-------------------------------------------------------------------------------- -- -- Copyright (C) 2015 -- ASTRON (Netherlands Institute for Radio Astronomy) <http://www.astron.nl/> -- JIVE (Joint Institute for VLBI in Europe) <http://www.jive.nl/> -- P.O.Box 2, 7990 AA Dwingeloo, The Netherlands -- -- This program is free software: you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation, either version 3 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program. If not, see <http://www.gnu.org/licenses/>. -- -------------------------------------------------------------------------------- -- Author: Eric Kooistra, 19 june 2017 -- Purpose: Functional simulation model of both the DDR driver and the DDR memory. -- Description: -- This DDR model supports different types of DDR, so DDR3 and DDR4. -- -- During a write burst the user still controls the access rate by means of -- ctrl_mosi.wr. During a read burst the memory determines the access rate. -- Therefore a new write or read burst request will not occure during a write -- burst, but they can occur during a read burst. The ctrl_mosi.address and -- ctrl_mosi.burstsize are then captured with the pending_rd and prnding wr -- state and the ctlr_miso.waitrequest_n is pulled low because the model only -- supports one pending burst request. -- -- The internal state of the DDR model is maintained in a variable of type -- t_mem_state. For debugging purposes this state is also assigned to a -- signal to be able to view it together with ctrl_mosi and ctrl_miso in the -- wave window. -- -- * About other DDR features: -- The sim_ddr only models the memory contents of the DDR, which is sufficient -- for now, because that is the main function of DDR and initially it is best -- to keep the model as simple as possible. If necessary, then possible extra -- future features could be to also model the latency caused by a periodical -- DRAM refresh cycle. -- -- * About fixed size DDR memory: -- The sim_ddr uses a fixed size simulation memory that cannot be too large, -- because it as to fit in the PC memory. Modelsim raises warning 3391 when -- the DDR memory set by c_nof_addr is to big to fit in PC RAM. Use -- 'verror 3391' to display the help. This means that the computer becomes -- too slow due to page swapping to disk. Even loading the simulation -- becomes slow. A way around this would be to use a simulation memory that -- grows dynamically for each address that is actually used (like a -- dictionary). An example of such a dynamic DDR memory model is available at: -- -- https://svn.astron.nl/UniBoard_FP7/UniBoard/trunk/Firmware/modules/MegaWizard/ddr3/testbench/ddr3_test_mem_model.vhd -- -- However this dynamic model will simulate slower the more it gets filled. -- Furthermore the simulation time of such larger blocks of data will -- become unfeasible. Instead it is better to scale the parameters of the -- application such that the fixed size sim_ddr memory is as small as -- possible. LIBRARY IEEE, common_lib, technology_lib; USE IEEE.STD_LOGIC_1164.ALL; USE common_lib.common_pkg.ALL; USE common_lib.common_mem_pkg.ALL; USE technology_lib.technology_pkg.ALL; USE technology_lib.technology_select_pkg.ALL; USE work.tech_ddr_pkg.ALL; ENTITY sim_ddr IS GENERIC ( g_tech_ddr : t_c_tech_ddr ); PORT ( -- PLL reference clock ref_clk : IN STD_LOGIC; ref_rst : IN STD_LOGIC; -- Controller user interface ctlr_gen_clk : OUT STD_LOGIC; ctlr_gen_rst : OUT STD_LOGIC; ctlr_gen_clk_2x : OUT STD_LOGIC; ctlr_gen_rst_2x : OUT STD_LOGIC; ctlr_mosi : IN t_mem_ctlr_mosi; ctlr_miso : OUT t_mem_ctlr_miso ); END sim_ddr; ARCHITECTURE str OF sim_ddr IS -- DDR size and controller data width CONSTANT c_nof_addr : NATURAL := 2**func_tech_ddr_ctlr_address_w(g_tech_ddr); --8192; CONSTANT c_dat_w : NATURAL := func_tech_ddr_ctlr_data_w(g_tech_ddr); --256; -- DDR memory TYPE t_mem_arr IS ARRAY(0 TO c_nof_addr-1) OF STD_LOGIC_VECTOR(c_dat_w-1 DOWNTO 0); TYPE t_mem_state IS RECORD address : NATURAL; burst_size : NATURAL; burst_cnt : NATURAL; -- = 0 wr_bursting : BOOLEAN; -- = FALSE rd_bursting : BOOLEAN; -- = FALSE pending_wr : BOOLEAN; -- = FALSE pending_rd : BOOLEAN; -- = FALSE pending_address : NATURAL; pending_burst_size : NATURAL; END RECORD; SIGNAL sim_clk : STD_LOGIC; SIGNAL sim_rst : STD_LOGIC; SIGNAL mem_state : t_mem_state; BEGIN -- Prevent delta delay issues by using a re-assigned clk both internally (sim_clk) and externally (ctrl_gen_clk) ctlr_gen_clk <= ref_clk; ctlr_gen_rst <= ref_rst; sim_clk <= ref_clk; sim_rst <= ref_rst; ctlr_miso.done <= '0' , '1' AFTER 1 ns; ctlr_miso.cal_ok <= '0' , '1' AFTER 1 ns; ctlr_miso.cal_fail <= '0'; p_mem_access : PROCESS(sim_clk) -- Process variables get initalized once and then they keep their state VARIABLE v_mem_arr : t_mem_arr := (OTHERS=>(OTHERS=>'0')); VARIABLE v : t_mem_state := (0, 0, 0, FALSE, FALSE, FALSE, FALSE, 0, 0); BEGIN IF rising_edge(sim_clk) THEN -- Burst begin IF ctlr_mosi.burstbegin='1' THEN IF ctlr_mosi.wr='1' THEN IF v.rd_bursting=FALSE THEN v.wr_bursting := TRUE; v.address := TO_UINT(ctlr_mosi.address); v.burst_size := TO_UINT(ctlr_mosi.burstsize); v.burst_cnt := 0; ELSE v.pending_wr := TRUE; v.pending_address := TO_UINT(ctlr_mosi.address); v.pending_burst_size := TO_UINT(ctlr_mosi.burstsize); END IF; ELSIF ctlr_mosi.rd='1' THEN IF v.rd_bursting=FALSE THEN v.rd_bursting := TRUE; v.address := TO_UINT(ctlr_mosi.address); v.burst_size := TO_UINT(ctlr_mosi.burstsize); v.burst_cnt := 0; ctlr_miso.waitrequest_n <= '0'; ELSE v.pending_rd := TRUE; v.pending_address := TO_UINT(ctlr_mosi.address); v.pending_burst_size := TO_UINT(ctlr_mosi.burstsize); END IF; END IF; END IF; -- Pending write burst begin, after read burst IF v.pending_wr=TRUE AND v.rd_bursting=FALSE THEN v.pending_wr := FALSE; IF ctlr_mosi.wr='1' THEN -- require that user has kept wr still active v.wr_bursting := TRUE; v.address := v.pending_address; v.burst_size := v.pending_burst_size; v.burst_cnt := 0; END IF; END IF; -- Pending read burst begin, after read burst IF v.pending_rd=TRUE AND v.rd_bursting=FALSE THEN v.pending_rd := FALSE; IF ctlr_mosi.rd='1' THEN -- require that user has kept rd still active v.rd_bursting := TRUE; v.address := v.pending_address; v.burst_size := v.pending_burst_size; v.burst_cnt := 0; ctlr_miso.waitrequest_n <= '0'; END IF; END IF; -- Write access IF v.wr_bursting=TRUE AND ctlr_mosi.wr='1' THEN v_mem_arr(v.address) := ctlr_mosi.wrdata(c_dat_w-1 DOWNTO 0); v.address := v.address + 1; v.burst_cnt := v.burst_cnt + 1; END IF; -- Read access ctlr_miso.rdval <= '0'; IF v.rd_bursting=TRUE THEN ctlr_miso.rddata(c_dat_w-1 DOWNTO 0) <= v_mem_arr(v.address); ctlr_miso.rdval <= '1'; v.address := v.address + 1; v.burst_cnt := v.burst_cnt + 1; END IF; -- Burst size count IF v.burst_cnt = v.burst_size THEN v.wr_bursting := FALSE; v.rd_bursting := FALSE; ctlr_miso.waitrequest_n <= '1'; END IF; -- Show DDR memory state in wave window mem_state <= v; END IF; END PROCESS; END str;