------------------------------------------------------------------------------- -- -- Copyright 2022 -- ASTRON (Netherlands Institute for Radio Astronomy) <http://www.astron.nl/> -- P.O.Box 2, 7990 AA Dwingeloo, The Netherlands -- -- Licensed under the Apache License, Version 2.0 (the "License"); -- you may not use this file except in compliance with the License. -- You may obtain a copy of the License at -- -- http://www.apache.org/licenses/LICENSE-2.0 -- -- Unless required by applicable law or agreed to in writing, software -- distributed under the License is distributed on an "AS IS" BASIS, -- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -- See the License for the specific language governing permissions and -- limitations under the License. -- ------------------------------------------------------------------------------- -- Author: Job van Wee -- Purpose: Resize the input data vector so that the output data vector can be -- stored into the ddr memory. -- -- Description: -- The input data gets resized and put into the output data vector. -- -- Remark: -- Use VHDL coding template from: -- https://support.astron.nl/confluence/display/SBe/VHDL+design+patterns+for+RTL+coding -- The output vector must be larger than the input vector. LIBRARY IEEE, dp_lib, tech_ddr_lib; USE IEEE.std_logic_1164.ALL; USE dp_lib.dp_stream_pkg.ALL; USE tech_ddr_lib.tech_ddr_pkg.ALL; ENTITY ddrctrl_input_repack IS GENERIC ( g_tech_ddr : t_c_tech_ddr; -- type of memory g_in_data_w : NATURAL := 168; -- the input data with g_bim : NATURAL; g_of_pb : NATURAL; g_block_size : NATURAL ); PORT ( clk : IN STD_LOGIC; rst : IN STD_LOGIC; in_sosi : IN t_dp_sosi; -- input data in_stop : IN STD_LOGIC := '0'; out_sosi : OUT t_dp_sosi := c_dp_sosi_init; -- output data out_bsn_ds : OUT NATURAL := 0; out_bsn_wr : OUT STD_LOGIC := '0'; out_data_stopped : OUT STD_LOGIC := '0' ); END ddrctrl_input_repack; ARCHITECTURE rtl OF ddrctrl_input_repack IS -- constant for readability CONSTANT c_out_data_w : NATURAL := func_tech_ddr_ctlr_data_w( g_tech_ddr ); -- the output data with, 576 CONSTANT k_c_v_w : NATURAL := c_out_data_w*2; -- the c_v data with, 2*576=1152 -- type for statemachine TYPE t_state IS (OVERFLOW_OUTPUT, FILL_VECTOR, FIRST_OUTPUT, RESET, STOP, BSN); -- record for readability TYPE t_reg IS RECORD state : t_state; -- the state the process is currently in; c_v : STD_LOGIC_VECTOR(k_c_v_w-1 DOWNTO 0); -- the vector that stores the input data until the data is put into the output data vector c_v_count : NATURAL; -- the amount of times the c_v vector received data from the input since the last time it was filled completely a_of : NATURAL; -- this is the amount of bits that the first data word(168) is shifted from the first bit in the data word(576) q_bsn : STD_LOGIC_VECTOR(c_dp_stream_bsn_w-1 DOWNTO 0); q_sop : STD_LOGIC; q_out_bsn_ds : NATURAL; s_input_cnt : NATURAL; out_of : NATURAL; out_data_count : STD_LOGIC; -- the amount of times the output data vector has been filled since the last time c_v was filled completely out_sosi : t_dp_sosi; -- this is the sosi stream that contains the data out_bsn_ds : NATURAL; -- this is the amount of bits that the data corresponding to out_bsn is shifted from the first bit in that data word out_data_stopped : STD_LOGIC; -- this signal is '1' when there is no more data comming form ddrctrl_input_pack END RECORD; CONSTANT c_t_reg_init : t_reg := (RESET, (OTHERS => '0'), 0, 0, (OTHERS => '0'), '0', 0, 0, 0, '0', c_dp_sosi_init, 0, '0'); -- signals for readability SIGNAL d_reg : t_reg := c_t_reg_init; SIGNAL q_reg : t_reg := c_t_reg_init; BEGIN q_reg <= d_reg WHEN rising_edge(clk); -- put the input data into c_v and fill the output vector from c_v p_state : PROCESS(q_reg, rst, in_sosi, in_stop) VARIABLE v : t_reg; BEGIN v := q_reg; CASE q_reg.state IS WHEN FILL_VECTOR => -- if the input data doesn't exceeds the output data vector width v.c_v(g_in_data_w*(q_reg.c_v_count+1)+q_reg.out_of-1 DOWNTO g_in_data_w*q_reg.c_v_count+q_reg.out_of) := in_sosi.data(g_in_data_w-1 DOWNTO 0); -- fill c_v v.c_v_count := q_reg.c_v_count+1; -- increase the counter of c_v with 1 v.out_sosi.valid := '0'; -- out_sosi.valid 0 v.s_input_cnt := q_reg.s_input_cnt+1; v.out_sosi.sop := '0'; v.out_sosi.eop := '0'; v.out_data_stopped := '0'; IF rst = '1' THEN v.state := RESET; ELSIF in_stop = '1' OR in_sosi.valid = '0' THEN v.state := STOP; ELSIF ((g_in_data_w*(v.c_v_count+1))+v.out_of >= c_out_data_w*1) AND (v.out_data_count = '0') THEN v.state := FIRST_OUTPUT; ELSIF ((g_in_data_w*(v.c_v_count+1))+v.out_of >= c_out_data_w*2) AND (v.out_data_count = '1') THEN v.state := OVERFLOW_OUTPUT; ELSE v.state := FILL_VECTOR; END IF; IF NOT (q_reg.q_bsn(c_dp_stream_bsn_w-1 DOWNTO 0) = in_sosi.bsn(c_dp_stream_bsn_w-1 DOWNTO 0)) THEN v.s_input_cnt := 0; v.state := BSN; END IF; WHEN FIRST_OUTPUT => -- if the input data exceeds output data vector width but not the c_v width v.c_v(g_in_data_w*(q_reg.c_v_count+1)+q_reg.out_of-1 DOWNTO g_in_data_w*q_reg.c_v_count+q_reg.out_of) := in_sosi.data(g_in_data_w-1 DOWNTO 0); -- fill c_v v.c_v_count := q_reg.c_v_count+1; -- increase the counter of c_v with 1 v.out_sosi.data(c_out_data_w-1 DOWNTO 0) := v.c_v(c_out_data_w-1 DOWNTO 0); -- fill out_sosi.data with 1st part of c_v v.out_sosi.valid := '1'; -- out_sosi.valid 1 v.out_data_count := '1'; -- increase the counter of out_sosi.data with 1 v.s_input_cnt := q_reg.s_input_cnt+1; v.out_sosi.bsn(c_dp_stream_bsn_w-1 DOWNTO 0) := q_reg.q_bsn(c_dp_stream_bsn_w-1 DOWNTO 0); v.out_bsn_ds := q_reg.q_out_bsn_ds; v.out_sosi.sop := q_reg.q_sop; v.out_sosi.eop := '0'; v.out_data_stopped := '0'; IF rst = '1' THEN v.state := RESET; ELSIF in_stop = '1' OR in_sosi.valid = '0' THEN v.state := STOP; ELSIF ((g_in_data_w*(v.c_v_count+1))+v.out_of >= c_out_data_w*2) THEN v.state := OVERFLOW_OUTPUT; ELSE v.state := FILL_VECTOR; END IF; IF NOT (q_reg.q_bsn(c_dp_stream_bsn_w-1 DOWNTO 0) = in_sosi.bsn(c_dp_stream_bsn_w-1 DOWNTO 0)) THEN v.s_input_cnt := 0; v.state := BSN; END IF; WHEN OVERFLOW_OUTPUT => -- if the input data exceeds the output data vector width and the c_v width v.out_of := q_reg.out_of+(g_in_data_w*(q_reg.c_v_count+1))-(c_out_data_w*2); -- check how much overflow there is and safe it in out_of v.c_v(k_c_v_w-1 DOWNTO k_c_v_w-(g_in_data_w-v.out_of)) := in_sosi.data(g_in_data_w-v.out_of-1 DOWNTO 0); -- fill the rest of c_v untill the end v.c_v(v.out_of-1 DOWNTO 0) := in_sosi.data(g_in_data_w-1 DOWNTO g_in_data_w-v.out_of); -- fill the start of c_v untill the out_of v.out_sosi.data(c_out_data_w-1 DOWNTO 0) := v.c_v(k_c_v_w-1 DOWNTO c_out_data_w); -- fill out_sosi.data with 2nd part of c_v v.out_sosi.valid := '1'; -- out_sosi.valid 1 v.c_v_count := 0; -- reset counter v.out_data_count := '0'; -- reset counter v.s_input_cnt := q_reg.s_input_cnt+1; v.q_sop := '0'; v.out_sosi.sop := '0'; v.out_sosi.eop := '0'; v.out_data_stopped := '0'; IF rst = '1' THEN v.state := RESET; ELSIF in_stop = '1' OR in_sosi.valid = '0' THEN v.state := STOP; ELSIF ((g_in_data_w*(v.c_v_count+1))+v.out_of >= c_out_data_w*1) THEN v.state := FIRST_OUTPUT; ELSE v.state := FILL_VECTOR; END IF; IF NOT (q_reg.q_bsn(c_dp_stream_bsn_w-1 DOWNTO 0) = in_sosi.bsn(c_dp_stream_bsn_w-1 DOWNTO 0)) THEN v.s_input_cnt := 0; v.state := BSN; END IF; WHEN BSN => v.c_v(k_c_v_w-1 DOWNTO ((g_in_data_w*q_reg.c_v_count)+q_reg.out_of)) := (OTHERS =>'0'); IF ((g_in_data_w*q_reg.c_v_count)+q_reg.out_of < c_out_data_w*1) THEN v.out_sosi.data(c_out_data_w-1 DOWNTO 0) := v.c_v(c_out_data_w-1 DOWNTO 0); -- fill out_sosi.data with 1st part of c_v v.out_sosi.valid := '1'; -- out_sosi.valid 1 ELSE v.out_sosi.data(c_out_data_w-1 DOWNTO 0) := v.c_v(k_c_v_w-1 DOWNTO c_out_data_w); -- fill out_sosi.data with 2nd part of c_v v.out_sosi.valid := '1'; -- out_sosi.valid 1 END IF; -- BSN_INPUT v.q_bsn := in_sosi.bsn; -- a bsn number is saved when the bsn changes IF g_in_data_w*q_reg.c_v_count+q_reg.out_of >= c_out_data_w THEN v.q_out_bsn_ds := g_in_data_w*q_reg.c_v_count+q_reg.out_of-c_out_data_w; -- the amount of bits between word[0] and data[0] where data is the data with the bsn ELSE v.q_out_bsn_ds := g_in_data_w*q_reg.c_v_count+q_reg.out_of; -- the amount of bits between word[0] and data[0] where data is the data with the bsn END IF; v.q_sop := '1'; -- a signal which indicates that a bsn is written in this word(576) so the address counter can save the corresponinding address. (there are delay in address counter so in_adr is not the same as the address of the word the data from the bsn is written to) v.a_of := 0; v.c_v(g_in_data_w-1 DOWNTO 0) := in_sosi.data(g_in_data_w-1 DOWNTO 0); -- fill c_v v.c_v_count := 1; -- increase the counter of c_v with 1 v.out_data_count := '0'; v.out_sosi.eop := '1'; IF rst = '1' THEN v.state := RESET; ELSIF in_stop = '1' OR in_sosi.valid = '0' THEN v.state := STOP; ELSIF ((g_in_data_w*(v.c_v_count+1))+v.out_of >= c_out_data_w*1) AND (v.out_data_count = '0') THEN v.state := FIRST_OUTPUT; ELSIF ((g_in_data_w*(v.c_v_count+1))+v.out_of >= c_out_data_w*2) AND (v.out_data_count = '1') THEN v.state := OVERFLOW_OUTPUT; ELSE v.state := FILL_VECTOR; END IF; WHEN RESET => v := c_t_reg_init; v.out_sosi.bsn(c_dp_stream_bsn_w-1 DOWNTO 0) := in_sosi.bsn(c_dp_stream_bsn_w-1 DOWNTO 0); IF rst = '1' THEN v.state := RESET; ELSIF in_stop = '1' OR in_sosi.valid = '0' THEN v.state := STOP; ELSE v.state := FILL_VECTOR; END IF; WHEN STOP => v.out_sosi.valid := '0'; v.q_sop := '0'; v.out_data_stopped := '1'; IF rst = '1' THEN v.state := RESET; ELSIF in_stop = '1' OR in_sosi.valid = '0' THEN v.state := STOP; ELSIF ((g_in_data_w*(v.c_v_count+1))+v.out_of >= c_out_data_w*1) AND (v.out_data_count = '0') THEN v.state := FIRST_OUTPUT; ELSIF ((g_in_data_w*(v.c_v_count+1))+v.out_of >= c_out_data_w*2) AND (v.out_data_count = '1') THEN v.state := OVERFLOW_OUTPUT; ELSE v.state := FILL_VECTOR; END IF; END CASE; d_reg <= v; END PROCESS; -- fill outputs out_sosi <= q_reg.out_sosi; out_bsn_ds <= q_reg.out_bsn_ds; out_data_stopped <= q_reg.out_data_stopped; END rtl;