name;
my_expected_firmware_version = expected_firmware_version;
my_current_design_name = "-";
my_current_status = "offline";
my_current_fw_version = "-.-";
my_current_temp = -1.;
Enabled = enabled;
ucp = new UCP(ipaddr);
if (Enabled) {
mmap = new CMMap(read_reg_map());
}
else {
mmap = new CMMap();
}
registerMap = new CPointMap();
registerMap->add_register("fpga/system", "-", 0, "RO", REG_FORMAT_STRING, 2);
registerMap->add_register("fpga/name", "-", 1, "RO", REG_FORMAT_STRING, 1);
registerMap->add_register("fpga/stamps", "-", 0, "RO", REG_FORMAT_STRING, 1);
registerMap->add_register("fpga/note", "-", 0, "RO", REG_FORMAT_STRING, 1);
registerMap->add_register("fpga/firmware_version", "-", 0, "RO", REG_FORMAT_STRING, 1);
registerMap->add_register("fpga/hardware_version", "-", 0, "RO", REG_FORMAT_INT16, 1);
registerMap->add_register("fpga/temp", "-", 1, "RO", REG_FORMAT_STRING, 5);
registerMap->add_register("fpga/status", "-", 1, "RO", REG_FORMAT_STRING, 1);
registerMap->add_register("fpga/enable_mask", "-", 1, "RW", REG_FORMAT_BOOLEAN, 1);
registerMap->add_register("fpga/rbf", "-", 0, "RW", REG_FORMAT_STRING, 1);
registerMap->add_register("fpga/flash_init", "-", 0, "WO", REG_FORMAT_STRING, 1);
registerMap->add_register("fpga/flash_erase", "-", 0, "WO", REG_FORMAT_STRING, 1);
registerMap->add_register("fpga/flash_pages", "-", 0, "WO", REG_FORMAT_STRING, 1);
registerMap->add_register("fpga/flash_page", "-", 0, "WO", REG_FORMAT_STRING, 1);
registerMap->add_register("fpga/flash_prot", "-", 0, "WO", REG_FORMAT_STRING, 1);
registerMap->add_register("fpga/epcs_wait_busy", "-", 0, "RO", REG_FORMAT_STRING, 1);
registerMap->add_register("fpga/epcs_mmdp_data", "-", 0, "WO", REG_FORMAT_STRING, 1);
uint32_t scrap_span = mmap->getSpan("mm/0/RAM_SCRAP/data");
registerMap->add_register("fpga/scrap_R", "-", scrap_span, "RO", REG_FORMAT_UINT32, 1);
registerMap->add_register("fpga/scrap_W", "-", scrap_span, "RW", REG_FORMAT_UINT32, 1);
uint32_t weights_span = (187392 / 16); // = 11712
registerMap->add_register("fpga/weights_R", "-", weights_span, "RO", REG_FORMAT_INT16, 1);
registerMap->add_register("fpga/weights_W", "-", weights_span, "RW", REG_FORMAT_INT16, 1);
registerMap->add_register("fpga/processing_enable", "-", 1, "RW", REG_FORMAT_BOOLEAN, 1);
registerMap->add_register("fpga/sst_offload_selector", "-", 1, "RW", REG_FORMAT_BOOLEAN, 1);
registerMap->add_register("fpga/sst_offload_enable", "-", 1, "RW", REG_FORMAT_BOOLEAN, 1);
registerMap->add_register("fpga/sst_offload_hdr_eth_destination_mac", "-", 1, "RW", REG_FORMAT_STRING, 1);
registerMap->add_register("fpga/sst_offload_hdr_ip_destination_address", "-", 1, "RW", REG_FORMAT_STRING, 1);
registerMap->add_register("fpga/sst_offload_hdr_udp_destination_port", "-", 1, "RW", REG_FORMAT_UINT16, 1);
registerMap->add_register("fpga/sdp_info_station_id", "-", 1, "RW", REG_FORMAT_UINT32, 1);
registerMap->add_register("fpga/sdp_info_observation_id", "-", 1, "RW", REG_FORMAT_UINT32, 1);
registerMap->add_register("fpga/sdp_info_nyquist_sampling_zone_index", "-", 1, "RW", REG_FORMAT_UINT32, 1);
registerMap->add_register("fpga/sdp_info_antenna_band_index", "-", 1, "RO", REG_FORMAT_UINT32, 1);
registerMap->add_register("fpga/sdp_info_f_adc", "-", 1, "RO", REG_FORMAT_UINT32, 1);
registerMap->add_register("fpga/sdp_info_fsub_type", "-", 1, "RO", REG_FORMAT_UINT32, 1);
registerMap->add_register("fpga/sdp_info_block_period", "-", 1, "RO", REG_FORMAT_UINT32, 1);
registerMap->print_screen();
// Test FPGA by reading system info:
try {
TermOutput termout;
read_system_info(termout);
} catch (exception& e) {
cerr << "Test Periph_fpga::Periph_fpga:read_system_info(): " << e.what() << endl;
}
// rbf_wf.open ("/tmp/rbf.dat", ofstream::out | ofstream::binary );
// if (!rbf_wf) {
// cerr << "Cannot open file!" << endl;
// exit(-1);
// }
Flash_fact_sector_start = 0;
Flash_fact_sector_end = 159;
Flash_user_sector_start = 160;
Flash_user_sector_end = 319;
Flash_pages_per_sector = 1024;
Flash_page_size_bytes = 256;
Flash_page_start = Flash_user_sector_start * Flash_pages_per_sector;
Flash_select = 1; // default is user
#define FLASH_EPCS_REG_ADDR 0
#define FLASH_EPCS_REG_RDEN 1
#define FLASH_EPCS_REG_READ 2
#define FLASH_EPCS_REG_WRITE 3
#define FLASH_EPCS_REG_SECTOR_ERASE 4
#define FLASH_EPCS_REG_BUSY 5
#define FLASH_EPCS_REG_UNPROTECT 6
cout << "Periph_fpga::scrapram_size=" << scrap_span << endl;
Scrap_RW_copy.resize(scrap_span);
cout << "Periph_fpga::weights_size=" << weights_span << endl;
Weights_RW_copy.resize(weights_span);
}
Periph_fpga::~Periph_fpga()
{
// rbf_wf.close();
if (ucp != NULL) delete ucp;
if (mmap != NULL) delete mmap;
if (registerMap != NULL) delete registerMap;
}
bool Periph_fpga::Read(const string addr_str, uint32_t *data_ptr)
{
bool ret;
if (!Enabled) {
throw runtime_error("disabled " + addr_str);
}
uint32_t addr = mmap->getAddr((addr_str));
mmap->getReadPermission((addr_str));
uint32_t nvalues = mmap->getSpan((addr_str));
uint32_t mask = mmap->getMask((addr_str));
uint32_t shift = mmap->getShift((addr_str));
bool isfifo = mmap->type_isfifo((addr_str));
ret = ucp->readRegister(addr, nvalues, data_ptr, isfifo);
if (ret && (shift != 0 || mask != 0xffffffff)) {
for (uint32_t i=0; i<nvalues; i++) {
data_ptr[i] &= mask;
data_ptr[i] = data_ptr[i] >> shift;
}
}
return ret;
}
bool Periph_fpga::Write(const string addr_str, const uint32_t nvalues, uint32_t *data_ptr)
{
if (!Enabled) {
throw runtime_error("disabled " + addr_str);
}
uint32_t addr = mmap->getValidAddr((addr_str), 1);
uint32_t span = mmap->getSpan((addr_str));
mmap->getWritePermission((addr_str));
uint32_t shift = mmap->getShift((addr_str));
uint32_t mask = mmap->getMask((addr_str));
bool isfifo = mmap->type_isfifo((addr_str));
if (shift != 0 || mask != 0xffffffff) {
for (uint32_t i=0; i<span; i++) {
data_ptr[i] = data_ptr[i] << shift;
data_ptr[i] &= mask;
}
}
return ucp->writeRegister(addr, span, data_ptr, isfifo);
}
bool Periph_fpga::read_fpga_status(TermOutput& termout, int format)
{
termout.strout << "\"" << my_current_status << "\"";
if (my_current_status == "online") {
termout.val[0] = 1;
}
else {
termout.val[0] = 0;
}
termout.nof_vals = 1;
termout.datatype = format;
return true;
}
bool Periph_fpga::write_fpga_enable_mask(const char *data)
{
Enabled = (bool)*data;
return true;
}
bool Periph_fpga::read_fpga_enable_mask(TermOutput& termout, int format)
{
termout.strout << "\"" << Enabled << "\"";
termout.val[0] = Enabled;
termout.nof_vals = 1;
termout.datatype = format;
return true;
}
/*
"""Peripheral system_info
Register map:
31 24 23 16 15 8 7 0 wi
|-----------------|-----------------|-----------------|-----------------|
| use_phy[7:0] | 1
|-----------------------------------------------------------------------|
| system_info[31:0] | 0
|-----------------------------------------------------------------------|
system_info[23:20] = firmware version high[3:0]
system_info[19:16] = firmware version low[3:0]
system_info[10] = cs_sim (= g_sim, 0 on HW, 1 in VHDL simulation)
system_info[9:8] = hardware version [1:0] (= 0 for UniBoard 1A and 1B)
system_info[7:0] = node id[7;0]
*/
bool Periph_fpga::read_system_info(TermOutput& termout)
{
// cout << "read system info" << endl;
uint32_t data;
bool retval = Read("mm/0/PIO_SYSTEM_INFO/info", &data);
string design_name = read_design_name();
termout.strout << design_name << ", ";
// FIXME: get rid of magic constants in masks, should be in CCFG:
uint firmware_version = (data & 0x00F00000) >> 20;
uint firmware_subversion = (data & 0x000F0000) >> 16;
termout.strout << firmware_version << "." << firmware_subversion;
my_current_fw_version = to_string(firmware_version) + "." + to_string(firmware_subversion);
my_current_hw_version = (data & 0x0000300) >> 8;
if (design_name == my_expected_design_name && firmware_version >= my_expected_firmware_version) {
my_current_status = "online";
retval = true;
}
else {
retval = false;
termout.strerr << "Unexpected design_name / firmware_version" << endl;
cerr << "Warning: Node configuration mismatch!! (read_design_name/version=" << design_name
<< "/" << firmware_version << "), expected=" << my_expected_design_name
<< "/" << my_expected_firmware_version << ")" << endl;
//syslog(LOG_WARNING,"Node configuration mismatch!! (read_design_name/version=%s/%d, expected=%s/%d)\n",
// design_name.c_str(), firmware_version,
// my_expected_design_name.c_str(), my_expected_firmware_version);
my_current_status = "offline";
registerMap->setAllPermission_NA();
}
return retval;
}
bool Periph_fpga::read(TermOutput& termout, const string addr,
const string type, char *data, const uint nvalues,
const int format)
{
bool retval = false;
termout.datatype = format;
if (type == "mm") {
uint32_t *data_ptr = (uint32_t *)data;
retval = Read(addr, data_ptr);
if (retval) {
for (uint i=0; i<nvalues; i++) {
if (i > 0) {
termout.strout << ",";
}
termout.strout << data_ptr[i];
}
}
termout.datatype = format;
}
else { // "fpga/..."
if (addr == "fpga/system") {
retval = read_system_info(termout);
}
else if (addr == "fpga/name") {
string str = read_design_name();
termout.strout << str;
termout.nof_vals = str.size();
termout.datatype = format;
strcpy(termout.val, str.c_str());
retval = true;
}
else if (addr == "fpga/stamps") {
retval = read_stamps(termout, format);
termout.datatype = format;
}
else if (addr == "fpga/note") {
termout.strout << read_design_note();
termout.datatype = format;
retval = true;
}
else if (addr == "fpga/firmware_version") {
retval = read_firmware_version(termout, format);
}
else if (addr == "fpga/hardware_version") {
retval = read_hardware_version(termout, format);
}
else if (addr == "fpga/temp") {
retval = read_fpga_temperature(termout, format, M_CACHE);
}
else if (addr == "fpga/epcs_wait_busy") {
retval = wait_while_epcs_busy(1000);
}
else if (addr == "fpga/status") {
retval = read_fpga_status(termout, format);
}
else if (addr == "fpga/enable_mask") {
retval = read_fpga_enable_mask(termout, format);
}
else if (addr == "fpga/scrap_RW") {
retval = read_fpga_scrap_RW(termout, format);
}
else if (addr == "fpga/scrap_R") {
retval = read_fpga_scrap_R(termout, format);
}
else if (addr == "fpga/weights_RW") {
retval = read_fpga_weights_RW(termout, format);
}
else if (addr == "fpga/weights_R") {
retval = read_fpga_weights_R(termout, format);
}
else if (addr == "fpga/sst_offload_selector") {
retval = read_sst_offload_selector(termout, format);
}
else if (addr == "fpga/sst_offload_enable") {
retval = read_sst_offload_enable(termout, format);
}
else if (addr == "fpga/sst_offload_hdr_eth_destination_mac") {
retval = read_sst_offload_hdr_eth_destination_mac(termout, format);
}
else if (addr == "fpga/sst_offload_hdr_ip_destination_address") {
retval = read_sst_offload_hdr_ip_destination_address(termout, format);
}
else if (addr == "fpga/sst_offload_hdr_udp_destination_port") {
retval = read_sst_offload_hdr_udp_destination_port(termout, format);
}
else if (addr == "fpga/processing_enable") {
retval = read_processing_enable(termout, format);
}
else if (addr == "fpga/sdp_info_station_id") {
retval = read_sdp_info_station_id(termout, format);
}
else if (addr == "fpga/sdp_info_observation_id") {
retval = read_sdp_info_observation_id(termout, format);
}
else if (addr == "fpga/sdp_info_nyquist_sampling_zone_index") {
retval = read_sdp_info_nyquist_sampling_zone_index(termout, format);
}
else if (addr == "fpga/sdp_info_antenna_band_index") {
retval = read_sdp_info_antenna_band_index(termout, format);
}
else if (addr == "fpga/sdp_info_f_adc") {
retval = read_sdp_info_f_adc(termout, format);
}
else if (addr == "fpga/sdp_info_fsub_type") {
retval = read_sdp_info_fsub_type(termout, format);
}
else if (addr == "fpga/sdp_info_block_period") {
retval = read_sdp_info_block_period(termout, format);
}
else {
throw runtime_error("address " + addr + " not found!");
}
}
//cout << "Periph_fpga::read, addr=" << addr << ", datatype=" << format << "/" << termout.datatype << endl;
return retval;
}
bool Periph_fpga::write(TermOutput& termout, const string addr, const string type,
char *data, const uint nvalues, const int format)
{
bool retval = false;
uint32_t *data_ptr = (uint32_t *)data;
if (type == "mm") {
retval = Write(addr, nvalues, data_ptr);
}
else { // "fpga/..."
// if (addr == "fpga/rbf") {
// char *data_ptr=(char *)data;
// cout << "writing: " << len*sizeof(uint32_t) << " bytes" << endl;
// rbf_wf.write(data_ptr, len*sizeof(uint32_t));
// retval = true;
// } else
if (addr == "fpga/flash_init") {
Flash_select = data_ptr[0];
if (Flash_select == 0) { // factory
Flash_page_start = Flash_fact_sector_start * Flash_pages_per_sector;
}
else { // user
Flash_page_start = Flash_user_sector_start * Flash_pages_per_sector;
}
}
else if (addr == "fpga/flash_erase") {
flash_erase();
}
else if (addr == "fpga/flash_pages") {
retval = flash_pages(data_ptr, nvalues);
}
else if (addr == "fpga/flash_page") {
retval = flash_page(data_ptr, nvalues);
}
else if (addr == "fpga/flash_prot") {
retval = flash_prot(data_ptr);
}
else if (addr == "fpga/epcs_mmdp_data") {
// write to FIFO
retval = Write("mm/0/REG_MMDP_DATA/data", nvalues, data_ptr);
}
else if (addr == "fpga/enable_mask") {
retval = write_fpga_enable_mask(data);
}
else if (addr == "fpga/scrap_W") {
retval = write_fpga_scrap_RW(data_ptr, nvalues);
}
else if (addr == "fpga/weights_W") {
retval = write_fpga_weights_RW(data_ptr, nvalues);
}
else if (addr == "fpga/sst_offload_selector") {
retval = write_sst_offload_selector(data_ptr, nvalues);
}
else if (addr == "fpga/sst_offload_enable") {
retval = write_sst_offload_enable(data_ptr, nvalues);
}
else if (addr == "fpga/sst_offload_hdr_eth_destination_mac") {
//retval = write_sst_offload_hdr_eth_destination_mac(data_ptr, nvalues);
retval = write_sst_offload_hdr_eth_destination_mac(data, nvalues);
}
else if (addr == "fpga/sst_offload_hdr_ip_destination_address") {
//retval = write_sst_offload_hdr_ip_destination_address(data_ptr, nvalues);
retval = write_sst_offload_hdr_ip_destination_address(data, nvalues);
}
else if (addr == "fpga/sst_offload_hdr_udp_destination_port") {
retval = write_sst_offload_hdr_udp_destination_port(data_ptr, nvalues);
}
else if (addr == "fpga/processing_enable") {
retval = write_processing_enable(data_ptr, nvalues);
}
else if (addr == "fpga/sdp_info_station_id") {
retval = write_sdp_info_station_id(data_ptr, nvalues);
}
else if (addr == "fpga/sdp_info_observation_id") {
retval = write_sdp_info_observation_id(data_ptr, nvalues);
}
else if (addr == "fpga/sdp_info_nyquist_sampling_zone_index") {
retval = write_sdp_info_nyquist_sampling_zone_index(data_ptr, nvalues);
}
else {
throw runtime_error("address " + addr + " not found!");
}
}
return retval;
}
bool Periph_fpga::monitor(uint seconds)
{
TermOutput termout;
if ((seconds % registerMap->getUpdateInterval("fpga/temp")) == 0) {
read_fpga_temperature(termout, REG_FORMAT_FLOAT, M_UCP);
}
if ((seconds % registerMap->getUpdateInterval("fpga/system")) == 0) {
read_system_info(termout);
}
return true;
}
bool Periph_fpga::flash_prot(uint32_t *data)
{
bool retval = false;
uint32_t passphrase_protect = 0;
uint32_t passphrase_unprotect = 0xBEDA221E;
if (*data == 0) { // unprotect
retval = Write("mm/0/REG_EPCS/unprotect", 1, &passphrase_unprotect);
}
else { // protect
retval = Write("mm/0/REG_EPCS/unprotect", 1, &passphrase_protect);
}
return retval;
}
bool Periph_fpga::flash_page(uint32_t *data, const uint len)
{
bool retval = false;
wait_while_epcs_busy(1);
// write address
uint32_t addr = Flash_page_start * Flash_page_size_bytes;
retval = Write("mm/0/REG_EPCS/addr", 1, &addr);
// write to FIFO
retval = Write("mm/0/REG_MMDP_DATA/data", len, data);
// write_write
uint32_t d = 1;
retval = Write("mm/0/REG_EPCS/write", 1, &d);
return retval;
}
bool Periph_fpga::flash_pages(uint32_t *data, const uint len)
{
bool retval = false;
uint page_size_words = Flash_page_size_bytes / sizeof(uint32_t);
uint nof_pages = ceil_div(len, page_size_words);
cout << "Periph_fpga::flash_pages nof_pages=" << nof_pages << endl;
for (uint p=0; p<nof_pages; p++) {
retval = flash_page(&data[(p*page_size_words)], page_size_words);
Flash_page_start++;
}
return retval;
}
bool Periph_fpga::wait_while_epcs_busy(uint sleeptime)
{
uint32_t data;
bool retval;
//cout << "wait_while_epcs_busy:";
for (int i=0; i<100; i++) {
retval = Read("mm/0/REG_EPCS/busy", &data);
if (!retval) break;
if (data == 0) break;
usleep(sleeptime);
//cout << "." << flush;
}
//cout << endl;
if (data != 0) {
retval = false; // still busy
}
return retval;
}
bool Periph_fpga::flash_erase_sector(uint32_t sector)
{
// We need to write any address in the target sector's address range to select that sector for erase.
// We'll use the base (lowest) address of the sectors for this: sector 0 starts at 0x0, sector 1 starts
// at 0x40000 etc.
bool retval = false;
uint32_t s,d;
vector<uint32_t> s_list = {0,0x10000,0x20000,0x30000};
cout << "erase flash sector: " << sector << endl;
for (uint i=0; i<s_list.size(); i++) {
s = sector * 0x40000 + s_list[i];
// write address
retval = Write("mm/0/REG_EPCS/addr", 1, &s);
// sector erase
d = 1;
retval = Write("mm/0/REG_EPCS/sector_erase", 1, &d);
wait_while_epcs_busy(50000);
}
return retval;
}
bool Periph_fpga::flash_erase()
{
bool retval = false;
uint32_t start, end;
cout << "erase flash for bank: " << Flash_select << endl;
if (Flash_select == 0) { // factory
start = Flash_fact_sector_start;
end = Flash_fact_sector_end + 1;
}
else { // user
start = Flash_user_sector_start;
end = Flash_user_sector_end + 1;
}
for (uint32_t s=start; s<end; s++) {
retval = flash_erase_sector(s);
}
return retval;
}
string Periph_fpga::read_design_name()
{
uint32_t data[20];
memset((void *)data, 0, sizeof(data));
if (Read("mm/0/PIO_SYSTEM_INFO/design_name", data)) {
char *str_ptr = (char *)data;
string name = string(str_ptr);
//if (data != NULL) delete[] data;
return name;
}
return "? (error)";
}
string Periph_fpga::read_design_note()
{
uint32_t data[20];
memset((void *)data, 0, sizeof(data));
if (Read("mm/0/PIO_SYSTEM_INFO/design_note", data)) {
char *str_ptr = (char *)data;
string note = string(str_ptr);
//if (data != NULL) delete[] data;
return note;
}
return "? (error)";
}
bool Periph_fpga::read_hardware_version(TermOutput& termout, int format)
{
bool retval = true;
uint32_t data[20];
uint hw_version_nr;
string hw_version;
memset((void *)data, 0, sizeof(data));
retval = Read("mm/0/PIO_SYSTEM_INFO/info_hw_version", data);
hw_version_nr = data[0];
if (hw_version_nr == 1) {
hw_version = "UniBoard2b";
}
else if (hw_version_nr == 2) {
hw_version = "UniBoard2c";
}
else {
hw_version = "Unknown";
}
termout.nof_vals = hw_version.size();
termout.datatype = format;
strcpy(termout.val, hw_version.c_str());
termout.strout << "hardware_version= " << hw_version << endl;
return retval;
}
bool Periph_fpga::read_firmware_version(TermOutput& termout, int format)
{
bool retval = true;
uint32_t data[20];
termout.datatype = format;
memset((void *)data, 0, sizeof(data));
retval = Read("mm/0/PIO_SYSTEM_INFO/design_name", data);
if (retval == false) {
return retval;
}
char *str_ptr = (char *)data;
string design_name = string(str_ptr);
memset((void *)data, 0, sizeof(data));
retval = Read("mm/0/PIO_SYSTEM_INFO/stamp_date", data);
if (retval == false) {
return retval;
}
string date = to_string(data[0]);
memset((void *)data, 0, sizeof(data));
retval = Read("mm/0/PIO_SYSTEM_INFO/stamp_time", data);
if (retval == false) {
return retval;
}
string time = to_string(data[0]);
memset((void *)data, 0, sizeof(data));
retval = Read("mm/0/PIO_SYSTEM_INFO/stamp_commit", data);
if (retval == false) {
return retval;
}
string revision = to_string(data[0]);
string firmware_version;
firmware_version = date.substr(0, 2) + "-" + date.substr(2, 2) + "-" + date.substr(4, 2);
firmware_version += "T";
firmware_version += time.substr(0, 2) + "." + time.substr(2, 2) + "." + time.substr(4, 2);
firmware_version += "_";
firmware_version += revision + "_" + design_name;
termout.nof_vals = firmware_version.size();
termout.datatype = format;
strcpy(termout.val, firmware_version.c_str());
termout.strout << "firmware_version= " << firmware_version << endl;
return retval;
}
bool Periph_fpga::read_stamps(TermOutput& termout, int format)
{
uint32_t data[20];
memset((void *)data, 0, sizeof(data));
bool retval = Read("mm/0/PIO_SYSTEM_INFO/stamp_date", data);
termout.strout << "date=" << data[0] << " time=" << data[1] << " git=" << data[2] << endl;
termout.datatype = format;
return retval;
}
bool Periph_fpga::read_fpga_temperature(TermOutput& termout, int format, int mode)
{
bool retval = true;
float temp = my_current_temp;
if (mode == M_UCP) {
// cout << "read from UCP" << endl;
uint32_t data[20];
memset((void *)data, 0, sizeof(data));
retval = Read("mm/0/REG_FPGA_TEMP_SENS/temp", data);
// ADC to engineering
// see the constants: https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_alttemp_sense.pdf
// page 10
temp = ((693. * (float)data[0]) / 1024.) - 265;
}
termout.strout << to_string(temp);
float *temp_ptr = (float *)termout.val;
*temp_ptr = temp;
termout.nof_vals = 1;
termout.datatype = format;
my_current_temp = temp;
return retval;
}
bool Periph_fpga::read_fpga_scrap_R(TermOutput& termout, int format)
{
bool retval = true;
uint32_t nvalues = mmap->getSpan("mm/0/RAM_SCRAP/data");
uint32_t *ptr = (uint32_t *)termout.val;
retval = Read("mm/0/RAM_SCRAP/data", ptr);
for (uint i=0; i<nvalues; i++) {
if (i > 0) {
termout.strout << ",";
}
termout.strout << ptr[i];
}
termout.nof_vals = nvalues;
termout.datatype = format;
return retval;
}
bool Periph_fpga::write_fpga_scrap_RW(uint32_t *data, uint nvalues)
{
cout << "Periph_fpga::write_fpga_scrap " << nvalues << " values" << endl;
uint32_t nvalues_chk = mmap->getSpan("mm/0/RAM_SCRAP/data");
if (nvalues > nvalues_chk) {
nvalues = nvalues_chk;
}
for (uint i=0; i<nvalues; i++) {
Scrap_RW_copy[i] = data[i];
cout << data[i] << " ";
}
cout << endl;
bool retval = Write("mm/0/RAM_SCRAP/data", nvalues, data);
return retval;
}
bool Periph_fpga::read_fpga_scrap_RW(TermOutput& termout, int format)
{
bool retval = true;
uint32_t *ptr = (uint32_t *)termout.val;
for (uint i=0; i<Scrap_RW_copy.size(); i++) {
ptr[i] = Scrap_RW_copy[i];
if (i>0) {
termout.strout << ",";
}
termout.strout << ptr[i];
}
termout.nof_vals = Scrap_RW_copy.size();
termout.datatype = format;
return retval;
}
bool Periph_fpga::read_fpga_weights_R(TermOutput& termout, int format)
{
bool retval = true;
uint32_t nvalues_scrap = mmap->getSpan("mm/0/RAM_SCRAP/data");
uint nblocks = 48; // 11712/244=48
uint32_t *data_scrap = new uint32_t[nvalues_scrap];
short *ptr = (short *)termout.val;
for (uint i=0; i<nblocks; i++) {
retval = Read("mm/0/RAM_SCRAP/data", data_scrap);
for (uint j=0; j<nvalues_scrap; j+=2) {
uint32_t ds = data_scrap[j];
*ptr++ = (short)(ds & 0xffff);
*ptr++ = (short)(ds >> 16);
}
}
termout.nof_vals = registerMap->getSpan("fpga/weights_R");
termout.datatype = format;
delete[] data_scrap;
return retval;
}
bool Periph_fpga::write_fpga_weights_RW(const uint32_t *data, uint nvalues)
{
bool retval = false;
uint32_t nvalues_scrap = mmap->getSpan("mm/0/RAM_SCRAP/data");
uint32_t nvalues_weights = registerMap->getSpan("fpga/weights_R");
uint nblocks = 48; // 11712/244=48
if (nvalues > nvalues_weights) {
nvalues = nvalues_weights;
}
uint32_t *data_scrap = new uint32_t[nvalues_scrap];
for (uint i=0; i<nvalues; i++) {
Weights_RW_copy[i] = (short)data[i];
}
const uint32_t *ptr = data;
uint si=0;
for (uint i=0; i<nblocks; i++) {
for (uint j=0; j<nvalues_scrap; j++) {
uint32_t ds;
if (si >= nvalues) {
break;
}
ds = *ptr++; si++;
if (si >= nvalues) {
break;
}
ds |= ((*ptr++) << 16);
si++;
data_scrap[j] = ds;
}
retval = Write("mm/0/RAM_SCRAP/data", nvalues_scrap, data_scrap);
}
delete[] data_scrap;
return retval;
}
bool Periph_fpga::read_fpga_weights_RW(TermOutput& termout, int format)
{
bool retval = true;
short *ptr = (short *)termout.val;
for (uint i=0; i<Weights_RW_copy.size(); i++) {
ptr[i] = Weights_RW_copy[i];
}
termout.nof_vals = Weights_RW_copy.size();
termout.datatype = format;
return retval;
}
bool Periph_fpga::read_sst_offload_selector(TermOutput& termout, int format)
{
bool retval = true;
uint32_t data[20];
memset((void *)data, 0, sizeof(data));
retval = Read("mm/0/REG_DP_SELECTOR/input_select", data);
bool select = (bool)data[0];
termout.strout << select;
bool *_ptr = (bool *)termout.val;
*_ptr = select;
termout.nof_vals = 1;
termout.datatype = format;
return retval;
}
bool Periph_fpga::write_sst_offload_selector(uint32_t *data, uint32_t nvalues)
{
bool retval = Write("mm/0/REG_DP_SELECTOR/input_select", nvalues, data);
return retval;
}
bool Periph_fpga::read_sst_offload_enable(TermOutput& termout, int format)
{
bool retval = true;
uint32_t data[20];
memset((void *)data, 0, sizeof(data));
retval = Read("mm/0/REG_STAT_ENABLE/enable", data);
bool select = (bool)data[0];
termout.strout << select;
bool *_ptr = (bool *)termout.val;
*_ptr = select;
termout.nof_vals = 1;
termout.datatype = format;
return retval;
}
bool Periph_fpga::write_sst_offload_enable(uint32_t *data, uint32_t nvalues)
{
cout << "sst_offload_enable data=" << data[0] << " nvlues=" << nvalues << endl;
return Write("mm/0/REG_STAT_ENABLE/enable", nvalues, data);
}
bool Periph_fpga::read_sst_offload_hdr_eth_destination_mac(TermOutput& termout, int format)
{
bool retval = true;
uint32_t data[20];
memset((void *)data, 0, sizeof(data));
retval = Read("mm/0/REG_STAT_HDR_DAT/eth_destination_mac", data);
uint64_t mac = (uint64_t)data[1] << 32 | data[0];
stringstream mac_ss;
for (int i=5; i>=0; i--) {
mac_ss << setfill('0') << setw(2) << right << hex << ((mac >> (i * 8)) & 0xff);
if (i > 0) {
mac_ss << ":";
}
}
string mac_str = mac_ss.str();
termout.strout << mac_str;
strcpy(termout.val, mac_str.c_str());
termout.nof_vals = mac_str.size();
termout.datatype = format;
return retval;
}
bool Periph_fpga::write_sst_offload_hdr_eth_destination_mac(const char *data, uint32_t nvalues)
{
if (nvalues == 0) return true;
// cout << "data=" << string(data) << endl;
char sep;
uint32_t m0, m1, m2, m3, m4, m5;
uint32_t mac[2] {0, 0};
string ds(data);
stringstream ss(ds);
ss >> setbase(16) >> m0 >> sep >> m1 >> sep >> m2 >> sep >> m3 >> sep >> m4 >> sep >> m5;
if (ss.good()) {
mac[1] = (m0 << 8) + (m1 << 0);
mac[0] = (m2 << 24) + (m3 << 16) + (m4 << 8) + m5;
// cout << "mac=" << mac[1] << ", " << mac[0] << endl;
return Write("mm/0/REG_STAT_HDR_DAT/eth_destination_mac", nvalues, mac);
}
cout << "parse error in write_sst_offload_hdr_eth_destination_mac (" << ds << ")" << endl;
return false;
}
bool Periph_fpga::read_sst_offload_hdr_ip_destination_address(TermOutput& termout, int format)
{
bool retval = true;
uint32_t data[20];
memset((void *)data, 0, sizeof(data));
retval = Read("mm/0/REG_STAT_HDR_DAT/ip_destination_address", data);
stringstream ip_ss;
for (int i=3; i>=0; i--) {
ip_ss << dec << ((data[0] >> (i * 8)) & 0xff);
if (i > 0) {
ip_ss << ".";
}
}
string ip_str = ip_ss.str();
termout.strout << ip_str;
strcpy(termout.val, ip_str.c_str());
termout.nof_vals = ip_str.size();
termout.datatype = format;
return retval;
}
bool Periph_fpga::write_sst_offload_hdr_ip_destination_address(const char *data, uint32_t nvalues)
{
if (nvalues == 0) return true;
char sep;
uint ip0, ip1, ip2, ip3;
uint32_t ip[1] = {0};
string ds(data);
stringstream ss(ds);
ss >> setbase(10) >> ip0 >> sep >> ip1 >> sep >> ip2 >> sep >> ip3;
if (ss.good()) {
ip[0] += (ip0 & 0xff) << 24;
ip[0] += (ip1 & 0xff) << 16;
ip[0] += (ip2 & 0xff) << 8;
ip[0] += ip3 & 0xff;
// cout << "ip=" << hex << ip[0] << endl;
return Write("mm/0/REG_STAT_HDR_DAT/ip_destination_address", nvalues, ip);
}
cout << "parse error in write_sst_offload_hdr_ip_destination_address (" << ds << ")" << endl;
return false;
}
bool Periph_fpga::read_sst_offload_hdr_udp_destination_port(TermOutput& termout, int format)
{
bool retval = true;
uint32_t data[20];
memset((void *)data, 0, sizeof(data));
retval = Read("mm/0/REG_STAT_HDR_DAT/udp_destination_port", data);
int port = (int)data[0];
termout.strout << port;
int *_ptr = (int *)termout.val;
*_ptr = port;
termout.nof_vals = 1;
termout.datatype = format;
return retval;
}
bool Periph_fpga::write_sst_offload_hdr_udp_destination_port(uint32_t *data, uint32_t nvalues)
{
return Write("mm/0/REG_STAT_HDR_DAT/udp_destination_port", nvalues, data);
}
bool Periph_fpga::read_processing_enable(TermOutput& termout, int format)
{
bool retval = true;
uint32_t data[20];
memset((void *)data, 0, sizeof(data));
retval = Read("mm/0/REG_BSN_SOURCE_V2/dp_on", data);
bool dp_on = (bool)data[0];
termout.strout << dp_on;
bool *_ptr = (bool *)termout.val;
*_ptr = dp_on;
termout.nof_vals = 1;
termout.datatype = format;
return retval;
}
bool Periph_fpga::write_processing_enable(uint32_t *data, uint32_t nvalues)
{
// write dp_on 0
// write bsn_init [calc val for next sec]
// write bsn_time_offset [calc val if odd]
// write dp_on_pps 1
// write dp_on 1
cout << "processing_enable data=" << data[0] << " nvalues=" << nvalues << endl;
uint32_t *reg = new uint32_t[2];
reg[0] = 0;
reg[1] = 0;
bool processing_enable = (bool)data[0];
if (processing_enable) {
cout << "turn on bsn" << endl;
reg[0] = 0;
if (Write("mm/0/REG_BSN_SOURCE_V2/dp_on", 1, reg) == false) {
cout << "Write error (mm/0/REG_BSN_SOURCE_V2/dp_on) 0" << endl;
return false;
}
struct timeval now;
uint64_t bsn;
uint32_t offset = 0;
gettimeofday(&now, NULL);
while (now.tv_usec > 800000) {
gettimeofday(&now, NULL);
}
bsn = (uint64_t)((now.tv_sec + 1) / 5.12e-6);
if (now.tv_sec % 2 == 1) {
offset = 512;
}
reg[0] = (uint32_t)(bsn & 0xffffffff);
reg[1] = (uint32_t)((bsn >> 32) & 0xffffffff);
if (Write("mm/0/REG_BSN_SOURCE_V2/bsn_init", 2, reg) == false) {
cout << "Write error (mm/0/REG_BSN_SOURCE_V2/bsn_init)" << endl;
return false;
}
reg[0] = offset;
if (Write("mm/0/REG_BSN_SOURCE_V2/bsn_time_offset", 1, reg) == false) {
cout << "Write error (mm/0/REG_BSN_SOURCE_V2/bsn_time_offset)" << endl;
return false;
}
reg[0] = 1;
if (Write("mm/0/REG_BSN_SOURCE_V2/dp_on_pps", 1, reg) == false) {
cout << "Write error (mm/0/REG_BSN_SOURCE_V2/dp_on_pps)" << endl;
return false;
}
reg[0] = 1;
if (Write("mm/0/REG_BSN_SOURCE_V2/dp_on", 1, reg) == false) {
cout << "Write error (mm/0/REG_BSN_SOURCE_V2/dp_on) 1" << endl;
return false;
}
}
else {
reg[0] = 0;
if (Write("mm/0/REG_BSN_SOURCE_V2/dp_on", 1, reg) == false) {
cout << "Write error (mm/0/REG_BSN_SOURCE_V2/dp_on) 0" << endl;
return false;
}
}
return true;
}
bool Periph_fpga::read_sdp_info_station_id(TermOutput& termout, int format) {
bool retval = true;
uint32_t data[20];
memset((void *)data, 0, sizeof(data));
retval = Read("mm/0/REG_SDP_INFO/station_id", data);
uint32_t station_id = (uint32_t)data[0];
termout.strout << station_id;
uint32_t *_ptr = (uint32_t *)termout.val;
*_ptr = station_id;
termout.nof_vals = 1;
termout.datatype = format;
return retval;
}
bool Periph_fpga::write_sdp_info_station_id(uint32_t *data, uint32_t nvalues) {
bool retval = Write("mm/0/REG_SDP_INFO/station_id", nvalues, data);
return retval;
}
bool Periph_fpga::read_sdp_info_observation_id(TermOutput& termout, int format) {
bool retval = true;
uint32_t data[20];
memset((void *)data, 0, sizeof(data));
retval = Read("mm/0/REG_SDP_INFO/observation_id", data);
uint32_t observation_id = (uint32_t)data[0];
termout.strout << observation_id;
uint32_t *_ptr = (uint32_t *)termout.val;
*_ptr = observation_id;
termout.nof_vals = 1;
termout.datatype = format;
return retval;
}
bool Periph_fpga::write_sdp_info_observation_id(uint32_t *data, uint32_t nvalues) {
bool retval = Write("mm/0/REG_SDP_INFO/observation_id", nvalues, data);
return retval;
}
bool Periph_fpga::read_sdp_info_nyquist_sampling_zone_index(TermOutput& termout, int format) {
bool retval = true;
uint32_t data[20];
memset((void *)data, 0, sizeof(data));
retval = Read("mm/0/REG_SDP_INFO/nyquist_zone_index", data);
uint32_t nyquist_zone_index = (uint32_t)data[0];
termout.strout << nyquist_zone_index;
uint32_t *_ptr = (uint32_t *)termout.val;
*_ptr = nyquist_zone_index;
termout.nof_vals = 1;
termout.datatype = format;
return retval;
}
bool Periph_fpga::write_sdp_info_nyquist_sampling_zone_index(uint32_t *data, uint32_t nvalues) {
bool retval = Write("mm/0/REG_SDP_INFO/nyquist_zone_index", nvalues, data);
return retval;
}
bool Periph_fpga::read_sdp_info_antenna_band_index(TermOutput& termout, int format) {
bool retval = true;
uint32_t data[20];
memset((void *)data, 0, sizeof(data));
retval = Read("mm/0/REG_SDP_INFO/antenna_band_index", data);
uint32_t antenna_band_index = (uint32_t)data[0];
termout.strout << antenna_band_index;
uint32_t *_ptr = (uint32_t *)termout.val;
*_ptr = antenna_band_index;
termout.nof_vals = 1;
termout.datatype = format;
return retval;
}
bool Periph_fpga::read_sdp_info_f_adc(TermOutput& termout, int format) {
bool retval = true;
uint32_t data[20];
memset((void *)data, 0, sizeof(data));
retval = Read("mm/0/REG_SDP_INFO/f_adc", data);
uint32_t f_adc = (uint32_t)data[0];
termout.strout << f_adc;
uint32_t *_ptr = (uint32_t *)termout.val;
*_ptr = f_adc;
termout.nof_vals = 1;
termout.datatype = format;
return retval;
}
bool Periph_fpga::read_sdp_info_fsub_type(TermOutput& termout, int format) {
bool retval = true;
uint32_t data[20];
memset((void *)data, 0, sizeof(data));
retval = Read("mm/0/REG_SDP_INFO/fsub_type", data);
uint32_t fsub_type = (uint32_t)data[0];
termout.strout << fsub_type;
uint32_t *_ptr = (uint32_t *)termout.val;
*_ptr = fsub_type;
termout.nof_vals = 1;
termout.datatype = format;
return retval;
}
bool Periph_fpga::read_sdp_info_block_period(TermOutput& termout, int format) {
bool retval = true;
uint32_t data[20];
memset((void *)data, 0, sizeof(data));
retval = Read("mm/0/REG_SDP_INFO/block_period", data);
uint32_t block_period = (uint32_t)data[0];
termout.strout << block_period;
uint32_t *_ptr = (uint32_t *)termout.val;
*_ptr = block_period;
termout.nof_vals = 1;
termout.datatype = format;
return retval;
}
bool Periph_fpga::write_wdi_override(TermOutput& termout)
{
uint32_t data = 0xB007FAC7;
return Write("mm/0/PIO_WDI/wdi_override", 1, &data);
}
CMMap Periph_fpga::read_reg_map()
{
CMMap reg;
uint32_t nvalues = REG_ADDR_ROM_SYSTEM_SPAN;
uint32_t addr = REG_ADDR_ROM_SYSTEM;
uint32_t *data = new uint32_t[nvalues * sizeof(uint32_t)];
if (data == NULL) {
cerr << "malloc error" << endl;
}
memset((void *)data, 0, nvalues * sizeof(uint32_t));
if (!ucp->readRegister(addr, nvalues, data)) {
if (data != NULL) {
delete[] data;
}
cerr << "ucp->readRegister failed" << endl;
return reg;
}
for (uint i=0; i<nvalues; i++) {
/*
cout << "data[" << dec << i << "]=0x" << hex << setw(8) << setfill('0') << data[i] << " ";
for (int j=0;j<4;j++) {
char c = (char)(data[i]>>(8*j)) ;
if (c=='\0') printf("\\0"); else cout << c;
}
cout << endl;
*/
data[i] = ntohl(data[i]);
}
char *str_ptr = (char *)data;
string reg_map_str(str_ptr);
cout << "Periph_fpga::read_reg_map:\n" << reg_map_str << endl;
if (data != NULL) {
delete[] data;
}
istringstream iss_regmap(reg_map_str);
return mmap_to_regmap(iss_regmap);
}