From ef706651ae985814ee9bee0989321d9bd3191133 Mon Sep 17 00:00:00 2001
From: Eric Kooistra <kooistra@astron.nl>
Date: Mon, 1 Feb 2021 17:13:14 +0100
Subject: [PATCH] Put data path processing and quantization model related
 scripts and drawings here in model/.

---
 .../model/apertif_arts_firmware_model.py      | 1282 +++++++++++++++++
 .../lofar_station_firmware_model.drawio       |    0
 .../lofar_station_firmware_model.vsd          |  Bin
 .../lofar_station_firmware_model.vsdx         |  Bin
 applications/lofar2/model/pfb_pk/PFB.ipynb    |  195 +++
 applications/lofar2/model/pfb_pk/PFB.pdf      |  Bin 0 -> 134803 bytes
 applications/lofar2/model/pfb_pk/PFB.py       |   98 ++
 applications/lofar2/model/pfb_pk/readme.txt   |    3 +
 8 files changed, 1578 insertions(+)
 create mode 100644 applications/lofar2/model/apertif_arts_firmware_model.py
 rename applications/lofar2/{doc => model}/lofar_station_firmware_model.drawio (100%)
 rename applications/lofar2/{doc => model}/lofar_station_firmware_model.vsd (100%)
 rename applications/lofar2/{doc => model}/lofar_station_firmware_model.vsdx (100%)
 create mode 100644 applications/lofar2/model/pfb_pk/PFB.ipynb
 create mode 100644 applications/lofar2/model/pfb_pk/PFB.pdf
 create mode 100644 applications/lofar2/model/pfb_pk/PFB.py
 create mode 100644 applications/lofar2/model/pfb_pk/readme.txt

diff --git a/applications/lofar2/model/apertif_arts_firmware_model.py b/applications/lofar2/model/apertif_arts_firmware_model.py
new file mode 100644
index 0000000000..1aae4143d0
--- /dev/null
+++ b/applications/lofar2/model/apertif_arts_firmware_model.py
@@ -0,0 +1,1282 @@
+###############################################################################
+#
+# Copyright (C) 2018
+# ASTRON (Netherlands Institute for Radio Astronomy) <http://www.astron.nl/>
+# P.O.Box 2, 7990 AA Dwingeloo, The Netherlands
+#
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program.  If not, see <http://www.gnu.org/licenses/>.
+#
+###############################################################################
+
+# Author: Eric Kooistra, 28 Oct 2018,
+
+"""Model the Apertif BF, XC / Arts TAB, IAB firmware data path signal levels
+
+The Apertif / Arts data path processing is described in:
+
+  ASTRON_SP_062_Detailed_Design_Arts_FPGA_Beamformer.pdf
+
+The purpose of the apertif_arts_firmware_model is to understand signal levels
+in the data path processing and to prove that the internal requantization in
+the firmware implementation is does not increase the system noise while
+providing the maximum dynamic range, given data widths at the external
+interfaces (i.e. W_adc = 8, W_beamlet = 6, W_vis = 32, W_volt = 8 and
+W_pow = 8).
+ 
+This apertif_arts_firmware_model.py model consists of the following sections:
+
+- User parameters
+- Firmware parameters
+- A static model to determine the expected internal signal levels as function
+  of the WG amplitude or the ADC noise sigma level.
+- A dynamic model using FFT, BF and ()**2 to model the data path signal
+  processing for a WG input signal or a system noise input signal. The FIR
+  part of the F_sub and F_chan is not modelled.
+  . WG input for test purposes to verify the linearity and dynamic range
+    as function of the WG amplitude and the number of dishes.
+  . Noise input for operational purposes to verify that the system noise 
+    maintains represented by suffcient LSbits throughout the data path
+    processing chain from ADC via beamlet and fine channel to correlator
+    visibility, Arts SC beamlet TAB, Arts SC4 power TAB and IAB.
+- Plot results of the static and the dynamic model.
+
+The model matches the drawings of the firmware parameters and signal levels in:
+
+  apertif_arts_firmware_model.vsd
+  apertif_arts_firmware_model.pdf 
+
+More information and a log an plots are also reported in:
+
+  ASTRON_RP_010888_Apertif_Arts_firmware_model.pdf
+  
+Parameters:
+* wgEnable
+  When True then a WG input is used for the dynamic model, else a noise input.
+* wgSweep
+  The WG makes a sweep through wgSweep number of subbands if wgSweep != 0. The
+  wgSweep can be < 1 and negative. If wgSweep != 0 then an image plot is made
+  of the subbands spectrum and the channels spectrum. The expected signal
+  levels that are reported by the dynamic model are only relevant when wgSweep
+  = 0.
+* quantize
+  The quantize parameter provides rounding of internal signal levels, weights
+  and gain factors. For the dynamic model clipping is not supported, because
+  the static model already shows when the signals clip. In the static model the
+  clipping can be controlled via the adjust parameter.
+
+Remark:
+- power = rms**2
+- mean powers = (rms voltages)**2
+- rms**2 = std**2 + mean**2 = std**2 when mean = 0
+- rms = std = ampl / sqrt(2) when mean is 0
+  --> pi_apr.wgScale = sqrt(2)
+  
+- power complex = power real + power imag
+                = (rms real)**2 + (rms imag)**2
+                = (ampl real/sqrt(2))**2 + (ampl imag/sqrt(2))**2
+- power real = power imag = power complex / 2, when signal is random or periodic
+- rms real = rms imag = rms complex / sqrt(2), when signal is random or periodic
+  --> pi_apr.rcScale = sqrt(2) = sqrt(nof_complex)
+- rms complex = sqrt(power complex)
+- ampl real = ampl imag = sqrt(power complex / 2) * sqrt(2)
+                        = sqrt(power complex)
+                        = rms complex
+                        = (rms real) * sqrt(2)
+                        = (rms imag) * sqrt(2)
+
+A = 1.0
+N = 100000
+realSamples = A * np.random.randn(N)
+realPowers = realSamples * realSamples
+x = rms(realSamples)**2
+y = np.mean(realPowers)
+z = np.std(realPowers)
+x # = A * 1.0
+y # = A * 1.0
+z # = A * sqrt(2)
+complexSamples =  A * np.random.randn(N) +  A * np.random.randn(N) * 1j
+complexPowers = complexSamples * np.conjugate(complexSamples)
+complexPowers = complexPowers.real
+x  = rms(complexSamples)**2
+xr = rms(complexSamples.real)**2
+xi = rms(complexSamples.imag)**2
+y = np.mean(complexPowers)
+z = np.std(complexPowers)
+x # = A * 2.0
+xr
+xi
+y # = A * 2.0
+z # = A * 2.0
+
+Use prefix rmsComplexY for rms of complex signal Y
+Use prefix rmsY for rms of real signal Y or of Y.real or of Y.imag, so
+    for complex signal Y then rmsY = rmsComplexY / pi_apr.rcScale,
+    for real signal Y then rmsY = rmsY.
+
+Usage:
+# in iPython:
+import os
+filepath='E:\\svn_radiohdl\\trunk\\applications\\apertif\\matlab'
+os.chdir(filepath)
+run apertif_arts_firmware_model.py
+
+# on command line
+python apertif_arts_firmware_model.py
+
+"""
+
+import argparse
+import math
+import numpy as np
+import common as cm
+import test_plot
+import pi_apertif_system as pi_apr
+
+################################################################################    
+# General
+################################################################################    
+
+def rms(arr):
+    """Root mean square of values in arr
+    Use this root-mean-square rms() instead of std() for CW signals that are at
+    center of bin and result in static phasor with std() = 0. For noise
+    signals with zero mean rms() is equal to std(). This rms() also works for
+    complex input thanks to using np.abs().
+    """
+    return np.sqrt(np.mean(np.abs(arr)**2.0))
+
+nofSigma = 4    # Number of sigma to fit in full scale
+
+sc1_use_qua = True       # use SC1 TAB bf quantized and clipped output
+sc1_use_qua = False      # use SC1 TAB bf raw LSbits and wrapped MSbits output (as implemented in arts_unb1_sc1)
+
+################################################################################    
+# Parse arguments to derive user settings
+################################################################################    
+
+_parser = argparse.ArgumentParser('apertif_arts_firmware_model')
+_parser.add_argument('--app', default='all', type=str, help='Application to model: dish, apertif, arts_sc1, arts_sc4 or all')
+_parser.add_argument('--model', default='all', type=str, help='Model: static, dynamic or all')
+_parser.add_argument('--sky_sigma', default=4.0, type=float, help='Signal sigma level at ADC input')
+_parser.add_argument('--wg_enable', default=False, action='store_true', help='Model coherent ADC input using WG sinus or model incoherent ADC input using Gaussian white noise')
+_parser.add_argument('--wg_ampl', default=4.0 * 2**0.5, type=float, help='WG amplitude at ADC input')
+_parser.add_argument('--wg_sweep', default=0.0, type=float, help='Number of subbands fsub to sweep with WG in dynamic model')
+_parser.add_argument('--nof_periods', default=250, type=int, help='Number of channel periods in dynamic model')
+_parser.add_argument('--nof_dishes', default=1, type=int, help='Number of dishes')
+_parser.add_argument('--quantize', default=False, action='store_true', help='Use fixed point rounding or no rounding of weights, gains and internal signals')
+_parser.add_argument('--useplot', default=False, action='store_true', help='Use plots or skip plotting')
+_parser.add_argument('--cb_weight_adjust', default=1.0, type=float, help='Factor to adjust unit CB weight')
+_parser.add_argument('--tab_weight_adjust_sc1', default=1.0, type=float, help='Factor to adjust unit TAB weight for SC1')
+_parser.add_argument('--tab_weight_adjust_sc4', default=1.0, type=float, help='Factor to adjust unit TAB weight for SC4')
+_parser.add_argument('--iab_gain_adjust', default=1.0, type=float, help='Factor to adjust unit IAB gain for SC4')
+args = _parser.parse_args()
+
+if args.app=='all':
+    apps = ['dish', 'apertif', 'arts_sc1', 'arts_sc4']
+else:
+    apps = [args.app]
+if args.model=='all':
+    models = ['static', 'dynamic']
+else:
+    models = [args.model]
+
+skySigma  = args.sky_sigma
+#skySigma  = 4
+#skySigma  = 89.8        # 89.8 * 2**0.5 = 127 for full scale WG amplitude
+#skySigma  = 26.1        # 26.1 * 2**0.5 =  37
+#skySigma  = 11.3        # 11.3 * 2**0.5 =  16 for full scale 8 bit beamlet amplitude
+
+wgAmpl    = args.wg_ampl
+wgSigma   = wgAmpl / np.sqrt(2)
+
+wgEnable  = args.wg_enable
+wgSweep   = args.wg_sweep
+#wgSweep   = 5.0          # number of fsub to sweep over nofTchanx
+#wgSweep   = -5.0         # number of fsub to sweep over nofTchanx
+#wgSweep   = 2.0          # number of fsub to sweep over nofTchanx
+#wgSweep   = 1.0/32       # number of fsub to sweep over nofTchanx
+if wgSweep != 0:
+    wgEnable = True   # force WG
+    apps = ['dish']   # only support sweep for dish
+
+quantize  = args.quantize
+
+useplot   = args.useplot
+
+cbWeightAdjust     = args.cb_weight_adjust
+tabWeightAdjustSc1 = args.tab_weight_adjust_sc1
+tabWeightAdjustSc4 = args.tab_weight_adjust_sc4
+iabGainAdjust      = args.iab_gain_adjust
+#cbWeightAdjust     = 1.0/8    # use <= 1/8 to have no beamlet (8 bit) clipping
+#cbWeightAdjust     = 1.0/32   # use <= 1/32 to have no fine channel_x (9 bit) clipping
+#tabWeightAdjustSc1 = 1.0      # = 1.0 to use unit weight
+#tabWeightAdjustSc4 = 1.0/4    # use <= 1/4 and cbWeightAdjust = 1/32 to have no TAB Stokes I (8 bit) clipping
+#iabGainAdjust      = 1.0/16   # use <= 1/16 and cbWeightAdjust = 1/32 to have no IAB Stokes I (8 bit) clipping
+
+# Number of dishes
+# - not used for Apertif correlator, because it only models auto visibilities
+# - only used for Arts array beamformers:
+#   . use  1 to verify the expected TAB, IAB output signal level
+#   . use 12 is all dishes for Arts SC1 or for IAB
+#   . use 10 is equidistant dishes for Arts SC4
+#   . use  8 is equidistant and fixed dishes for Arts SC3
+# The actual number of dishes does not alter the TAB or IAB output level, 
+# because the number of dishes is compensated via the TAB weights in case of
+# SC1 when sc1_use_qua = True and SC4 or via the IAB gain in case of the IAB.
+# When sc1_use_qua = False then the TAB output does increase with the number
+# of dishes, because then the TAB weigth is fixed at 1. Still for SC1 the
+# maximum gain with N_dish = 12 dishes is log2(sqrt(12)) = 1.8 bits, so with
+# 6 bit beamlet input and 8 bit voltage TAB data this gain still fits, and
+# therefore it is fine to use sc1_use_qua = False for SC1.
+# Typical values:
+# . nofDishes = 16    # model only
+# . nofDishes = 12    # RT2-9,a-d, all for Apertif XC and Arts SC1
+# . nofDishes = 10    # RT2-9,a,b at equidistant for Arts SC4
+# . nofDishes = 8     # RT2-9 fixed at equidistant for commensal Arts SC3
+# . nofDishes = 1     # model default, because tabWeightSc1, tabWeightSc4 and
+#                     # iabGainReg nomalize for nofDishes. Therefore use 
+#                     # nofDishes = 1 to speed up simulation, except when modeling
+#                     # Arts SC1 with fixed tabWeightSc1 = 1 (when sc1_use_qua =
+#                     # False).
+nofDishes = args.nof_dishes
+
+# Time series
+if 'dynamic' in models:
+    # use args.nof_periods for number of channel periods to simulate:
+    if wgEnable:
+        nofTchanx = args.nof_periods
+        #nofTchanx = 10          # use >~10 for WG
+        #nofTchanx = 100
+    else:
+        nofTchanx = args.nof_periods
+        #nofTchanx = 100         # number of channel periods to simulate, use >~ 100 for noise
+        #nofTchanx = 1000        # use >= 1000 for more accuracy
+        #nofTchanx = 250        # use < 1000 to speed up simulation
+    nofTStokes = nofTchanx
+
+    # also use args.nof_periods for number of Ts, Tsub, Tchanx periods to plot
+    # . to speed up plotting for Ts and Tsub
+    # . to have same density of samples per plot
+    nof_periods = args.nof_periods
+
+# Frequency selection
+if 'dynamic' in models:
+    # Select frequency for WG, SST, BST, XC
+    selSub           = 65
+    selChanx         = 33          # N_chan_x / 2 = center of subband
+    selChanxFraction = 1 * 1.0/nofTchanx   # yields 1 rotation in fine channel
+    #selChanxFraction = 0.0         # center channel, yields constant in fine channel
+    if wgSweep:
+        selChanx         = 32      # N_chan_x / 2 = center of subband
+        selChanxFraction = 0.0     # center channel, yields constant in fine channel
+
+################################################################################
+# Derived gains
+
+# Aperif BF subband CB voltage weight
+cbWeight = pi_apr.cbUnitWeight * cbWeightAdjust         # = 8192 = 2**13 * 1.0
+if quantize:
+    cbWeight = np.round(cbWeight)
+cbGain = cbWeight/pi_apr.cbMaxWeight   # normalized gain relative to maximum gain 1.0
+
+# Arts SC1 beamlet TAB voltage weight
+if sc1_use_qua:
+    # Intended implementation using quantized and clipped BF data with 
+    # TAB weights that are scaled by 1/nofDishes for coherent WG input
+    # and by 1/sqrt(nofDishes) for incoherent noise input.
+    W_tab_unit_scale_sc1 = -2                                   # = -2
+    W_tab_weight_fraction_sc1 = pi_apr.W_tab_max_weight_sc1 + W_tab_unit_scale_sc1  # = 
+    tabUnitWeightSc1 = 2.0**W_tab_weight_fraction_sc1           # = 2**13 = 8192
+    if wgEnable:
+        tabWeightSc1 = tabUnitWeightSc1 / nofDishes             # coherent TAB input, like WG
+    else:
+        tabWeightSc1 = tabUnitWeightSc1 / math.sqrt(nofDishes)  # incoherent TAB input, like sky noise
+    tabWeightSc1 *= tabWeightAdjustSc1
+else:
+    # Current implementation using LSbits and wrapped MSbits of raw BF data
+    # and unit weight = 1 independent of nofDishes. The TAB weight
+    # tabWeightSc1 = 1 is the smallest weight value, so effectively the range
+    # of W_tab_weight_sc1 is not used.
+    W_tab_unit_scale_sc1 = -pi_apr.W_tab_max_weight_sc1         # = -15
+    W_tab_weight_fraction_sc1 = pi_apr.W_tab_max_weight_sc1 + W_tab_unit_scale_sc1 # = 0 = 15 + -15
+    tabUnitWeightSc1 = 1.0                                      # = 1 = 2.0**W_tab_weight_fraction_sc1 = 2**0
+    tabWeightSc1 = tabUnitWeightSc1                             # = 1 independent of nofDishes
+if quantize:
+    tabWeightSc1 = np.round(tabWeightSc1)
+tabGainSc1 = tabWeightSc1/pi_apr.tabMaxWeightSc1  # Normalized gain relative to maximum gain 1.0
+
+# Arts SC4 channel TAB voltage weight
+if wgEnable:
+    tabWeightSc4 = pi_apr.tabUnitWeightSc4 / nofDishes             # coherent TAB input, like WG
+else:
+    tabWeightSc4 = pi_apr.tabUnitWeightSc4 / math.sqrt(nofDishes)  # incoherent TAB input, like sky noise
+tabWeightSc4 = tabWeightSc4 * tabWeightAdjustSc4
+if quantize:
+    tabWeightSc4 = np.round(tabWeightSc4)
+tabGainSc4 = tabWeightSc4/pi_apr.tabMaxWeightSc4    # Normalized gain relative to maximum gain 1.0
+
+# Arts SC4 power IAB power gain
+iabGainReg = pi_apr.iabUnitGain * iabGainAdjust / nofDishes     # IAB input powers add coherently
+if quantize:
+    iabGainReg = np.round(iabGainReg)
+iabGain = iabGainReg/pi_apr.iabMaxGain    # Normalized gain relative to maximum gain 1.0
+
+
+################################################################################
+# Apertif / Arts settings
+# . BF
+N_fft         = pi_apr.N_FFT            # = 1024
+N_sub         = pi_apr.N_sub            # = 512
+N_int_sub     = pi_apr.N_int_x          # = 800000
+
+# . XC, SC4
+N_chan_x      = pi_apr.N_chan_x         # = 64
+N_chan_bf     = pi_apr.N_chan_bf        # = 4
+N_int_chan_x  = pi_apr.N_int_chan_x     # = 12500 = N_int_x / N_chan_x
+
+if 'static' in models:
+    ################################################################################    
+    # Static model of signal level as function of:
+    # . WG input amplitude level
+    # . Noise input sigma level
+    ################################################################################    
+    
+    # Input axis
+    inputResolution = 0.05
+    
+    # Dish
+    A_wg = np.arange(inputResolution, 2**pi_apr.W_adc_max, inputResolution)    # 0:127
+    S_wg = A_wg / pi_apr.wgScale
+    S_wg_complex = S_wg
+    S_wg_complex_phase = S_wg_complex / pi_apr.rcScale
+    A_wg_complex_phase = S_wg_complex
+    S_noise = np.arange(inputResolution, 2**pi_apr.W_adc_max / nofSigma, inputResolution)  # 0:31
+    S_noise_complex = S_noise
+    S_noise_complex_phase = S_noise / pi_apr.rcScale
+    
+    SST_wg_inputs = S_wg_complex / pi_apr.wgSstScale
+    SST_wg_values = SST_wg_inputs**2 * N_int_sub
+    SST_wg_dBs = 10*np.log10(SST_wg_values)
+    SST_noise_inputs = S_noise_complex / pi_apr.noiseSstScale
+    SST_noise_values = SST_noise_inputs**2 * N_int_sub
+    SST_noise_dBs = 10*np.log10(SST_noise_values)
+    
+    BST_wg_inputs = S_wg_complex * cbWeightAdjust / pi_apr.wgBstScale
+    BST_wg_values = BST_wg_inputs**2 * N_int_sub
+    BST_wg_dBs = 10*np.log10(BST_wg_values)
+    BST_noise_inputs = S_noise_complex * cbWeightAdjust / pi_apr.noiseBstScale
+    BST_noise_values = BST_noise_inputs**2 * N_int_sub
+    BST_noise_dBs = 10*np.log10(BST_noise_values)
+    
+    clip = 2.0**pi_apr.W_beamlet_max - 1
+    beamlet_wg_complex_phase_values = S_wg_complex_phase * cbWeightAdjust / pi_apr.wgBeamletScale
+    beamlet_wg_complex_phase_values = np.clip(beamlet_wg_complex_phase_values, -clip, clip)
+    beamlet_noise_complex_phase_values = S_noise_complex_phase * cbWeightAdjust / pi_apr.noiseBeamletScale
+    beamlet_noise_complex_phase_values = np.clip(beamlet_noise_complex_phase_values, -clip, clip)
+    
+    # Central
+    clip = 2.0**pi_apr.W_channel_x_max - 1
+    channel_x_wg_complex_phase_values = S_wg_complex_phase * cbWeightAdjust / pi_apr.wgChannelXcorScale
+    channel_x_wg_complex_phase_values = np.clip(channel_x_wg_complex_phase_values, -clip, clip)
+    channel_x_wg_complex_values = channel_x_wg_complex_phase_values * pi_apr.rcScale
+    channel_x_noise_complex_phase_values = S_noise_complex_phase * cbWeightAdjust / pi_apr.noiseChannelXcorScale
+    channel_x_noise_complex_phase_values = np.clip(channel_x_noise_complex_phase_values, -clip, clip)
+    channel_x_noise_complex_values = channel_x_noise_complex_phase_values * pi_apr.rcScale
+    
+    if 'apertif' in apps:
+        # Correlator
+        XC_wg_auto_visibilities = channel_x_wg_complex_values**2 * N_int_chan_x
+        XC_wg_auto_visibilities_dB = 10*np.log10(XC_wg_auto_visibilities)
+        XC_noise_auto_visibilities = channel_x_noise_complex_values**2 * N_int_chan_x
+        XC_noise_auto_visibilities_dB = 10*np.log10(XC_noise_auto_visibilities)
+    
+    if 'arts_sc1' in apps:
+        # Arts SC1 beamlet voltage TAB
+        if sc1_use_qua:
+            beamlet_tab_wg_complex_phase_values_sc1 = beamlet_wg_complex_phase_values * tabWeightAdjustSc1
+            beamlet_tab_noise_complex_phase_values_sc1 = beamlet_noise_complex_phase_values * tabWeightAdjustSc1
+        else:
+            beamlet_tab_wg_complex_phase_values_sc1 = beamlet_wg_complex_phase_values * nofDishes
+            beamlet_tab_noise_complex_phase_values_sc1 = beamlet_noise_complex_phase_values * nofDishes
+        clip = 2.0**pi_apr.W_volt_max - 1
+        beamlet_tab_wg_complex_phase_values_sc1 = np.clip(beamlet_tab_wg_complex_phase_values_sc1, -clip, clip)
+        beamlet_tab_noise_complex_phase_values_sc1 = np.clip(beamlet_tab_noise_complex_phase_values_sc1, -clip, clip)
+    
+    if 'arts_sc4' in apps:
+        # Arts SC4 channel power TAB
+        clip = 2.0**pi_apr.W_volt - 1
+        power_tab_xx_wg_complex_values_sc4 = (channel_x_wg_complex_values * tabWeightAdjustSc4)**2    # Stokes I = XX* + 0
+        power_tab_xx_wg_complex_values_sc4 = np.clip(power_tab_xx_wg_complex_values_sc4, 0, clip)  # Stokes I is unsigned >= 0
+        power_tab_xx_noise_values_sc4 = (channel_x_noise_complex_values * tabWeightAdjustSc4)**2    # Stokes I = XX* + 0
+        power_tab_xx_noise_values_sc4 = np.clip(power_tab_xx_noise_values_sc4, 0, clip)  # Stokes I is unsigned >= 0
+        
+        # Arts SC4 channel IAB
+        clip = 2.0**pi_apr.W_pow - 1
+        iab_xx_wg_complex_values_sc4 = channel_x_wg_complex_values**2 * iabGainAdjust   # Stokes I = XX* + 0
+        iab_xx_wg_complex_values_sc4 = np.clip(iab_xx_wg_complex_values_sc4, 0, clip) # Stokes I is unsigned >= 0
+        iab_xx_noise_values_sc4 = channel_x_noise_complex_values**2 * iabGainAdjust   # Stokes I = XX* + 0
+        iab_xx_noise_values_sc4 = np.clip(iab_xx_noise_values_sc4, 0, clip) # Stokes I is unsigned >= 0
+
+
+if 'dynamic' in models:
+    ################################################################################    
+    # Dynamic model parameters
+    ################################################################################    
+    
+    ################################################################################
+    # Apertif / Arts settings
+    # . BF
+    fs            = 800e6
+    fsub          = fs / N_fft
+    Ts            = 1/fs
+    Tsub          = 1/fsub
+
+    # . XC, SC4
+    fchan_x       = fsub / N_chan_x
+    Tchanx        = 1/fchan_x
+    
+    # . SC4
+    Tstokesx      = Tchanx
+    M_int_ax      = pi_apr.M_int_ax         # = 16
+    W_int_ax      = pi_apr.W_int_ax         # = 4 = log2(16)
+    #M_int_ax      = 1
+    #W_int_ax      = cm.ceil_log2(M_int_ax)
+    
+    ################################################################################
+    # Dish CB
+
+    # Number of bits for internal product
+    W_cb_product = pi_apr.W_cb_in + pi_apr.W_cb_weight - 1  # = 31 = 16 + 16 -1, do -1 to skip double sign bit of product
+    
+    # Number of bits for fraction < 1
+    W_beamlet_fraction = pi_apr.W_beamlet_fraction    # number of bits for fraction < 1
+    
+    if 'arts_sc1' in apps:
+        ################################################################################    
+        # Arts SC1 beamlet TAB
+        
+        # Number of bits for internal product
+        W_tab_product_sc1 = pi_apr.W_beamlet + pi_apr.W_tab_weight_sc1 - 1  # = 23 = 8 + 16 -1, do -1 to skip double sign bit of product
+        
+        # Number of bits for fraction < 1
+        W_tab_fraction_sc1 = W_beamlet_fraction - W_tab_unit_scale_sc1  # = 8  = 6 - -2  when sc1_use_qua = True
+                                                                        # = 21 = 6 - -15 when sc1_use_qua = False
+    
+    if 'arts_sc4' in apps:
+        ################################################################################    
+        # Arts SC4 channel TAB
+        
+        # Fine channel TAB        
+        # Number of bits for internal product
+        W_tab_voltage_product_sc4 = pi_apr.W_channel_x + pi_apr.W_tab_weight_sc4 - 1  # = 17 = 9 + 9 -1, do -1 to skip double sign bit of product
+        W_tab_power_product_sc4 = 2*W_tab_voltage_product_sc4 - 1  # = 33 = 2*17 -1, do -1 to skip double sign bit of product
+        
+        # For SC4 it is possible to use W_channel_x_fraction > 9, because the F_chan is internal
+        # For SC3 it W_channel_x_fraction = 9, because the F_chan is in Apertif XC
+        # Number of bits for fraction < 1
+        W_tab_voltage_fraction_sc4 = pi_apr.W_channel_x_fraction - pi_apr.W_tab_unit_scale_sc4  # = 10 = 9 - -1
+        
+        # Arts channel TAB
+        # Number of bits for fraction < 1
+        W_tab_power_fraction_sc4 = 2*W_tab_voltage_fraction_sc4             # = 20 = 2*10
+        W_tab_power_int_fraction_sc4 = W_tab_power_fraction_sc4 - W_int_ax  # = 16 = 20 - 4
+                                                                                                                 
+        ################################################################################    
+        # Arts SC4 channel IAB
+                
+        # Number of bits for internal product
+        W_iab_power_product = 2*pi_apr.W_channel_x_fraction - 1  # = 17 = 2*9 -1, do -1 to skip double sign bit of product
+        W_iab_gain_product = W_iab_power_product + pi_apr.W_iab_gain - 1  # = 32 = 17 + 16 - 1, do -1 to skip double sign bit of product
+        
+        # Number of bits for fraction < 1
+        W_iab_power_fraction = 2*pi_apr.W_channel_x_fraction              # = 18 = 2*9
+        W_iab_gain_fraction = W_iab_power_fraction - W_int_ax - pi_apr.W_iab_unit_scale    # = 16 = 18 - 4 - -2
+
+    ################################################################################    
+    # Dynamic model time series
+    ################################################################################    
+    
+    # Time, frequency axis
+    nofTsub = nofTchanx * N_chan_x
+    nofTs = nofTsub * N_fft
+    t = np.arange(nofTs) * Ts
+    
+    ################################################################################
+    # Dish Compound Beamformer
+    
+    # ADC input
+    if wgEnable:
+        wgFreq = (selSub + (selChanx + selChanxFraction - N_chan_x/2.0) / N_chan_x) * fsub
+        chirpFreq = 0
+        if wgSweep:
+            chirpFreq = wgSweep * fsub * np.arange(nofTs)/nofTs/2.0
+        spSamples = wgAmpl * np.sin(2*np.pi*(wgFreq + chirpFreq) * t)
+    else:
+        spSamples = np.random.randn(nofTs)
+        spSamples *= skySigma / rms(spSamples)
+    
+    if quantize:
+        # The unit level is at 1 lsb of the ADC input, so the W_adc = 8 bit input
+        # has no fraction and can thus directly be rounded to model quantization.
+        spSamples = np.round(spSamples)
+    rmsSp = rms(spSamples)  # real signal
+    amplSp = rmsSp * pi_apr.wgScale
+    
+    # Fsub subbands full bandwidth
+    spBlocks = spSamples.reshape((nofTsub, N_fft))  # [nofTsub][N_fft]
+    fftSamples = np.fft.fft(spBlocks) / N_fft       # [nofTsub][N_fft]
+    fSubSamples = fftSamples[:, 0:N_sub]            # [nofTsub][N_sub], real input, so only keep positive frequencies
+    
+    # SST for selSub
+    sstSamples = fSubSamples[:, selSub].copy()
+    if quantize:
+        sstSamples *= 2.0**pi_apr.W_sst_fraction  # fixed point fraction
+        sstSamples = np.round(sstSamples)
+        sstSamples /= 2.0**pi_apr.W_sst_fraction  # back to normalized fraction
+    rmsComplexSST = rms(sstSamples)       # complex signal
+    rmsSST = rmsComplexSST / pi_apr.rcScale
+    amplSST = rmsSST * pi_apr.wgScale
+    SSTpower = N_int_sub * rmsComplexSST**2
+    
+    # BF samples full bandwidth
+    bfSamples = fSubSamples * cbGain
+    
+    # BST for selSub
+    bstSamples = bfSamples[:, selSub].copy()
+    if quantize:
+        bstSamples *= 2.0**pi_apr.W_bst_fraction  # fixed point fraction
+        bstSamples = np.round(bstSamples)
+        bstSamples /= 2.0**pi_apr.W_bst_fraction  # back to normalized fraction
+    rmsComplexBST = rms(bstSamples)    # complex signal
+    rmsBST = rmsComplexBST / pi_apr.rcScale
+    amplBST = rmsBST * pi_apr.wgScale
+    BSTpower = N_int_sub * rmsComplexBST**2
+    
+    # CB beamlet for selSub
+    beamletSamples = bfSamples[:, selSub].copy()
+    if quantize:
+        beamletSamples *= 2.0**pi_apr.W_beamlet_fraction  # fixed point fraction
+        beamletSamples = np.round(beamletSamples)
+        beamletSamples /= 2.0**pi_apr.W_beamlet_fraction  # back to normalized fraction
+    rmsComplexBeamlet = rms(beamletSamples)    # complex signal
+    rmsBeamlet = rmsComplexBeamlet / pi_apr.rcScale
+    amplBeamlet = rmsBeamlet * pi_apr.wgScale
+    
+    ################################################################################
+    # Beamlet channelizer
+    # . Fchan output
+    transposeSamples = bfSamples.transpose()                                # [nofTsub][N_sub] --> [N_sub][nofTsub]
+    transposeBlocks = transposeSamples.reshape(N_sub, nofTchanx, N_chan_x)  # [N_sub][nofTchanx][N_chan_x]
+    fSubChanSamples = np.fft.fft(transposeBlocks) / N_chan_x                # [N_sub][nofTchanx][N_chan_x], complex input and output
+    fSubChanSamples = np.fft.fftshift(fSubChanSamples, 2)
+    fSubChanSamples = fSubChanSamples.transpose(1, 0, 2)                    # [nofTchanx][N_sub][N_chan_x]
+    
+    # . CB fine channel for selSub, selChanx
+    fineChannelSamples = fSubChanSamples[:, selSub, selChanx].copy()
+    if quantize:
+        fineChannelSamples *= 2.0**pi_apr.W_channel_x_fraction  # fixed point fraction
+        fineChannelSamples = np.round(fineChannelSamples)
+        fineChannelSamples /= 2.0**pi_apr.W_channel_x_fraction  # back to normalized fraction
+    rmsComplexFineChannel = rms(fineChannelSamples)    # complex signal
+    rmsFineChannel = rmsComplexFineChannel / pi_apr.rcScale
+    amplFineChannel = rmsFineChannel * pi_apr.wgScale
+    
+    if 'apertif' in apps:
+        ################################################################################
+        # Aperif XC channel auto-visibility
+        XCpower = N_int_chan_x * rmsComplexFineChannel**2
+    
+    if 'arts_sc1' in apps:
+        ################################################################################
+        # Arts SC1 beamlet voltage TAB
+        if wgEnable:
+            # Coherent sum using beamlets from original ADC input
+            beamletTabSamples = nofDishes * beamletSamples.copy()
+        else:
+            # Incoherent sum using copies with the same rms beamlet as for the original ADC input
+            beamletTabSamples = np.zeros(nofTsub) + np.zeros(nofTsub) * 1j
+            for tel in range(nofDishes):
+                complexSamples = np.random.randn(nofTsub) + np.random.randn(nofTsub) * 1j
+                complexSamples *= rmsComplexBeamlet / rms(complexSamples)
+                beamletTabSamples += complexSamples
+        beamletTabSamples *= tabGainSc1
+        if quantize:
+            beamletTabSamples *= 2.0**W_tab_fraction_sc1  # fixed point fraction
+            beamletTabSamples = np.round(beamletTabSamples)
+            beamletTabSamples /= 2.0**W_tab_fraction_sc1  # back to normalized fraction
+        rmsComplexBeamletTab = rms(beamletTabSamples)    # complex signal
+        rmsBeamletTab = rmsComplexBeamletTab / pi_apr.rcScale
+        amplBeamletTab = rmsBeamletTab * pi_apr.wgScale
+    
+    if 'arts_sc4' in apps:
+        ################################################################################
+        # Arts SC4 Power TAB for single polarization Stokes I = XX* + 0
+        # . Fine channel voltage TAB
+        if wgEnable:
+            # Coherent sum using channel from original ADC input
+            fineChannelTabSamples = nofDishes * fineChannelSamples.copy()
+        else:
+            # Incoherent sum using copies with the same rms channel as for the original ADC input
+            fineChannelTabSamples = np.zeros(nofTchanx) + np.zeros(nofTchanx) * 1j
+            for tel in range(nofDishes):
+                complexSamples = np.random.randn(nofTchanx) + np.random.randn(nofTchanx) * 1j
+                complexSamples *= rmsComplexFineChannel / rms(complexSamples)
+                fineChannelTabSamples += complexSamples    # voltage sum
+        fineChannelTabSamples *= tabGainSc4
+        if quantize:
+            fineChannelTabSamples *= 2.0**W_tab_voltage_fraction_sc4  # fixed point fraction
+            fineChannelTabSamples = np.round(fineChannelTabSamples)
+            fineChannelTabSamples /= 2.0**W_tab_voltage_fraction_sc4  # back to normalized fraction
+        rmsComplexFineChannelTab = rms(fineChannelTabSamples)    # complex signal
+        rmsFineChannelTab = rmsComplexFineChannelTab / pi_apr.rcScale
+        amplFineChannelTab = rmsFineChannelTab * pi_apr.wgScale
+        
+        # . Fine channel power TAB
+        fineChannelTabPowers = fineChannelTabSamples * np.conjugate(fineChannelTabSamples)  # powers
+        fineChannelTabPowers = fineChannelTabPowers.real           # keep real, imag = 0
+        meanFineChannelTabPower = np.mean(fineChannelTabPowers)    # = rmsComplexFineChannelTab**2, use mean for power data and rms for voltage data
+        stdFineChannelTabPower = np.std(fineChannelTabPowers)
+        
+        # . Integrated channels power TAB
+        if wgEnable:
+            # The WG sinus only occurs in one fine channel if it is close to the center fine channel frequency, so
+            # the other fine channels in N_chan_bf fine channels carry almost zero and do not contribute much
+            integratedTabPowers = fineChannelTabPowers.copy()
+        else:
+            # Integrate using copies with the same rmsComplexFineChannelTab as for the orginal ADC input
+            integratedTabPowers = np.zeros(nofTchanx)
+            for ci in range(M_int_ax):
+                complexSamples = np.random.randn(nofTchanx) + np.random.randn(nofTchanx) * 1j
+                complexSamples *= rmsComplexFineChannelTab / rms(complexSamples)
+                powerSamples = complexSamples * np.conjugate(complexSamples)
+                powerSamples = powerSamples.real           # keep real, imag = 0
+                integratedTabPowers += powerSamples
+        if quantize:
+            integratedTabPowers *= 2.0**W_tab_power_int_fraction_sc4  # fixed point fraction
+            integratedTabPowers = np.round(integratedTabPowers)
+            integratedTabPowers /= 2.0**W_tab_power_int_fraction_sc4  # back to normalized fraction
+        meanIntegratedTabPower = np.mean(integratedTabPowers)    # use mean for power data and rms for voltage data
+        stdIntegratedTabPower = np.std(integratedTabPowers)
+        
+        ################################################################################
+        # Arts SC4 IAB for single polarization Stokes I = XX* + 0
+        
+        # . Fine channel powers
+        fineChannelPowers = fineChannelSamples * np.conjugate(fineChannelSamples)
+        fineChannelPowers = fineChannelPowers.real           # keep real, imag = 0
+        meanFineChannelPower = np.mean(fineChannelPowers)    # = rmsComplexFineChannel**2, use mean for power data and rms for voltage data
+        
+        # . Integrated channel powers
+        if wgEnable:
+            # The WG sinus only occurs in one fine channel if it is close to the center fine channel frequency, so
+            # the other fine channels in N_chan_bf fine channels carry almost zero and do not contribute much
+            integratedChannelPowers = fineChannelPowers
+        else:
+            # Integrate using copies with the same rmsComplexFineChannel as for the orginal ADC input
+            integratedChannelPowers = np.zeros(nofTchanx)
+            for ci in range(M_int_ax):
+                complexSamples = np.random.randn(nofTchanx) + np.random.randn(nofTchanx) * 1j
+                complexSamples *= rmsComplexFineChannel / rms(complexSamples)
+                powerSamples = complexSamples * np.conjugate(complexSamples)
+                powerSamples = powerSamples.real           # keep real, imag = 0
+                integratedChannelPowers += powerSamples
+        meanIntegratedChannelPower = np.mean(integratedChannelPowers)    # use mean for power data and rms for voltage data
+        
+        # . Sum of powers is coherent sum
+        if wgEnable:
+            # Sum of powers using integrated channel from original ADC input
+            integratedIabPowers = nofDishes * integratedChannelPowers
+        else:
+            # Sum of powers using copies with the same rmsComplexFineChannel as for the original ADC input
+            integratedIabPowers = np.zeros(nofTchanx)
+            for tel in range(nofDishes):
+                telPowerSamples = np.zeros(nofTchanx)
+                for ci in range(M_int_ax):
+                    complexSamples = np.random.randn(nofTchanx) + np.random.randn(nofTchanx) * 1j
+                    complexSamples *= rmsComplexFineChannel / rms(complexSamples)
+                    powerSamples = complexSamples * np.conjugate(complexSamples)
+                    powerSamples = powerSamples.real      # keep real, imag = 0
+                    telPowerSamples += powerSamples       # powers sum integration
+                integratedIabPowers += telPowerSamples    # powers sum IAB
+        meanIntegratedIabPower = np.mean(integratedIabPowers)    # use mean for power data and rms for voltage data
+        
+        # . Output gain
+        outputIabPowers = integratedIabPowers * iabGain
+        if quantize:
+            outputIabPowers *= 2.0**W_iab_gain_fraction    # fixed point fraction
+            outputIabPowers = np.round(outputIabPowers)
+            outputIabPowers /= 2.0**W_iab_gain_fraction    # back to normalized fraction
+        meanOutputIabPower = np.mean(outputIabPowers)    # use mean for power data and rms for voltage data
+        stdOutputIabPower = np.std(outputIabPowers)
+    
+    ################################################################################
+    # Dynamic model: Normalized floating point fraction to fixed point fraction
+    ################################################################################    
+    
+    # SST
+    rmsComplexSST *= 2.0**pi_apr.W_sst_fraction
+    rmsSST *= 2.0**pi_apr.W_sst_fraction
+    amplSST *= 2.0**pi_apr.W_sst_fraction
+    SSTpower *= 2.0**(2*pi_apr.W_sst_fraction)
+    
+    # BST
+    rmsComplexBST *= 2.0**pi_apr.W_bst_fraction
+    rmsBST *= 2.0**pi_apr.W_bst_fraction
+    amplBST *= 2.0**pi_apr.W_bst_fraction
+    BSTpower *= 2.0**(2*pi_apr.W_bst_fraction)
+    
+    # CB beamlet for selSub
+    beamletSamples *= 2.0**pi_apr.W_beamlet_fraction
+    rmsComplexBeamlet *= 2.0**pi_apr.W_beamlet_fraction
+    rmsBeamlet *= 2.0**pi_apr.W_beamlet_fraction
+    amplBeamlet *= 2.0**pi_apr.W_beamlet_fraction
+    
+    # CB fine channel for selSub, selChanx
+    fineChannelSamples *= 2.0**pi_apr.W_channel_x_fraction
+    rmsComplexFineChannel *= 2.0**pi_apr.W_channel_x_fraction
+    rmsFineChannel *= 2.0**pi_apr.W_channel_x_fraction
+    amplFineChannel *= 2.0**pi_apr.W_channel_x_fraction
+    
+    if 'apertif' in apps:
+        # Aperif XC channel auto-visibility
+        XCpower *= 2.0**(2*pi_apr.W_channel_x_fraction)
+    
+    if 'arts_sc1' in apps:
+        # Arts SC1 beamlet voltage TAB
+        beamletTabSamples *= 2.0**W_tab_fraction_sc1
+        rmsComplexBeamletTab *= 2.0**W_tab_fraction_sc1
+        rmsBeamletTab *= 2.0**W_tab_fraction_sc1
+        amplBeamletTab *= 2.0**W_tab_fraction_sc1
+    
+    if 'arts_sc4' in apps:
+        # Arts SC4 Power TAB for single polarization Stokes I = XX* + 0
+        # . Fine channel voltage TAB
+        fineChannelTabSamples *= 2.0**W_tab_voltage_fraction_sc4
+        rmsComplexFineChannelTab *= 2.0**W_tab_voltage_fraction_sc4
+        rmsFineChannelTab *= 2.0**W_tab_voltage_fraction_sc4
+        amplFineChannelTab *= 2.0**W_tab_voltage_fraction_sc4
+        
+        # . Fine channel power TAB
+        fineChannelTabPowers *= 2.0**W_tab_power_fraction_sc4
+        meanFineChannelTabPower *= 2.0**W_tab_power_fraction_sc4
+        stdFineChannelTabPower *= 2.0**W_tab_power_fraction_sc4
+        
+        # . Integrated channels power TAB
+        integratedTabPowers *= 2.0**W_tab_power_int_fraction_sc4
+        meanIntegratedTabPower *= 2.0**W_tab_power_int_fraction_sc4
+        stdIntegratedTabPower *= 2.0**W_tab_power_int_fraction_sc4
+        
+        # Arts SC4 IAB for single polarization Stokes I = XX* + 0
+        # . Fine channel powers
+        fineChannelPowers *= 2.0**W_iab_power_fraction
+        meanFineChannelPower *= 2.0**W_iab_power_fraction
+        
+        # . Integrated channel powers
+        integratedChannelPowers *= 2.0**W_iab_power_fraction
+        meanIntegratedChannelPower *= 2.0**W_iab_power_fraction
+        
+        # . Sum of powers is coherent sum
+        integratedIabPowers *= 2.0**W_iab_power_fraction
+        meanIntegratedIabPower *= 2.0**W_iab_power_fraction
+        
+        # . Output gain
+        outputIabPowers *= 2.0**W_iab_gain_fraction
+        meanOutputIabPower *= 2.0**W_iab_gain_fraction
+        stdOutputIabPower *= 2.0**W_iab_gain_fraction
+
+################################################################################
+# Logging
+################################################################################    
+print '--------------------------------------------------------------------'
+print '-- User settings'
+print '--------------------------------------------------------------------'
+if wgEnable:
+    print 'WG sinus input:'
+    print '. wgSigma              = %f' % wgSigma
+    print '. wgAmpl               = %f [fsub]' % wgAmpl
+    print '. wgSweep              = %f [fsub]' % wgSweep
+else:
+    print 'ADC noise input:'
+    print '. skySigma             = %f' % skySigma
+print '. quantize             = %s' % quantize
+print '. nofDishes            = %d   (= %.1f bit)' % (nofDishes, math.log(nofDishes, 2))
+print ''
+
+if 'dynamic' in models:
+    print 'Dynamic model:'
+    print '. selSub               = %d' % selSub
+    print '. selChanx             = %d' % selChanx
+    print '. selChanxFraction     = %d' % selChanxFraction
+    print '. nofTchanx            = %d' % nofTchanx
+    print '. nofTsub              = %d' % nofTsub
+    print '. nofTs                = %d' % nofTs
+    print ''
+
+print '--------------------------------------------------------------------'
+print '-- Design settings'
+print '--------------------------------------------------------------------'
+print 'Apertif BF:'
+print '. N_fft                = %d' % N_fft
+print '. N_sub                = %d' % N_sub
+print '. N_int_sub            = %d' % N_int_sub
+print ''
+if 'apertif' in apps:
+    print 'Apertif XC:'
+    print '. N_chan_x             = %d' % N_chan_x
+    print '. N_chan_bf            = %d' % N_chan_bf
+    print '. N_int_chan_x         = %d' % N_int_chan_x
+    print '. cbWeightAdjust       = %f' % cbWeightAdjust
+    print '. cbMaxWeight          = %d' % pi_apr.cbMaxWeight
+    print '. cbUnitWeight         = %d' % pi_apr.cbUnitWeight
+    print '. cbWeight             = %d' % cbWeight
+    print '. cbGain               = %f' % cbGain
+    print ''
+if 'arts_sc1' in apps:
+    print 'Arts SC1:'
+    print '. sc1_use_qua          = %s' % sc1_use_qua
+    print '. tabWeightAdjustSc1   = %f' % tabWeightAdjustSc1
+    print '. tabUnitWeightSc1     = %d' % tabUnitWeightSc1
+    print '. tabWeightSc1         = %d' % tabWeightSc1
+    print '. tabGainSc1           = %.8f' % tabGainSc1
+    print ''
+if 'arts_sc4' in apps:
+    print 'Arts SC4:'
+    print '. tabWeightAdjustSc4   = %f' % tabWeightAdjustSc4
+    print '. iabGainAdjust        = %f' % iabGainAdjust
+    print '. iabMaxGain           = %d' % pi_apr.iabMaxGain
+    print '. iabUnitGain          = %d' % pi_apr.iabUnitGain
+    print '. iabGainReg           = %d' % iabGainReg
+    print '. iabGain              = %.8f' % iabGain
+    print ''
+
+if 'dynamic' in models:
+    print '--------------------------------------------------------------------'
+    print '-- Dynamic model settings'
+    print '--------------------------------------------------------------------'
+    print 'Design:'
+    print '. fs                           = %f [Hz]' % fs
+    print '. Ts                           = %.2f [ns]' % (Ts * 1e9)
+    print '. fsub                         = %f [Hz]' % fsub
+    print '. Tsub                         = %.2f [us]' % (Tsub * 1e6)
+    print '. W_fsub_gain                  = %d [bit]' % pi_apr.W_fsub_gain
+    if 'apertif' in apps:
+        print '. fchan_x                      = %f [Hz]' % fchan_x
+        print '. Tchanx                       = %.2f [us]' % (Tchanx * 1e6)
+        print '. W_fchan_x_gain               = %d [bit]' % pi_apr.W_fchan_x_gain
+    if 'arts_sc4' in apps:
+        print '. Tstokesx                     = %.2f [us]' % (Tstokesx * 1e6)
+    print ''
+
+    print 'Dish:'
+    print '. W_adc                        = %d [bit]' % pi_apr.W_adc
+    print '. W_adc_max                    = %d [bit], adc max = %d' % (pi_apr.W_adc_max, 2**pi_apr.W_adc_max-1)
+    print '. W_sst_in                     = %d [bit]' % pi_apr.W_sst_in
+    print '. W_sst_fraction               = %d [bit]' % pi_apr.W_sst_fraction
+    print '. W_cb_weight                  = %d [bit]' % pi_apr.W_cb_weight
+    print '. W_cb_unit_scale              = %d [bit]' % pi_apr.W_cb_unit_scale
+    print '. W_cb_weight_fraction         = %d [bit]' % pi_apr.W_cb_weight_fraction
+    print '. W_cb_in                      = %d [bit]' % pi_apr.W_cb_in
+    print '. W_cb_product                 = %d [bit]' % W_cb_product
+    print '. W_bst_in                     = %d [bit]' % pi_apr.W_bst_in
+    print '. W_bst_fraction               = %d [bit]' % pi_apr.W_bst_fraction
+    print '. W_beamlet_sc1                = %d [bit]' % pi_apr.W_beamlet_sc1
+    print '. W_beamlet                    = %d [bit]' % pi_apr.W_beamlet
+    print '. W_beamlet_fraction           = %d [bit]' % pi_apr.W_beamlet_fraction
+    print ''
+
+    if 'apertif' in apps:
+        print 'Apertif XC:'
+        print '. W_channel_x                  = %d [bit]' % pi_apr.W_channel_x
+        print '. W_channel_x_fraction         = %d [bit]' % pi_apr.W_channel_x_fraction
+        print ''
+        
+    if 'arts_sc1' in apps:
+        print 'Arts SC1 beamlet TAB:'
+        print '. W_tab_weight_sc1             = %d [bit]' % pi_apr.W_tab_weight_sc1
+        print '. W_tab_unit_scale_sc1         = %d [bit]' % W_tab_unit_scale_sc1
+        print '. W_tab_weight_fraction_sc1    = %d [bit]' % W_tab_weight_fraction_sc1
+        print '. W_beamlet_sc1                = %d [bit]' % pi_apr.W_beamlet_sc1
+        print '. W_tab_product_sc1            = %d [bit]' % W_tab_product_sc1
+        print '. W_tab_fraction_sc1           = %d [bit]' % W_tab_fraction_sc1
+        print ''
+    
+    if 'arts_sc4' in apps:
+        print 'Arts SC4 TAB:'
+        print '. W_channel_x                  = %d [bit]' % pi_apr.W_channel_x
+        print '. W_channel_x_fraction         = %d [bit]' % pi_apr.W_channel_x_fraction
+        print '. W_tab_weight_sc4             = %d [bit]' % pi_apr.W_tab_weight_sc4
+        print '. W_tab_unit_scale_sc4         = %d [bit]' % pi_apr.W_tab_unit_scale_sc4
+        print '. W_tab_weight_fraction_sc4    = %d [bit]' % pi_apr.W_tab_weight_fraction_sc4
+        print '. tabUnitWeightSc4             = %d' % pi_apr.tabUnitWeightSc4
+        print '. tabWeightSc4                 = %d' % tabWeightSc4
+        print '. tabGainSc4                   = %.8f' % tabGainSc4
+        print '. W_beamlet                    = %d [bit]' % pi_apr.W_beamlet
+        print '. W_tab_voltage_product_sc4    = %d [bit]' % W_tab_voltage_product_sc4
+        print '. W_tab_voltage_fraction_sc4   = %d [bit]' % W_tab_voltage_fraction_sc4
+        print '. W_tab_power_product_sc4      = %d [bit]' % W_tab_power_product_sc4
+        print '. W_tab_power_fraction_sc4     = %d [bit]' % W_tab_power_fraction_sc4
+        print '. W_tab_power_int_fraction_sc4 = %d [bit]' % W_tab_power_int_fraction_sc4
+        print '. W_int_ax                     = %d [bit]' % W_int_ax
+        print '. M_int_ax                     = %d' % M_int_ax
+        print ''
+        
+        print 'Arts SC4 IAB:'
+        print '. W_channel_x                  = %d [bit]' % pi_apr.W_channel_x
+        print '. W_channel_x_fraction         = %d [bit]' % pi_apr.W_channel_x_fraction
+        print '. W_int_ax                     = %d [bit]' % W_int_ax
+        print '. M_int_ax                     = %d' % M_int_ax
+        print '. W_iab_gain                   = %d [bit]' % pi_apr.W_iab_gain
+        print '. W_iab_unit_scale             = %d [bit]' % pi_apr.W_iab_unit_scale
+        print '. W_iab_gain_fraction          = %d [bit]' % pi_apr.W_iab_gain_fraction
+        print '. W_iab_power_product          = %d [bit]' % W_iab_power_product
+        print '. W_iab_power_fraction         = %d [bit]' % W_iab_power_fraction
+        print '. W_iab_gain_product           = %d [bit]' % W_iab_gain_product
+        print '. W_iab_gain_fraction          = %d [bit]' % W_iab_gain_fraction
+        print ''
+
+if 'dynamic' in models and wgSweep == 0:
+    print '--------------------------------------------------------------------'
+    print '-- Dynamic model results'
+    print '--------------------------------------------------------------------'
+    if wgEnable:
+        print 'Apertif BF internal levels (excluding sign bit) for coherent WG sinus input:'
+        print '. ADC input rms                = %20.2f               (= %4.1f [bit])' % (rmsSp, math.log(rmsSp, 2))
+        print '. ADC input ampl               = %20.2f               (= %4.1f [bit])' % (amplSp, math.log(amplSp, 2))
+        print '. SST input rms complex        = %20.2f               (= %4.1f [bit])' % (rmsComplexSST, math.log(rmsComplexSST, 2))
+        print '. SST input ampl               = %20.2f               (= %4.1f [bit])' % (amplSST, math.log(amplSST, 2))
+        print '. BST input rms complex        = %20.2f               (= %4.1f [bit])' % (rmsComplexBST, math.log(rmsComplexBST, 2))
+        print '. BST input ampl               = %20.2f               (= %4.1f [bit])' % (amplBST, math.log(amplBST, 2))
+        print '. CB beamlet rms complex       = %20.2f               (= %4.1f [bit])' % (rmsComplexBeamlet, math.log(rmsComplexBeamlet, 2))
+        print '. CB beamlet ampl              = %20.2f               (= %4.1f [bit])' % (amplBeamlet, math.log(amplBeamlet, 2))
+    else:
+        print 'Apertif BF internal levels (excluding sign bit) for incoherent ADC noise input:'
+        print '. ADC input rms                = %20.2f               (= %4.1f [bit])' % (rmsSp, math.log(rmsSp, 2))
+        print '. SST input rms complex        = %20.2f               (= %4.1f [bit])' % (rmsComplexSST, math.log(rmsComplexSST, 2))
+        print '. SST input rms                = %20.2f               (= %4.1f [bit])' % (rmsSST, math.log(rmsSST, 2))
+        print '. BST input rms complex        = %20.2f               (= %4.1f [bit])' % (rmsComplexBST, math.log(rmsComplexBST, 2))
+        print '. BST input rms                = %20.2f               (= %4.1f [bit])' % (rmsBST, math.log(rmsBST, 2))
+        print '. CB beamlet rms complex       = %20.2f               (= %4.1f [bit])' % (rmsComplexBeamlet, math.log(rmsComplexBeamlet, 2))
+        print '. CB beamlet rms               = %20.2f               (= %4.1f [bit])' % (rmsBeamlet, math.log(rmsBeamlet, 2))
+    print '. SST power                    = %20.2f  = %7.2f dB (= %4.1f [bit])' % (SSTpower, 10*math.log(SSTpower, 10), math.log(SSTpower, 2))
+    print '. BST power                    = %20.2f  = %7.2f dB (= %4.1f [bit])' % (BSTpower, 10*math.log(BSTpower, 10), math.log(BSTpower, 2))
+    print ''
+    
+    if 'apertif' in apps:
+        if wgEnable:
+            print 'Apertif XC output for coherent WG sinus input:'
+            print '. Fine channel rms complex     = %20.2f               (= %4.1f [bit])' % (rmsComplexFineChannel, math.log(rmsComplexFineChannel, 2))
+            print '. Fine channel ampl            = %20.2f               (= %4.1f [bit])' % (amplFineChannel, math.log(amplFineChannel, 2))
+        else:
+            print 'Apertif XC output for incoherent ADC noise input:'
+            print '. Fine channel rms complex     = %20.2f               (= %4.1f [bit])' % (rmsComplexFineChannel, math.log(rmsComplexFineChannel, 2))
+            print '. Fine channel rms             = %20.2f               (= %4.1f [bit])' % (rmsFineChannel, math.log(rmsFineChannel, 2))
+        print '. XC auto power                = %20.2f  = %7.2f dB (= %4.1f [bit])' % (XCpower, 10*math.log(XCpower, 10), math.log(XCpower, 2))
+        print ''
+    
+    if 'arts_sc1' in apps:
+        if wgEnable:
+            print 'Arts SC1 beamlet TAB internal levels (excluding sign bit) for coherent WG sinus input:'
+            print '. Output TAB rms complex       = %20.2f               (= %4.1f [bit])' % (rmsComplexBeamletTab, math.log(rmsComplexBeamletTab, 2))
+            print '. Output TAB ampl              = %20.2f               (= %4.1f [bit])' % (amplBeamletTab, math.log(amplBeamletTab, 2))
+        else:
+            print 'Arts SC1 beamlet TAB internal levels (excluding sign bit) for incoherent ADC noise input:'
+            print '. Output TAB rms complex       = %20.2f               (= %4.1f [bit])' % (rmsComplexBeamletTab, math.log(rmsComplexBeamletTab, 2))
+            print '. Output TAB rms               = %20.2f               (= %4.1f [bit])' % (rmsBeamletTab, math.log(rmsBeamletTab, 2))
+        print ''
+    
+    if 'arts_sc4' in apps:
+        if wgEnable:
+            print 'Arts SC4 TAB internal levels (excluding sign bit) for coherent WG sinus input:'
+            print '. Fine channel rms complex     = %20.2f               (= %4.1f [bit])' % (rmsComplexFineChannel, math.log(rmsComplexFineChannel, 2))
+            print '. Fine channel ampl            = %20.2f               (= %4.1f [bit])' % (amplFineChannel, math.log(amplFineChannel, 2))
+            print '. Fine channel TAB rms complex = %20.2f               (= %4.1f [bit])' % (rmsComplexFineChannelTab, math.log(rmsComplexFineChannelTab, 2))
+            print '. Fine channel TAB ampl        = %20.2f               (= %4.1f [bit])' % (amplFineChannelTab, math.log(amplFineChannelTab, 2))
+            print '. Fine channel TAB power       = %20.2f               (= %4.1f [bit])' % (meanFineChannelTabPower, math.log(meanFineChannelTabPower, 2))
+            print '. Output TAB power             = %20.2f               (= %4.1f [bit])' % (meanIntegratedTabPower, math.log(meanIntegratedTabPower, 2))
+        else:
+            print 'Arts SC4 TAB internal levels (excluding sign bit) for incoherent ADC noise input:'
+            print '. Fine channel rms complex     = %20.2f               (= %4.1f [bit])' % (rmsComplexFineChannel, math.log(rmsComplexFineChannel, 2))
+            print '. Fine channel rms             = %20.2f               (= %4.1f [bit])' % (rmsFineChannel, math.log(rmsFineChannel, 2))
+            print '. Fine channel TAB rms complex = %20.2f               (= %4.1f [bit])' % (rmsComplexFineChannelTab, math.log(rmsComplexFineChannelTab, 2))
+            print '. Fine channel TAB rms         = %20.2f               (= %4.1f [bit])' % (rmsFineChannelTab, math.log(rmsFineChannelTab, 2))
+            print '. Fine channel TAB power       = %20.2f               (= %4.1f [bit])' % (meanFineChannelTabPower, math.log(meanFineChannelTabPower, 2))
+            print '. Fine channel TAB power std   = %20.2f               (= %4.1f [bit])' % (stdFineChannelTabPower, math.log(stdFineChannelTabPower, 2))
+            print '. Output TAB power             = %20.2f               (= %4.1f [bit])' % (meanIntegratedTabPower, math.log(meanIntegratedTabPower, 2))
+            print '. Output TAB power std         = %20.2f               (= %4.1f [bit])' % (stdIntegratedTabPower, math.log(stdIntegratedTabPower, 2))
+        print ''
+        
+        if wgEnable:
+            print 'Arts SC4 IAB internal levels (excluding sign bit) for coherent WG sinus input:'
+            print '. Fine channel rms complex     = %20.2f               (= %4.1f [bit])' % (rmsComplexFineChannel, math.log(rmsComplexFineChannel, 2))
+            print '. Fine channel ampl            = %20.2f               (= %4.1f [bit])' % (amplFineChannel, math.log(amplFineChannel, 2))
+            print '. Fine channel power           = %20.2f               (= %4.1f [bit])' % (meanFineChannelPower, math.log(meanFineChannelPower, 2))
+            print '. Integrated channel power     = %20.2f               (= %4.1f [bit])' % (meanIntegratedChannelPower, math.log(meanIntegratedChannelPower, 2))
+            print '. Integrated IAB power         = %20.2f               (= %4.1f [bit])' % (meanIntegratedIabPower, math.log(meanIntegratedIabPower, 2))
+            print '. Output IAB power             = %20.2f               (= %4.1f [bit])' % (meanOutputIabPower, math.log(meanOutputIabPower, 2))
+        else:
+            print 'Arts SC4 IAB internal levels (excluding sign bit) for incoherent ADC noise input:'
+            print '. Fine channel rms complex     = %20.2f               (= %4.1f [bit])' % (rmsComplexFineChannel, math.log(rmsComplexFineChannel, 2))
+            print '. Fine channel rms             = %20.2f               (= %4.1f [bit])' % (rmsFineChannel, math.log(rmsFineChannel, 2))
+            print '. Fine channel power           = %20.2f               (= %4.1f [bit])' % (meanFineChannelPower, math.log(meanFineChannelPower, 2))
+            print '. Integrated channel power     = %20.2f               (= %4.1f [bit])' % (meanIntegratedChannelPower, math.log(meanIntegratedChannelPower, 2))
+            print '. Integrated IAB power         = %20.2f               (= %4.1f [bit])' % (meanIntegratedIabPower, math.log(meanIntegratedIabPower, 2))
+            print '. Output IAB power             = %20.2f               (= %4.1f [bit])' % (meanOutputIabPower, math.log(meanOutputIabPower, 2))
+            print '. Output IAB power std         = %20.2f               (= %4.1f [bit])' % (stdOutputIabPower, math.log(stdOutputIabPower, 2))
+        print ''
+
+################################################################################
+# Plotting
+################################################################################    
+if useplot:
+    tplot = test_plot.Testplot()
+    tplot.close_plots()
+    
+    if 'static' in models:
+        ################################################################################
+        # Static model:
+        # . WG, coherent input
+        # . Noise, incoherent input
+        ################################################################################
+        
+        if wgEnable:
+            # WG, coherent input
+            # Plot internal levels as function of WG amplitude
+            Lx = A_wg
+            if 'apertif' in apps or 'arts_sc4' in apps:
+                A = []
+                A.append(A_wg)
+                A.append(beamlet_wg_complex_phase_values * pi_apr.wgScale)
+                A.append(channel_x_wg_complex_phase_values * pi_apr.wgScale)
+                Alegend = ['adc', 'beamlet', 'channel_x']
+                lineFormats = ['-', '-', '-']
+                Title = 'Amplitudes for cbWeight=%d' % cbWeight
+                Ylim = None
+                tplot.plot_two_dimensional_list(3, A, Alegend=Alegend, Lx=Lx, representation='', offset=0, Title=Title, Xlabel='WG amplitude', Ylabel='Level', Xlim=None, Ylim=Ylim, lineFormats=lineFormats)
+                tplot.save_figure('plots/apertif_arts_firmware_model_static_wg_amplitudes.png')   # Save current figure
+
+            if 'arts_sc1' in apps:
+                A = []
+                A.append(A_wg)
+                A.append(beamlet_wg_complex_phase_values * pi_apr.wgScale)
+                A.append(beamlet_tab_wg_complex_phase_values_sc1 * pi_apr.wgScale)
+                Alegend = ['adc', 'beamlet', 'tab sc1']
+                lineFormats = ['-', '-', '*']
+                Title = 'Amplitudes for cbWeight=%d, tabWeightSc1=%d, nofDishes=%d' % (cbWeight, tabWeightSc1, nofDishes)
+                Ylim = None
+                tplot.plot_two_dimensional_list(3, A, Alegend=Alegend, Lx=Lx, representation='', offset=0, Title=Title, Xlabel='WG amplitude', Ylabel='Level', Xlim=None, Ylim=Ylim, lineFormats=lineFormats)
+                tplot.save_figure('plots/apertif_arts_firmware_model_static_wg_amplitudes_sc1.png')   # Save current figure
+        
+            if 'arts_sc4' in apps:
+                A = []
+                A.append(power_tab_xx_wg_complex_values_sc4)
+                A.append(iab_xx_wg_complex_values_sc4)
+                Alegend = ['TAB XX* power', 'IAB XX* power']
+                lineFormats = ['-', '*']
+                Title = 'Powers for cbWeight=%d, tabWeightSc4=%d, iabGainReg=%d, nofDishes=%d' % (cbWeight, tabWeightSc4, iabGainReg, nofDishes)
+                Ylim = [0, 1.1 * 2.0**pi_apr.W_pow]
+                tplot.plot_two_dimensional_list(3, A, Alegend=Alegend, Lx=Lx, representation='', offset=0, Title=Title, Xlabel='WG amplitude', Ylabel='Level', Xlim=None, Ylim=Ylim, lineFormats=lineFormats)
+                tplot.save_figure('plots/apertif_arts_firmware_model_static_wg_powers_sc4.png')   # Save current figure
+            
+            # Plot power statistics as function of WG amplitude
+            A = []
+            A.append(SST_wg_dBs)
+            A.append(BST_wg_dBs)
+            if 'apertif' in apps:
+                A.append(XC_wg_auto_visibilities_dB)
+                Alegend = ['SST', 'BST', 'XC']
+            else:
+                Alegend = ['SST', 'BST']
+            Title = 'Auto correlation power statistics for CB weight = %d' % cbWeight
+            Ylim = None
+            tplot.plot_two_dimensional_list(3, A, Alegend=Alegend, Lx=Lx, representation='', offset=0, Title=Title, Xlabel='WG amplitude', Ylabel='Level [dB]', Xlim=None, Ylim=Ylim, lineFormats=None)
+            tplot.save_figure('plots/apertif_arts_firmware_model_static_wg_auto_powers.png')   # Save current figure
+        
+        else:
+            # Noise, incoherent input
+            # Plot internal levels as function of WG amplitude
+            Lx = S_noise
+            if 'apertif' in apps or 'arts_sc4' in apps:
+                A = []
+                A.append(S_noise)
+                A.append(beamlet_noise_complex_phase_values)
+                A.append(channel_x_noise_complex_phase_values)
+                Alegend = ['adc', 'beamlet', 'channel_x']
+                lineFormats = ['-', '*', '-']
+                Title = 'Sigmas for cbWeight=%d' % cbWeight
+                Ylim = None
+                tplot.plot_two_dimensional_list(3, A, Alegend=Alegend, Lx=Lx, representation='', offset=0, Title=Title, Xlabel='ADC noise', Ylabel='Level', Xlim=None, Ylim=Ylim, lineFormats=lineFormats)
+                tplot.save_figure('plots/apertif_arts_firmware_model_static_noise_sigmas.png')   # Save current figure
+        
+            if 'arts_sc1' in apps:
+                A = []
+                A.append(S_noise)
+                A.append(beamlet_noise_complex_phase_values)
+                A.append(beamlet_tab_noise_complex_phase_values_sc1)
+                Alegend = ['adc', 'beamlet', 'tab sc1']
+                lineFormats = ['-', '-', '*']
+                Title = 'Sigmas for cbWeight=%d, tabWeightSc1=%d, nofDishes=%d' % (cbWeight, tabWeightSc1, nofDishes)
+                Ylim = None
+                tplot.plot_two_dimensional_list(3, A, Alegend=Alegend, Lx=Lx, representation='', offset=0, Title=Title, Xlabel='ADC noise', Ylabel='Level', Xlim=None, Ylim=Ylim, lineFormats=lineFormats)
+                tplot.save_figure('plots/apertif_arts_firmware_model_static_noise_sigmas_sc1.png')   # Save current figure
+
+            if 'arts_sc4' in apps:
+                A = []
+                A.append(power_tab_xx_noise_values_sc4)
+                A.append(iab_xx_noise_values_sc4)
+                Alegend = ['TAB XX* power', 'IAB XX* power']
+                lineFormats = ['-', '*']
+                Title = 'Powers for cbWeight=%d, tabWeightSc4=%d, iabGainReg=%d, nofDishes=%d' % (cbWeight, tabWeightSc4, iabGainReg, nofDishes)
+                Ylim = [0, 1.1 * 2.0**pi_apr.W_pow]
+                tplot.plot_two_dimensional_list(3, A, Alegend=Alegend, Lx=Lx, representation='', offset=0, Title=Title, Xlabel='ADC noise', Ylabel='Level', Xlim=None, Ylim=Ylim, lineFormats=lineFormats)
+                tplot.save_figure('plots/apertif_arts_firmware_model_static_noise_powers_sc4.png')   # Save current figure
+            
+            # Plot power statistics as function of WG amplitude
+            A = []
+            A.append(SST_noise_dBs)
+            A.append(BST_noise_dBs)
+            A.append(XC_noise_auto_visibilities_dB)
+            Alegend = ['SST', 'BST', 'XC']
+            Title = 'Auto correlation power statistics for CB weight = %d' % cbWeight
+            Ylim = None
+            tplot.plot_two_dimensional_list(3, A, Alegend=Alegend, Lx=Lx, representation='', offset=0, Title=Title, Xlabel='ADC noise', Ylabel='Level [dB]', Xlim=None, Ylim=Ylim, lineFormats=None)
+            tplot.save_figure('plots/apertif_arts_firmware_model_static_noise_auto_powers.png')   # Save current figure
+
+        
+    if 'dynamic' in models and wgSweep == 0:
+        ###############################################################################
+        # Dynamic model: Processing
+        ###############################################################################
+    
+        # Plot dish ADC
+        L = spSamples[0:nof_periods]  # do not plot all to save time
+        if wgEnable:
+            Title = 'Dish ADC input (sigma = %.2f, ampl = %.2f)' % (rmsSp, wgAmpl)
+            ylim = 5 * math.ceil(0.2 * 1.1 * amplSp)
+        else:
+            Title = 'ADC input (sigma = %.2f)' % rmsSp
+            ylim = 5 * math.ceil(0.2 * 1.1 * rmsSp * nofSigma)
+        Ylim = [-ylim, ylim]
+        tplot.plot_one_dimensional_list(3, L, Lx=None, representation='', offset=0, Title=Title, Xlabel='Time [Tsub]', Ylabel='Voltage', Xlim=None, Ylim=Ylim)
+        tplot.save_figure('plots/apertif_arts_firmware_model_dynamic_adc.png')   # Save current figure
+        
+        # Plot dish output beamlets for selSub
+        A = []
+        A.append(beamletSamples.real[0:nof_periods])
+        A.append(beamletSamples.imag[0:nof_periods])
+        Alegend = ['real', 'imag']
+        if wgEnable:
+            Title = 'Dish CB output samples (ampl = %.2f)' % amplBeamlet
+            ylim = 5 * math.ceil(0.2 * 1.1 * amplBeamlet)
+        else:
+            Title = 'Dish CB output samples (sigma = %.2f)' % rmsBeamlet
+            ylim = 5 * math.ceil(0.2 * 1.1 * rmsBeamlet * nofSigma)
+        Ylim = [-ylim, ylim]
+        tplot.plot_two_dimensional_list(3, A, Alegend=Alegend, Lx=None, representation='', offset=0, Title=Title, Xlabel='time [Tsub]', Ylabel='Level', Xlim=None, Ylim=Ylim, lineFormats=None)
+        tplot.save_figure('plots/apertif_arts_firmware_model_dynamic_beamlet.png')   # Save current figure
+        
+        if 'apertif' in apps or 'arts_sc4' in apps:
+            # Plot correlator fine channels for selSub, selChanx
+            A = []
+            A.append(fineChannelSamples.real[0:nof_periods])
+            A.append(fineChannelSamples.imag[0:nof_periods])
+            Alegend = ['real', 'imag']
+            if wgEnable:
+                Title = 'Central fine channel samples (ampl = %.2f)' % amplFineChannel
+                ylim = 5 * math.ceil(0.2 * 1.1 * amplFineChannel)
+            else:
+                Title = 'Central fine channel samples (sigma = %.2f)' % rmsFineChannel
+                ylim = 5 * math.ceil(0.2 * 1.1 * rmsFineChannel * nofSigma)
+            Ylim = [-ylim, ylim]
+            tplot.plot_two_dimensional_list(3, A, Alegend=Alegend, Lx=None, representation='', offset=0, Title=Title, Xlabel='time [Tsub]', Ylabel='Level', Xlim=None, Ylim=Ylim, lineFormats=None)
+            tplot.save_figure('plots/apertif_arts_firmware_model_dynamic_fine_channel.png')   # Save current figure
+        
+        if 'arts_sc1' in apps:
+            # Plot Arts SC1 output TAB samples for selSub and nofDishes
+            # . Independent of nofDishes when tabWeightSc1 is scaled by nofDishes or sqrt(nofDishes)
+            A = []
+            A.append(beamletTabSamples.real[0:nof_periods])
+            A.append(beamletTabSamples.imag[0:nof_periods])
+            Alegend = ['real', 'imag']
+            if wgEnable:
+                Title = 'Arts SC1 output TAB samples (ampl = %.2f, nofDishes = %d)' % (amplBeamletTab, nofDishes)
+                ylim = 5 * math.ceil(0.2 * 1.1 * amplBeamletTab)
+            else:
+                Title = 'Arts SC1 output TAB samples (sigma = %.2f, nofDishes = %d)' % (rmsBeamletTab, nofDishes)
+                ylim = 5 * math.ceil(0.2 * 1.1 * rmsBeamletTab * nofSigma)
+            Ylim = [-ylim, ylim]
+            tplot.plot_two_dimensional_list(3, A, Alegend=Alegend, Lx=None, representation='', offset=0, Title=Title, Xlabel='time [Tsub]', Ylabel='Level', Xlim=None, Ylim=Ylim, lineFormats=None)
+            tplot.save_figure('plots/apertif_arts_firmware_model_dynamic_beamlet_tab.png')   # Save current figure
+    
+        if 'arts_sc4' in apps:
+            # Plot Arts SC4 output TAB powers for selSub, selChanx and nofDishes
+            # . Independent of nofDishes, because tabWeightSc4 is scaled by nofDishes or sqrt(nofDishes)
+            A = []
+            A.append(integratedTabPowers[0:nof_periods])
+            Alegend = None
+            Title = 'Arts SC4 output TAB powers (mean = %.2f = %.1f [bit], nofDishes = %d)' % (meanIntegratedTabPower, math.log(meanIntegratedTabPower, 2), nofDishes)
+            if wgEnable:
+                ylim = 5 * math.ceil(0.2 * 1.1 * meanIntegratedTabPower)
+            else:
+                ylim = 5 * math.ceil(0.2 * 1.1 * meanIntegratedTabPower * nofSigma)
+            Ylim = [0, ylim]
+            tplot.plot_two_dimensional_list(3, A, Alegend=Alegend, Lx=None, representation='', offset=0, Title=Title, Xlabel='time [Tchanx]', Ylabel='Level', Xlim=None, Ylim=Ylim, lineFormats=None)
+            tplot.save_figure('plots/apertif_arts_firmware_model_dynamic_power_tab.png')   # Save current figure
+            
+            # Plot Arts SC4 output IAB powers for selSub, selChanx and nofDishes
+            # . Independent of nofDishes, because tabWeightSc4 is scaled by nofDishes or sqrt(nofDishes)
+            A = []
+            A.append(outputIabPowers)
+            Alegend = None
+            Title = 'Arts SC4 output IAB powers (mean = %.2f = %.1f [bit], nofDishes = %d)' % (meanOutputIabPower, math.log(meanOutputIabPower, 2), nofDishes)
+            if wgEnable:
+                ylim = 5 * math.ceil(0.2 * 1.1 * meanOutputIabPower)
+            else:
+                ylim = 5 * math.ceil(0.2 * 1.1 * meanOutputIabPower * nofSigma)
+            Ylim = [0, ylim]
+            tplot.plot_two_dimensional_list(3, A, Alegend=Alegend, Lx=None, representation='', offset=0, Title=Title, Xlabel='time [Tchanx]', Ylabel='Level', Xlim=None, Ylim=Ylim, lineFormats=None)
+            tplot.save_figure('plots/apertif_arts_firmware_model_dynamic_power_iab.png')   # Save current figure
+        
+        
+    if 'dynamic' in models and wgSweep != 0:
+        ###############################################################################
+        # Dynamic model: WG frequency sweep
+        ###############################################################################
+
+        # Plot subband spectrum abs(fSubSamples[nofTsub][N_sub])
+        A = np.abs(fSubSamples)
+        tplot.image_two_dimensional_list(3, A, transpose=True, grid=True, Title='Subband magnitudes', Xlabel='time [Tsub]', Ylabel='freq [fsub]')
+        tplot.save_figure('plots/apertif_arts_firmware_model_wg_sweep_subband_spectrum.png')   # Save current figure
+        
+        # Plot fine channels spectrum abs(fSubChanSamples[N_sub][nofTchanx][N_chan_x])
+        A = np.abs(fSubChanSamples.reshape(nofTchanx, N_sub*N_chan_x))   # [nofTchanx][N_sub*N_chan_x]
+        chanLo = 0
+        chanHi = N_sub*N_chan_x - 1
+        nofSubBorder = 0
+        nofSubBorder = 1 + int(abs(wgSweep))
+        if nofSubBorder>0:
+            if wgSweep>0:
+                chanLo = N_chan_x * (selSub - nofSubBorder)
+                chanHi = N_chan_x * (selSub + nofSubBorder + wgSweep + 1) - 1
+            else:
+                chanLo = N_chan_x * (selSub - nofSubBorder + wgSweep)
+                chanHi = N_chan_x * (selSub + nofSubBorder + 1) - 1
+            A = A[:, chanLo:chanHi+1]
+        extent = [0, nofTchanx-1, 1.0 * chanLo / N_chan_x - 0.5, 1.0 * chanHi / N_chan_x - 0.5]
+        #print chanLo, chanHi, extent
+        #extent = None
+        tplot.image_two_dimensional_list(3, A, transpose=True, grid=True, Title='Channel magnitudes', Xlabel='time [Tchanx]', Ylabel='freq [fsub]', extent=extent)
+        tplot.save_figure('plots/apertif_arts_firmware_model_wg_sweep_fine_channel_spectrum.png')   # Save current figure
+    
+    tplot.show_plots()
+
diff --git a/applications/lofar2/doc/lofar_station_firmware_model.drawio b/applications/lofar2/model/lofar_station_firmware_model.drawio
similarity index 100%
rename from applications/lofar2/doc/lofar_station_firmware_model.drawio
rename to applications/lofar2/model/lofar_station_firmware_model.drawio
diff --git a/applications/lofar2/doc/lofar_station_firmware_model.vsd b/applications/lofar2/model/lofar_station_firmware_model.vsd
similarity index 100%
rename from applications/lofar2/doc/lofar_station_firmware_model.vsd
rename to applications/lofar2/model/lofar_station_firmware_model.vsd
diff --git a/applications/lofar2/doc/lofar_station_firmware_model.vsdx b/applications/lofar2/model/lofar_station_firmware_model.vsdx
similarity index 100%
rename from applications/lofar2/doc/lofar_station_firmware_model.vsdx
rename to applications/lofar2/model/lofar_station_firmware_model.vsdx
diff --git a/applications/lofar2/model/pfb_pk/PFB.ipynb b/applications/lofar2/model/pfb_pk/PFB.ipynb
new file mode 100644
index 0000000000..8c79074ef1
--- /dev/null
+++ b/applications/lofar2/model/pfb_pk/PFB.ipynb
@@ -0,0 +1,195 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "import matplotlib.pyplot as plt"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#Calculate the weight of the filter bank\n",
+    "def GetW(Nfft,P=4):\n",
+    "    M=Nfft*P\n",
+    "    W=np.arange(0,M,1)\n",
+    "    flt=np.zeros([M])\n",
+    "    #P=P-1\n",
+    "    flt[0:P-2]=1;\n",
+    "    flt[P-2]=0.5;\n",
+    "    flt[-P+3:]=1;\n",
+    "    flt[-P+2]=0.5;\n",
+    "    W=np.fft.ifft(flt).real #Imag part should be zero\n",
+    "    W=np.roll(W,M//2)\n",
+    "    return W*Nfft\n",
+    "\n",
+    "#Apply the PFB to data\n",
+    "def fftw(A,W,P=4):\n",
+    "  Nfft=A.shape[-1]\n",
+    "  Dx=A[:,:-P,:]*W[:Nfft]\n",
+    "  for i in range(P-1):\n",
+    "    S=(i+1)*Nfft\n",
+    "    Dx+=A[:,i+1:-P+i+1,:]*W[S:S+Nfft]\n",
+    "  return (np.fft.fft(Dx,axis=2))\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8VNed///XR6PeAfVCrxIdAbYxBkIHE9xrEjtlHew4m42T3TibfDfZzZZk83O+iX9xiWM7doIdYscOxqa7AMb0DgIEoggJdYR6nznfP2ZwZFnACEa6Uz7Px0MPz9x7Z+bDteatM2fOPUeMMSillPIvQVYXoJRSyvM03JVSyg9puCullB/ScFdKKT+k4a6UUn5Iw10ppfyQhrtSXRCRZBHZIiJ1IvKUOP1BRC6KyC4RmS4ieW48z4MisqE3alaqI9Fx7qqniMhZIBmwAw3AGuDbxph6EdkE3AC0d3jIXGPMdhExQCNggGZgI/CoMaa6F2v/P8AE4E5jjBGR6cCfgRHGmIbeqqNTTQYYZozJt+L1lW/RlrvqaUuMMdHARGAy8OMO+x43xkR3+NneYd841+MGA32An/ZaxU4DgKPm762fAcBZq4Jdqe7ScFe9whhzHlgLjO7m42qBVUDW5Y4RkUwReVtEKkTkgoj81rU9SER+LCIFIlIuIn8UkbgOj7tBRLaJSLWIHBSRma7trwAPAf8iIvUi8k3gReBG1/1/F5GZIlLkRg0Pi8jWDseNFJGNIlIlInkick+Hfa+IyDMistrVHbRTRIa49m1xHXbQVcO9IpIgIu+56q8SkY9FRN/TCtBwV71ERDKBRcD+bj6uD3AbsOMy+23Ae0ABMBBIB1a4dj/s+pmF8xNANHApdNOB1cB/An2B7wNviUiiMeZh4DXgf12fKH4HLAO2u+7/pBs1dDwuCmcX0+tAEnA/8KyIZHc47H7g33F+WskH/gvAGHOLa/84Vw1/Ab4HFAGJOLu//hVnV5ZSGu6qx60UkWpgK7AZ+O8O+552tTqrRWRfp8ftcz2uEugP/O4yzz8FSAP+2RjTYIxpNsZcaik/CPzKGHPaGFMP/BC4T0SCgS8Ba4wxa4wxDmPMRmAPzj9A3XWlGjq6FWfXzh+MMe3GmH3AW8BdHY552xizyxjTjvMPzPgrvG4bkAoMMMa0GWM+7tCNpAKchrvqabcZY+KNMQOMMY8ZY5o67PtH1754Y8zETo+baIyJB8KB54CPRSS8i+fPBApcYdhZGs7W9CUFQDDOVu4A4O4Of1yqgZtxhmV3XamGjgYAUzu95oNASodjSjvcbsT5aeNyfomzdb9BRE6LyJPXULvyUxruyqsZY9pw9ncPouv++kKgv6s13lkxzkC9pD/O0Tllrsf9qcMfl3hjTJQx5ufXUOaVauh83OZOrxltjHn0Gl4TY0ydMeZ7xpjBwBLgCRGZfS3PpfyPhrvyaq7+7K8CTcDpLg7ZBZQAPxeRKBEJF5Fprn1/Br4rIoNEJBpnl9BfXC3s5cASEZkvIjbX42aKSMY1lHmlGjp6DxguIl8WkRDXz2QRGeXm65Th/O4AABG5VUSGiogAtTiHnNqvoX7lhzTclbc6KCL1wEWcI1duN8ZUdT7IGGPH2WodCpzD+QXjva7dLwN/ArYAZ3COmf+263GFwFKcX0JW4GxV/zPX8J64Sg0dj6sD5gH34fxUUQr8Aghz86V+Crzq6tK5BxgGvA/UA9uBZ40xm7pbv/JPehGTUkr5IW25K6WUH9JwV0opP6ThrpRSfkjDXSml/NDVxuX2mISEBDNw4ECrXl4ppXzS3r17K40xiVc7zrJwHzhwIHv27LHq5ZVSyieJSMHVj9JuGaWU8ksa7kop5Yc03JVSyg9puCullB/ScFdKKT901XAXkZddS5Qducx+EZGnRSRfRA6JSOd5uZVSSvUyd1rurwALrrB/Ic7Z6YYBj+BcWEEppZSFrjrO3RizRUQGXuGQpcAfXct77RCReBFJNcaUeKhGpXpcc5udA4XVHC+ppa65nYhQG5l9I5k6qC/xkaFWl6dUt3niIqZ0nHNhX1Lk2va5cBeRR3C27unfv78HXlqp63PuQiPPbc7nvYMl1LV8fpU8EZg5PJFvTB/MtKEJFlSo1LXxRLhLF9u6nCTeGPMC8AJATk6OTiSvLNPSbuf/bjzJS1tPYwsSbh2bxsLRKYzJiKNPZCiNLXZOltexKa+CFbsLefDFncwZlcR/LB1NWnyE1eUrdVWeCPcinAsEX5KBc5UZpbxSYVUjy5bvJbe4lrsnZfD9+SNIjv3s2ttxkUHkDOxLzsC+fHv2UF755Cy/+eAki57+mF/fO56ZI5Isql4p93hiKOQq4CuuUTM3ADXa36681ZHzNdz+7DaKLjbx4ldy+OXd4z4X7J2FBdv45owhrP7H6aTEhvO1V3bzl93neqlipa7NVVvuIvJnYCaQICJFwE+AEABjzPPAGmARkA804lzMWCmvc6iomgd+v5O4iBBWPHIDQ5Oiu/X4QQlR/O2xaSxbvpcfvHWYxlY7X502qIeqVer6uDNa5v6r7DfAtzxWkVI9IL+8jode3kV8ZAh/XXYTKXFXbq1fTkSojd9/JYdv/3kf//7uUfpGhbJ0fLqHq1Xq+ukVqsrvXWxo5aGXd2MLCmL516dec7BfEhocxG/um8DUQX35/psH2X7qgocqVcpzNNyVX7M7DP+4Yj8VdS289FAOAxOiPPK84SE2XvhKDpl9I/n2n/dRVtvskedVylM03JVf+/X7J/j4ZCX/sTSbcZnxHn3uuIgQnv/SJBpa7Dz++j7a7A6PPr9S10PDXfmtvQUXeeajfO6alMF9U3rmornhyTH8/M4x7D57kec2neqR11DqWmi4K7/U1Grn+28eJDUugp8syerR11o6Pp2l49N4+oOT5BbX9OhrKeUuDXfll365Po8zlQ388q6xxISH9Pjr/XRJNvGRoXz/zUO0tmv3jLKehrvyO0fO1/DKtjN8+YYB3NRL88H0iQrlv28fzbGSWl7ZdqZXXlOpK9FwV37FGMNPVuXSJzKU788f0auvPS87hdkjk/jN+yd19IyynIa78itv7zvP3oKL/GDhSOIier47prN/W5JFm93wP2uO9fprK9WRhrvyG/Ut7fzP2uOMz4znrokZltQwoF8U35wxmJUHitlbUGVJDUqBhrvyIy9vPUNlfQs/WZJFUFBXM1H3jkdnDiExJoyfrz2Oc3YOpXqfhrvyCxcbWvn9ltPMy0pmQv8+ltYSGRrMP84exu6zF9mUV2FpLSpwabgrv/Dc5lPUt7b3+peol3Pf5EwG9IvkF+uO43Bo6131Pg135fNKa5p5ddtZbp+QzvDkGKvLASDEFsQTc4dzvLSOdw/p2jWq92m4K5/33KZ87A7Dd+cMt7qUz1gyNo0RyTH89sN8bb2rXqfhrnxaZX0LK3YXcsfEdDL7RlpdzmcEBQmPzRrCyfJ6NhwttbocFWA03JVPe3nrGVrtDr45Y4jVpXRp8ZhUBvSL5JmPTunIGdWrNNyVz6ptbuNP2wtYODqFIYndWzKvtwTbgnh0xhAOn69hy8lKq8tRAUTDXfms5TsKqGtp57GZQ60u5YrumJhBalw4z3yUb3UpKoBouCuf1Nxm5+WtZ7hleCKj0+OsLueKQoOD+PrNg9h1porDRTolsOodGu7KJ713qITK+lYemT7Y6lLccs/kTKJCbfzhE50xUvUODXflc4wx/OGTMwxLimba0H5Wl+OW2PAQ7s7J5N1DxZTrjJGqF2i4K5+zp+AiucW1PDxtICLWzSHTXQ/fNJB2h2H5jgKrS1EBQMNd+ZxXPjlLbHgwt09It7qUbhmYEMXskcks33mO5ja71eUoP6fhrnxKcXUT63JLuX9KfyJDg60up9u+dvNAqhpaWXVApyRQPUvDXfmU5TsKMMbwpRsGWF3KNblxcD+GJ0fz2k7tmlE9y61wF5EFIpInIvki8mQX++NE5F0ROSgiuSLyVc+XqgJda7uDv+wuZPaoZK+basBdIsIDU/pzsKiGI+d1WKTqOVcNdxGxAc8AC4Es4H4Ryep02LeAo8aYccBM4CkRCfVwrSrAvX+sjAsNrTwwpb/VpVyX2ydmEB4SxOu7zlldivJj7rTcpwD5xpjTxphWYAWwtNMxBogR59CFaKAKaPdopSrg/XnXOdLiwrlleKLVpVyXuIgQbh2bxjv7z1Pfom8T1TPcCfd0oLDD/SLXto5+C4wCioHDwHeMMY7OTyQij4jIHhHZU1GhK9Qo9xVWNfLxyUrumZyJzcIl9Dzlgan9aWi1886B81aXovyUO+He1Tup8/R284EDQBowHvitiMR+7kHGvGCMyTHG5CQm+nbrS/Wuv+wuJEjgnpxMq0vxiAmZ8YxMieH1ned0tkjVI9wJ9yKg4zsqA2cLvaOvAm8bp3zgDDDSMyWqQNdud/DGnkJmjkgiLT7C6nI8QkR4cGp/cotrOaTzzage4E647waGicgg15ek9wGrOh1zDpgNICLJwAjgtCcLVYHrw+PllNe1cN9k/2i1X7J0QjphwUH8dW+R1aUoP3TVcDfGtAOPA+uBY8AbxphcEVkmIstch/0MuElEDgMfAD8wxujk1cojVuwuJCkmjC+MTLK6FI+KDQ9hfnYKqw4W09KuV6wqz3LrEj9jzBpgTadtz3e4XQzM82xpSkFFXQubT1TwD9MHE2zzv2vu7pqUwaqDxXxwrJxFY1KtLkf5Ef97tyi/supgMXaH4c6JvjWPjLumDU0gJTact7RrRnmYhrvyam/vK2JMehzDkmOsLqVH2IKE2yems+lEBeV1OhWw8hwNd+W18krryC2u5Q4/bbVfcufEDOwOwzv7dTIx5Tka7sprvb2/iOAgYcm4NKtL6VFDk6IZnxnPX/cW6Zh35TEa7sor2R2GlfvPM2N4IgnRYVaX0+PumpRBXpnzk4pSnqDhrrzS9lMXKKtt4Y6JGVaX0iuWjE0j1BbEW/v0i1XlGRruyiu9va+ImPBgZo/yr7HtlxMXGcKskYm8d6gEu0O7ZtT103BXXqehpZ21R0q5dWwq4SE2q8vpNV8cl05FXQs7T1+wuhTlBzTcldfZeLSMpjY7t08IjC6ZS2aPSiIq1MaqgzpqRl0/DXfldd49WExqXDg5A/pYXUqvCg+xMT87hTWHS3Q6AnXdNNyVV6lpbGPLyQpuHZtKkB/M295dS8anUdvczpYTOjWTuj4a7sqrrM8tpc1u/H5s++XcPDSBvlGh2jWjrpuGu/Iq7x4qpn/fSMakx1ldiiVCbEEsGpPCxqOlNOgSfOo6aLgrr1FZ38K2UxdYMi4V53K8gemL49JpbnPw/rEyq0tRPkzDXXmNtUdKsTsCt0vmkpwBfUiLC2fVAe2aUddOw115jfcOFjM0KZoRfjoDpLuCXPPpbD5RwcWGVqvLUT5Kw115hdKaZnadrWLJ2LSA7pK5ZMm4NNodho1HtWtGXRsNd+UVVh8uwRi4dZyuRgSQnRZLZt8I1hwpsboU5aM03JVXeO9QMdlpsQxJjLa6FK8gIiwak8on+ZXUNLZZXY7yQRruynKFVY3sP1fNrWMD+4vUzhaNTqXNbthwtNTqUpQP0nBXllvr6nq4dax2yXQ0NiOO9PgI1h7RcFfdp+GuLLc+t8zVxxxpdSlexdk1k8LHJyuoadKuGdU9Gu7KUuW1zewtuMiC7BSrS/FKi8Y4u2be11Ezqps03JWlNrhCa/5oDfeujM+MJy0u/NOuK6XcpeGuLLU+t5TBCVEMS9JRMl0RERaOSWXLiUpqm7VrRrlPw11Zpqaxje2nLjAvO0UvXLqCRWNSaLU7+PBYudWlKB/iVriLyAIRyRORfBF58jLHzBSRAyKSKyKbPVum8kcfHC+j3WGYn51sdSlebUJmH1Jiw1l9WLtmlPuuGu4iYgOeARYCWcD9IpLV6Zh44Fngi8aYbODuHqhV+Zn1uaWkxIYzLiPe6lK8WlCQsGB0CptPVFCnXTPKTe603KcA+caY08aYVmAFsLTTMQ8AbxtjzgEYY/Tzo7qiplY7m09UMC87OSBXXOquxWNTaW138OFxfWsp97gT7ulAYYf7Ra5tHQ0H+ojIJhHZKyJf8VSByj9tPlFBc5tDh0C6aVL/PiTGhLE+Vy9oUu4JduOYrppVpovnmQTMBiKA7SKywxhz4jNPJPII8AhA//79u1+t8hsbckuJjwxhyqC+VpfiE4KChLlZyazcf57mNjvhITarS1Jezp2WexGQ2eF+BtB5FYEiYJ0xpsEYUwlsAcZ1fiJjzAvGmBxjTE5iYuK11qx8XJvducrQnFHJBNt0wJa75men0NhqZ+tJXTxbXZ0776zdwDARGSQiocB9wKpOx7wDTBeRYBGJBKYCxzxbqvIXO05foLa5nfnaJdMtNw7uR0x4MOu0a0a54ardMsaYdhF5HFgP2ICXjTG5IrLMtf95Y8wxEVkHHAIcwIvGmCM9WbjyXeuOlBIZamP6sASrS/EpocFBzB6ZxAfHymi3O/RTj7oid/rcMcasAdZ02vZ8p/u/BH7pudKUP3I4DBuOljFzRKL2G1+D+dkprDxQzK6zVdw0RP84qsvTP/2qV+0vvEhFXYt2yVyjGSMSCQsOYkOuTiSmrkzDXfWq9bllhNiEWSOTrC7FJ0WGBjN9WCIbcksxpvOgNaX+TsNd9RpjDOtzS7lpSAKx4SFWl+Oz5mcnU1zTzOHzNVaXoryYhrvqNcdL6yi40KhdMtdpzqhkbEGiFzSpK9JwV71mfW4pIjA3SycKux59okKZOqgv67XfXV2BhrvqNeuOlJIzwHkZvbo+87NTyC+vJ7+83upSlJfScFe9ouBCA8dL67RLxkPmuaZJ1q4ZdTka7qpXXAohDXfPSI2LYFxGHBs03NVlaLirXrE+t4zstFgy+0ZaXYrfmJedwsGiGkpqmqwuRXkhDXfV48prm9l37qK22j3s0vnUC5pUVzTcVY/bcLQMY7RLxtOGJkUzNCla+91VlzTcVY9bn1vKoIQohidHW12K35mfnczOM1VcbGi1uhTlZTTcVY+qaWxj+6kLzMtORkSX0/O0+dkp2B2G949p14z6LA131aM+zCuj3WF0Ob0eMiY9jrS4cL2gSX2OhrvqUeuOlJIcG8a4jHirS/FLIsK87BQ+PllBY2u71eUoL6LhrnpMU6udzScqmJ+dQlCQdsn0lPnZKbS0O9icV2F1KcqLaLirHrP5RAXNbQ4dJdPDJg/sQ5/IEB01oz5Dw131mA25pcRFhDBlUF+rS/FrwbYg5oxK5oPj5bS2O6wuR3kJDXfVI9rsDt4/VsacUcmE6FqfPW5+dgp1ze1sP33B6lKUl9B3neoRO05foLa5nfnZOr1vb7h5WAKRoTbtmlGf0nBXPWJ9bikRITZuGZ5odSkBITzExqwRSWzILcPu0OX3lIa76gEOh2FDbhkzRyQSHmKzupyAMS87mcr6Fvafu2h1KcoLaLgrj9tfWE15XYuOkulls0YmEWLT5feUk4a78rj1uaWE2IRZI5OsLiWgxIaHMG1oAutzyzBGu2YCnYa78ihjDOtzS7lxSAJxESFWlxNw5mencK6qkeOldVaXoiym4a48Kq+sjoILjTqXjEXmjEpGxDntgwpsGu7Ko9YdKUUE5mbpEEgrJMaEkTOgj/a7K/fCXUQWiEieiOSLyJNXOG6yiNhF5C7Plah8yfrcMnIG9CExJszqUgLW/OwUjpfWce5Co9WlKAtdNdxFxAY8AywEsoD7RSTrMsf9Aljv6SKVbyi40MCxklodJWOxS+dfW++BzZ2W+xQg3xhz2hjTCqwAlnZx3LeBt4ByD9anfMilMNFwt1Zm30iyUmNZp+Ee0NwJ93SgsMP9Ite2T4lIOnA78PyVnkhEHhGRPSKyp6JCpyf1N+uOlJKdFktm30irSwl487NT2HfuIuV1zVaXoiziTrh3NRF350G0vwZ+YIyxX+mJjDEvGGNyjDE5iYl6Wbo/KattZt+5ah0l4yUWjE7BGNh4VFdoClTuhHsRkNnhfgZQ3OmYHGCFiJwF7gKeFZHbPFKh8gkbXF0AC0ZruHuD4cnRDOwXqcvvBTB3wn03MExEBolIKHAfsKrjAcaYQcaYgcaYgcBfgceMMSs9Xq3yWutySxmSGMWw5BirS1E4l9+bn53CtvxKaprarC5HWeCq4W6MaQcexzkK5hjwhjEmV0SWiciyni5Qeb+LDa3sOF2lrXYvMy87hXaH4aPjOsYhEAW7c5AxZg2wptO2Lr88NcY8fP1lKV/y/jHnNLMLslOtLkV1MCEznqSYMNbnlnLbhPSrP0D5Fb1CVV239bmlpMdHMDo91upSVAdBQcK87GQ25VXQ3HbFsQ7KD2m4q+tS39LOlpOVzM9OQaSrgVXKSvOzU2hqs7PlhA49DjQa7uq6bMpzLsqs/e3e6YbB/YgND9ZRMwFIw11dl3VHSkmIDmXSgD5Wl6K6EGILYs6oZD44Xka73WF1OaoXabira9bcZuej4+XMzUrBFqRdMt5qXnYK1Y1t7DpTZXUpqhdpuKtr9kl+JQ2tdu2S8XIzhicSHhKkc80EGA13dc3WHSklJjyYGwf3s7oUdQURoTZuGZbIhtwyHA5dfi9QaLira9Jud7DxWBlzRiUTGqy/Rt5uwegUSmubOXS+xupSVC/Rd6W6JrvOVFHd2KbT+/qI2SOTCQ4S1h4psboU1Us03NU1WX24hIgQGzOG6+yeviAuMoRpQxNYc7gEY7RrJhBouKtua7c7WHeklNmjkogItVldjnLT4rGpFFY1cVi7ZgKChrvqtp1nqrjQ0MqtY3UuGV8yL8vZNbP6kHbNBAINd9Vt7x0qITLUxswRSVaXorohPjKUm4clsFq7ZgKChrvqlna7g/W5pcwelUx4iHbJ+JrFY1IputjEoSLtmvF3Gu6qW3acrqKqoZXFY7RLxhfNy0ohxCasPqxdM/5Ow111y+rDxUSF2pg5QkfJ+KK4yBCmD0tk9SHtmvF3Gu7KbW2uUTJzsrRLxpctHpPK+eomDhRWW12K6kEa7spt209d4GJjm3bJ+Lg5WcmE2IQ12jXj1zTcldtWHyohOiyYW/TCJZ8WFxHCLdo14/c03JVb2uwO1uWWMle7ZPzC4rGpFNc0s1+7ZvyWhrtyyyf5ldQ0aZeMv5iTlUyoLUgvaPJjGu7KLe8dKiEmLJjpwxOsLkV5QGx4CLcMT2TN4RKdBthPabirq2pus7PuSCnzR6cQFqxdMv5iybhUSmqa2X1WV2jyRxru6qo+OFZOfUs7t41Pt7oU5UFzs5KJDLWx8kCx1aWoHqDhrq7qnQPnSYoJ48YhuuKSP4kMDWZeVjJrDpfQ2q6LZ/sbDXd1RTWNbWzKq2DJuDRdBNsPLZ2QTk1TG5vyyq0uRXmYW+EuIgtEJE9E8kXkyS72Pygih1w/20RknOdLVVZYc6SEVrtDu2T81PShCfSLCmXlgfNWl6I87KrhLiI24BlgIZAF3C8iWZ0OOwPMMMaMBX4GvODpQpU1Vu4/z+DEKEanx1pdiuoBwbYgloxL4/1j5dQ2t1ldjvIgd1ruU4B8Y8xpY0wrsAJY2vEAY8w2Y8xF190dQIZny1RWKK5uYueZKm4bn46Idsn4q6Xj02htd84bpPyHO+GeDhR2uF/k2nY5XwfWdrVDRB4RkT0isqeiosL9KpUlVh10jqJYOj7N4kpUTxqfGc+AfpG8o10zfsWdcO+qydblVQ8iMgtnuP+gq/3GmBeMMTnGmJzERJ2fxNut3H+eCf3jGdAvyupSVA8SEZaOT2fbqQuU1jRbXY7yEHfCvQjI7HA/A/jcwFgRGQu8CCw1xlzwTHnKKnmldRwvrdMvUgPEbePTMAbePahj3v2FO+G+GxgmIoNEJBS4D1jV8QAR6Q+8DXzZGHPC82Wq3vbXvYUEB4kugh0gBidGMy4jjrf3a9eMv7hquBtj2oHHgfXAMeANY0yuiCwTkWWuw/4N6Ac8KyIHRGRPj1Wselyb3cHf9p9n9qgk+kWHWV2O6iV3TsrgWEktR87r+qr+INidg4wxa4A1nbY93+H2N4BveLY0ZZVNeRVU1rdy96TMqx+s/MYXx6Xxn6uP8de9RYxOj7O6HHWd9ApV9Tlv7ikkITpM10kNMPGRoczPTuFv+8/T3Ga3uhx1nTTc1WdU1rfw4fFy7piYTrBNfz0CzT05GdQ0tfH+sTKrS1HXSd+96jNW7j9Pu8Nw9yS9Di0Q3TQkgfT4CN7YU2R1Keo6abirTxljeHNPEeMy4xmWHGN1OcoCtiDhzkkZfHyyguLqJqvLUddBw1196vD5GvLK6rTVHuDunpSBMfDWXm29+zINd/Wpv+wuJDTYOZGUClyZfSO5cXA/3txbpEvw+TANdwVAfUs7K/ef59axqcRFhFhdjrLYPZMzOFfVyI7TerG5r9JwV4Dzi9SGVjtfumGA1aUoL7BwdCrxkSEs31lgdSnqGmm4K4wxvLbzHKNSY5mQGW91OcoLhIfYuHtSBhtyyyir1cnEfJGGu2J/YTXHSmp5cGp/nbddferBqQNodxhW7Cq8+sHK62i4K5bvKCAq1MZtE3QGSPV3AxOiuGV4Iq/vKqDNrgto+xoN9wBX3djKe4dKuG1COtFhbk01pALIl28YQFltCx/oFas+R8M9wL25p4jWdgcPTtUvUtXnfWFkEmlx4Szfcc7qUlQ3abgHsHa7g1e2nWXywD5kpekC2OrzbEHCA1P7szW/klMV9VaXo7pBwz2AbTxaxvnqJr5+8yCrS1Fe7N7J/Qm1BfHKJ2etLkV1g4Z7AHtp6xky+0YwNyvF6lKUF0uMCWPp+DTe3FvIxYZWq8tRbtJwD1AHC6vZU3CRr940CFuQDn9UV/aN6YNpbnPwml7U5DM03APUS1vPEBMWzD2TdbUldXUjUmKYMTyRV7YV6EIePkLDPQCV1DSx5nAJ907O1OGPym3/MH0wlfUtrDpQbHUpyg0a7gHoxY/PYICHpw20uhTlQ6YN7cfIlBhe3HoaY3S2SG+n4R5gLtS38NrOAm4bn05Gn0iry1E+RER45JbBnCir56O8cqvLUVeh4R5gXv7kDC3tDh6bNcTdiGY2AAAPF0lEQVTqUpQPWjIujYw+Efzmg3xtvXs5DfcAUtPYxqvbClg0OpUhidFWl6N8UIgtiG/NGsrBwmq2nKy0uhx1BRruAeTV7Wepb2nnW7OGWl2K8mF3TswgLS6c37x/QlvvXkzDPUDUNrfx8idnmD0ySacaUNclNDiIR2cNZd+5aj7J15WavJWGe4B4cctpqhvb+O7c4VaXovzAPTkZpMSG85sPtPXurdwKdxFZICJ5IpIvIk92sV9E5GnX/kMiMtHzpaprVVHXwotbz7B4TCqj0+OsLkf5gbBgG9+aNYTdZy/qyBkvddVwFxEb8AywEMgC7heRrE6HLQSGuX4eAZ7zcJ3qOjzzUT4t7Q6emKetduU5903pz6CEKH6+9jh2h7bevY07lydOAfKNMacBRGQFsBQ42uGYpcAfjfPz2Q4RiReRVGNMiacL/iS/kp+vPU5kqI2osGASokMZ0C+KwQlRTOjfh5S4cE+/pE8rutjI6zvPcdfEDB0hozwqxBbEP88fwWOv7eOtvUU6lUUnNY1tHCmu4URZHacrGqisb6GqoZWmNjt3TEjn4Wk9OxurO+GeDnRcRLEImOrGMenAZ8JdRB7B2bKnf//+3a0VcP5CJUSH0thqp7yumUNFNVTWF/29kPgIpg3tx7ysFG4elkB4iO2aXsdf/HztcUTgO3OGWV2K8kMLR6cwPjOepzbmsWRcGhGhgft+M8ZwoLCadbmlbMu/wJHiGi59HREbHkxSbDh9I0PpGxVKVC9M++HOK3Q1ZWDnz2DuHIMx5gXgBYCcnJxr+hw3ZVBfpgya8plt9S3t5JfXs6/gInsKqlh7uJQ39hQRFWrji+PTuH9Kf8akxwXc4s87T1/gvUMlfGf2MNLiI6wuR/khEeFfF43int9t54UtpwOyEVFS08TrO8/xzoFizlU1EmITJvTvw3dmD2PSgD6MSI4hMSas1/PHnXAvAjp+3soAOs8c5M4xPSY6LJjxmfGMz4znazcPorXdwY7TF3j3YDEr9xfz512FjM2I49EZQ5ifnUJQAExxa3cYfvruUdLiwlk2Q69GVT1nyqC+LB6TyrOb8rljYjqZfQNjWosDhdW8tPUMaw6XYIxh2tAEHv/CUOZnpxAXEWJ1ecjVhjGJSDBwApgNnAd2Aw8YY3I7HLMYeBxYhLPL5mljzJQunu5TOTk5Zs+ePddXvRtqm9t4Z/95Xv7kLGcqGxiaFM3js4byxXFpfh3yy3cU8OOVR3jmgYksHptqdTnKz5XWNDP7qU1MHdyPlx7K8etPyUfO1/DUhjw+yqsgJiyYeydn8tBNA3vtj5qI7DXG5FztuKu23I0x7SLyOLAesAEvG2NyRWSZa//zwBqcwZ4PNAJfvZ7iPSk2PIQv3ziQB6YOYPXhEp79KJ9/+ssBXtx6mn9dNIqbhiRYXaLHldc287/rjnPD4L4sGqOrLKmelxIXzj/NGc5/rTnGxqNlzMv2v9+7wqpG/nvNMdYeKSUuIoR/WTCCr9w40Gunzb5qy72n9FbLvTOHw7DqYDG/XJ/H+eom5oxK4v/cmsWAflG9XktPMMbwzT/tZfOJCtb90y0MSvCPf5fyfm12B4uf/pj65nbWf/cWYsKt75rwhEsLyT+14QRBAl+fPphvTB9ErEX/Pndb7gF3hWpQkHDbhHQ++N4MfrBgJDtOVzHv/27htx+epLXdYXV512314RI2HC3jibnDNdhVrwqxBfHzO8dSWtvMz947evUH+IDc4hpuf3Yb/7n6GNOG9mPjEzN4Yu5wy4K9OwIu3C8JD7Hx6MwhfPC9GcwZlcz/t+EEi57+mJ2nfXeujPK6Zn7yTi5j0uP4+s09O4ZWqa5M7N+HZTOG8MaeIt4/WmZ1Odesuc3OL9Yd54u//YSSmiaeeWAiv/9Kjk+NOgvYcL8kOTacZx6cyB8enkxzm517X9jBk28doqaxzerSusXhMDzxl4M0tLbz1D3jCLYF/P9aZZHvzBnGyJQYnnz7MBfqW6wup9u2napkwa+38NymU9w5MZ33n5jB4rGpPvclsSaAy6yRSWz87gy+OWMwb+4tYvavNn86xMkX/G7LabbmV/Jvt2YzPDnG6nJUAAsLtvGre8ZT29zGd1Yc8JmpCWoa23jyrUM88PudGOC1b0zlf+8aR3xkqNWlXRMN9w4iQm38cOEo3vnWNFLiwnjstX088qe9lNY0W13aFe04fYGnNuSxeEwq90/RS8CV9bLSYvnZ0my25lfy6/dPWF3OFRljWHO4hNm/2sybe4v45ozBrPvOLUwb6tsj6TTcuzA6PY6Vj03jR4tG8fHJCub8ajN/2lGAwwtbIOcuNPLo8r0M6BfJ/9w5xuc+Oir/de/k/tybk8n//2E+63NLrS6nS6U1zTzyp7089to+UuLCeOdb0/jhwlF+MY1CwA2F7K5zFxr50crDfHyykpwBffifO8YwzEu6PWqa2rjruW1U1Lew8rFpDNTRMcrLXPoeK6+0lte+cQOTBvSxuiTA+R3V67vO8Yu1x2lzOHhi7nC+Nm2QT3xX5e5QSA13NxhjeHvfeX62+igNrmXqHp05hLBg6/66N7S08+WXdnL4fA2vfm2KX16MpfxDZX0Ldz23jZqmNt5cdhNDk6ydnTS/vI4fvn2Y3WcvMm1oP/779jE+dZ2LhnsPqKxv4WfvHeWdA8UMTYrmF3eOYdKAvr1eR1Orna+/upudZ6p45oEJLBit0wso71ZwoYE7n9tGkAivfWOqJZ9+m9vsPPNRPs9vPkVkaDA/XjyKuyZl+FxXpoZ7D/oor5wf/+0IxTVNfGnqAP5lwYheuxrvYkMrX3t1NwcKq3nq7nHcMTGjV15Xqet1sqyOB17cid1h+OPXpvTqqmBbT1by45WHOXuhkdsnpPOjxaNIiA7rtdf3JA33HtbQ0s5TG07wh21nSI4J52e3jWZuVnKPvmZ+eT2P/GkPRRebePq+8dpiVz7nbGUDD764k6qGVp66ZxyLxvTs7/DZygZ+se44a4+UMighiv+8bbTPj4LRcO8lBwqrefKtQxwvrWPWiESemDuCMRmebZEY45wP54dvHyY8xMZzD05k6uB+Hn0NpXpLeW0zy5bvZd+5av5h+iC+N2+ExxfVuVDfwm8/ymf5jgJCbEEsmzGER24Z7BeL92i496I2u4OXtp7huU2nqGlqY86oZL41awjjM+Ovuz+v6GIjP12Vy/vHypk8sA9P3z+B1DjfuQRaqa60tNv5j3eP8trOcwxJjOK/bh/DDR5osJyvbuL3W06zYvc5Wtsd3Du5P9+dO4ykGP9ZflPD3QJ1zW288slZfv/xaWqb2xmdHsuXpg5g4ZjUbk/eX1jVyO+2nOKN3UXYgoTvzh3mM0O1lHLX5hMV/Ovbhzlf3cSM4Yk8NnMIUwb17VajqN3uYPOJCt7YU8gHx8oBuG1COstmDLF8ZE5P0HC3UH1LO3/bf57l2wvIK6sjOEi4cUg/bhmWyLjMeLLSYj83B3Rzm52TZfXsOlvF+txSdp2pIsQm3DUpg8e/MIx0H5qwSKnuaGq188ftZ3lu8ymqG9sYnBjFwtEpTBuaQFZq7Ocu/29td3CyvI7c4lo+PlnJlhMV1DS1kRAdyh0TM3jopoF+/X7RcPcCHRfM3ZhbxunKhk/3RYcF0yfK2ZpvanVQ2WGCpSGJUdw2Pp27cjK0C0YFjKZWO6sPl/DGnkL2Flz8dE6a2PBgYsJDCLEJtc3tVDe2culi8YToMGYMT2RedjJfGJlESAB8stVw90IVdS0cKqrmRFk9ZbXNVDe2EiRCaHAQafERDEyIYvLAPhroKuDVNbex5+xF8svrOVfVSENrO212Q1xEMH2jwhiWFM2o1BgGJ0T79XKZXdFwV0opP6QrMSmlVADTcFdKKT+k4a6UUn5Iw10ppfyQhrtSSvkhDXellPJDGu5KKeWHNNyVUsoPWXYRk4hUAAXX+PAEoNKD5fgzPVfu0fPkHj1P7uupczXAGJN4tYMsC/frISJ73LlCS+m5cpeeJ/foeXKf1edKu2WUUsoPabgrpZQf8tVwf8HqAnyIniv36Hlyj54n91l6rnyyz10ppdSV+WrLXSml1BVouCullB/yuXAXkQUikici+SLypNX19DYReVlEykXkSIdtfUVko4icdP23T4d9P3SdqzwRmd9h+yQROeza97R0Z0ViHyAimSLykYgcE5FcEfmOa7ueqw5EJFxEdonIQdd5+nfXdj1PXRARm4jsF5H3XPe99zwZY3zmB7ABp4DBQChwEMiyuq5ePge3ABOBIx22/S/wpOv2k8AvXLezXOcoDBjkOnc2175dwI2AAGuBhVb/2zx8nlKBia7bMcAJ1/nQc/XZ8yRAtOt2CLATuEHP02XP1xPA68B7rvtee558reU+Bcg3xpw2xrQCK4ClFtfUq4wxW4CqTpuXAq+6br8K3NZh+wpjTIsx5gyQD0wRkVQg1hiz3Th/2/7Y4TF+wRhTYozZ57pdBxwD0tFz9RnGqd51N8T1Y9Dz9DkikgEsBl7ssNlrz5OvhXs6UNjhfpFrW6BLNsaUgDPUgCTX9sudr3TX7c7b/ZKIDAQm4GyV6rnqxNXVcAAoBzYaY/Q8de3XwL8Ajg7bvPY8+Vq4d9U3pWM5L+9y5ytgzqOIRANvAf9kjKm90qFdbAuIc2WMsRtjxgMZOFuXo69weECeJxG5FSg3xux19yFdbOvV8+Rr4V4EZHa4nwEUW1SLNylzfdzD9d9y1/bLna8i1+3O2/2KiITgDPbXjDFvuzbruboMY0w1sAlYgJ6nzqYBXxSRszi7g78gIsvx4vPka+G+GxgmIoNEJBS4D1hlcU3eYBXwkOv2Q8A7HbbfJyJhIjIIGAbscn18rBORG1zf1H+lw2P8guvf9RJwzBjzqw679Fx1ICKJIhLvuh0BzAGOo+fpM4wxPzTGZBhjBuLMnQ+NMV/Cm8+T1d8+X8O31Ytwjnw4BfzI6nos+Pf/GSgB2nC2Ar4O9AM+AE66/tu3w/E/cp2rPDp8Kw/kAEdc+36L62plf/kBbsb5cfcQcMD1s0jP1efO01hgv+s8HQH+zbVdz9Plz9lM/j5axmvPk04/oJRSfsjXumWUUkq5QcNdKaX8kIa7Ukr5IQ13pZTyQxruSinlhzTclVLKD2m4K6WUH/p/MWzWaMyXRxwAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<matplotlib.figure.Figure at 0x7fb39bf1bf98>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "P=4\n",
+    "Nfft=1024; #FFT length\n",
+    "W=GetW(Nfft,P=P)\n",
+    "plt.plot(W);\n",
+    "plt.title(\"PFB coefficients\");"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 22,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(192, 1, 131072)\n",
+      "(192, 128, 1024)\n"
+     ]
+    }
+   ],
+   "source": [
+    "#Load Data\n",
+    "Nc=3; #Number of channels\n",
+    "\n",
+    "A=np.array(np.load(\"../LabTest8/D6b.npy\")) #Raw ADC data\n",
+    "A-=65536*(A>65536//2)\n",
+    "print(A.shape)\n",
+    "[n1,n2,n3]=A.shape\n",
+    "\n",
+    "A=A.reshape([n1,n3//Nfft,Nfft])\n",
+    "print(A.shape) #Channels*seconds, blocks, fft length"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 23,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(3, 7936, 1024)\n"
+     ]
+    }
+   ],
+   "source": [
+    "#Do FFT\n",
+    "F=fftw(A,W,P=P)\n",
+    "[n1,n2,n3]=F.shape\n",
+    "F=F.reshape([n1//Nc,Nc,n2,n3])\n",
+    "F=F.swapaxes(0,1)\n",
+    "F=F.reshape([Nc,n1//Nc*n2,n3])\n",
+    "print(F.shape) #channels, blocks, ffts"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 26,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "<matplotlib.text.Text at 0x7fb3fbe9f748>"
+      ]
+     },
+     "execution_count": 26,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABlcAAARHCAYAAABu5DWnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAIABJREFUeJzs3X/ULHldH/j397l3BAQUUUF+qAiIIpiAP86qOdkQwwIhuoscNJ6cnMgeNf4KauLGrLtGkmPcQGLMJmZNgiK6urvREMPEH0eiiIABkyzqRkVFwAijiID8lmHmdn33j67qrq7uO/fpe6vuU9X39eLcebrq6e6qoefMVH/f9fl8Sq01AAAAAAAAnM/ZRZ8AAAAAAADAkghXAAAAAAAAjiBcAQAAAAAAOIJwBQAAAAAA4AjCFQAAAAAAgCMIVwAAAAAAAI4gXAEAAAAAADiCcAUAAAAAAOAIwhUAAAAAAIAjCFcAAAAAAACOIFwBAAAAAAA4gnAFAAAAAADgCMIVAAAAAACAIwhXAAAAAAAAjiBcAQAAAAAAOIJwBQAAAAAA4AjCFQAAAAAAgCMIVwAAAAAAAI4gXAEAAAAAADiCcAUAAAAAAOAIwhUAAAAAAIAjCFcAAAAAAACOIFwBAAAAAAA4gnAFAAAAAADgCMIVAAAAAACAIwhXAAAAAAAAjiBcAQAAAAAAOIJwBQAAAAAA4AjCFQAAAAAAgCMIVwAAAAAAAI5w+aJPAC5aKeUjk/yZ3q63JLnrgk4HAAAAAIDDPizJx/e2X1Frfc9FnIhwBdbByu0XfRIAAAAAABzlf0jy7y7iwNqCAQAAAAAAHEG4AgAAAAAAcARtwWA9Y2XjJS95SR796Edf1LkAAAAAAHDAG97whjzjGc/o73rL1Z47NeEKDIbXP/rRj87jHve4izoXAAAAAADO565rP2Ua2oIBAAAAAAAcQbgCAAAAAABwBOEKAAAAAADAEYQrAAAAAAAARxCuAAAAAAAAHEG4AgAAAAAAcAThCgAAAAAAwBGEKwAAAAAAAEcQrgAAAAAAABxBuAIAAAAAAHAE4QoAAAAAAMARhCsAAAAAAABHEK4AAAAAAAAcQbgCAAAAAABwBOEKAAAAAADAEYQrAAAAAAAARxCuAAAAAAAAHEG4AgAAAAAAcAThCgAAAAAAwBGEKwAAAAAAAEcQrgAAAAAAABxBuAIAAAAAAHAE4QoAAAAAAMARhCsAAAAAAABHEK4AAAAAAAAcQbgCAAAAAABwBOEKAAAAAADAEYQrAAAAAAAARxCuAAAAAAAAHEG4AgAAAAAAcAThCgAAAAAAwBGEKwAAAAAAAEcQrgAAAAAAABxBuAIAAAAAAHAE4QoAAAAAAMARhCsAAAAAAABHEK4AAAAAAMDYmib5/V9Orty12fUHH/iDfPtrvj1vevebLvDEGINwBQAAAAAAxvbrP5a84EnJK5632fUTb/qJ/OjrfzT/6rf+1cWdF6MQrgAAAAAAwNjec0f78/c2u+5e3Z0kuWt116FXsCDCFQAAAAAAGFttugebXU3W+5rN71gq4QoAAAAAAIytrtqf23Clto9X3e9YLOEKAAAAAACMrQtVelUqXcVK7QUuLJNwBQAAAAAAxnagLVhH5cryCVcAAAAAAGBsXbjSbwvWBi0qV5ZPuAIAAAAAAGPbhCv7bcFUriyfcAUAAAAAAMZ2oC3YpnLlQKswlkW4AgAAAAAAY2va6pR+W7D28apRubJ0whUAAAAAABjbgbZgXbjSpDn0ChZEuAIAAAAAAGOr+wFK1w6sOfA7lkW4AgAAAAAAY+vagfXagnWhinBl+YQrAAAAAAAwtgNtwTrCleUTrgAAAAAAwNg2AUpvoL22YCdDuAIAAAAAAGOrq/antmCnSLgCAAAAAABjO1S5UlWunArhCgAAAAAAjO3AzBVtwU6HcAUAAAAAAMa2CVdUrpwi4QoAAAAAAIzNQPuTJlwBAAAAAICxdRUrvSDFQPvTIVwBAAAAAICxNav1z15bsM6qrm7yyTA24QoAAAAAAIztQFuwrmKlZj9wYVmEKwAAAAAAMLZDA+3bUEXlyvIJVwAAAAAAYGyHwpX2cT3QKoxlEa4AAAAAAMDYDrQFU7lyOoQrAAAAAAAwtk3lSrPdpXLlZAhXAAAAAABgbAfagjVZ71O5snzCFQAAAAAAGNuhtmBt0NL0qllYJuEKAAAAAACM7dBA+whXToVwBQAAAAAAxnYPM1eEK8snXAEAAAAAgLEdagumcuVkCFcAAAAAAGBsh9qCtY8NtF8+4QoAAAAAAIytaQOUfluwtnKl9gIXlkm4AgAAAAAAYzvUFkzlyskQrgAAAAAAwNi66pRelUo3a0XlyvIJVwAAAAAAYGyHZq5E5cqpEK4AAAAAAMDYDrUF62auROXK0glXAAAAAABgbIcqV7qZK43KlaUTrgAAAAAAwNi61l+bCpZtxUqT5tArWBDhCgAAAAAAjO1AW7BuoH1ThStLJ1wBAAAAAICx3cNAe+HK8glXAAAAAABgbAcqV/oPBSzLJlwBAAAAAICxdRUrvRClucpjlke4AgAAAAAAY2u6gfb7bcES4crSCVcAAAAAAGBsB9qC1SpcORXCFQAAAAAAGNtmoP02RFG5cjqEKwAAAAAAMLZNuKIt2CkSrgAAAAAAwNgOtAXrByqrurrJJ8SYhCsAAAAAADC2Q5UrV3nM8ghXAAAAAABgbAfClT6VK8smXAEAAAAAgLFdoy1Yf/4KyyNcAQAAAACAsW0qVw4HKqtG5cqSCVcAAAAAAGBs15q5onJl0YQrAAAAAAAwtgNtwXYqV8xcWTThCgAAAAAAjO0alSv9+Sssj3AFAAAAAADG1s1U6YUoTXqPhSuLJlwBAAAAAICxbapUVK6cIuEKAAAAAACM7VBbsAhXToVwBQAAAAAAxrYJV7YhisqV0yFcAQAAAACAsW3CE5Urp0i4AgAAAAAAY9tUrmx39QMV4cqyCVcAAAAAAGBsddX+PByiCFeWTbgCAAAAAABjO9AWTOXK6RCuAAAAAADA2DZtwQ7PXFl1lS0sknAFAAAAAADG1AtU+m3B6lWCFpZHuAIAAAAAAGPaafl1lcqVRuXKkglXAAAAAABgTP1wpV+tonLlZAhXAAAAAABgTDtVKWaunCLhCgAAAAAAjGmncmX7uLnKY5ZHuAIAAAAAAGO6SluwPuHKsglXAAAAAABgTFcZaK9y5XQIVwAAAAAAYExXaQtWrxK0sDzCFQAAAAAAGNNVgpNahSunQrgCAAAAAABjGgYnbagiXDkdwhUAAAAAABjTXriy3u63BVvV1c08I0YmXAEAAAAAgDFdpXKlX63Sr2JheYQrAAAAAAAwpr2WX21bMJUrJ0O4AgAAAAAAY7pKW7A+M1eWTbgCAAAAAABjOkdbMOHKsglXAAAAAABgTM2w5dd+WzDhyrIJVwAAAAAAYEwqV06ecAUAAAAAAMZU62C7DVJ6u5sIV5ZMuAIAAAAAAGPaq0o50BasEa4smXAFAAAAAADGdJ62YCpXFk24AgAAAAAAY9oLV9bbBtqfDuEKAAAAAACMqa6GO/aeIlxZNuEKAAAAAACM6TxtwYQriyZcAQAAAACAMV0lXKlVW7BTIVwBAAAAAIAx7QUnbeVKb4j9aq91GEsiXAEAAAAAgDHVeni79nftz2FhOYQrAAAAAAAwpr22YOvt2ktXVK4sm3AFAAAAAADG1AyDk/2B9ipXlk24AgAAAAAAY7raQHuVKydDuAIAAAAAAGM6MNB+WKnS7D2HJRGuAAAAAADAmA7MXOlXrSTClaUTrgAAAAAAwJgOtAXbq1yJcGXJhCsAAAAAADCmA23BhmFK0whXlky4AgAAAAAAYzrQFmzQFUzlysIJVwAAAAAAYEwH2oLtVa6YubJowhUAAAAAABjTgbZgezNXhCuLJlwBAAAAAIAxHRpoH+HKKRGuAAAAAADAmA6FKypXTopwBQAAAAAAxnSoLZjKlZMiXAEAAAAAgDE1q93t2qhcOTHCFQAAAAAAGNOBtmBNdvet6iCAYVGEKwAAAAAAMKZBlUqyP3NluM2yCFcAAAAAAGBM5xhor3Jl2YQrAAAAAAAwpr1wpdkbaK9yZdmEKwAAAAAAMKa9YfV1L1xRubJswhUAAAAAABjTMDipNc0gcBmGLSyLcAUAAAAAAMZ0oC3Y0KpRubJkwhUAAAAAABjTgbZgw8qVJvuBC8shXAEAAAAAgDHtVa7UvQH2w7CFZRGuAAAAAADAmAZBSur+QHvhyrIJVwAAAAAAYEwH2oKpXDktwhUAAAAAABjTcFi9ypWTI1wBAAAAAIAx7c1cafYH2gtXFk24AgAAAAAAYzrUFkzlykkRrgAAAAAAwJj2KldqBtmKcGXhhCsAAAAAADCmA5UrTXb3repgLguLIlwBAAAAAIAxDYOT2qTW3dKV4TbLIlwBAAAAAIAxDYOTqnLl1Fy+6BPg5iql3C/Jf5Pkk5N8VJKS5L1JfjfJ62qtbxzhGJ+U5AlJHprkfkne2r7/q2utd9/o+wMsxTs++I78vV/8e/mSx3xJPu9hn3fRpwMAAADcLAfagpm5clqEKxeklPLIJJ+d5LPan5+R5P69p/xurfURIx7v85P89SRPyz187qWUdyb5mSR/v9b6X448xrOS/I0kn3uVp/xRKeVHknxbrfUdx7w3wBK96o5X5WVvfllWzUq4AgAAALeSvYH2TeogXRGuLJtw5SYqpTwpybdkHag88CYd82OSvCDJF53zJR+d5EuTvCLJucKVthrme9vX3ZMHJvmaJM8spXxZrfWl5zwngEW68o7fSpKs3v4bF3wmAAAAwE21F67UvTBl2CaMZRGu3FxPSPKUm3Wwtjrm3yd51OBXdyX55azbdX0wyQOSPDbJI67jGJeS/EiSpw9+9fb2GO9pj//ErFuQJcmDk9xeSnlyrfUXjj0mwFLU979t/fOu91/wmQAAAAA31YG2YHuVK41wZcmEK/PwoSR3ZD8EuW6llI/Nur3XI3u7fz/JtyZ5ca31fQde8+AkfyHJl2WvA+BVPS+7wcrdWbcGe0Gt9a7ee39aku/LtmXYvZK8pJTy6bXWt57zWACLUtvhdef9FyoAAABwIprBsPrabNYJNk9RubJowpWb7+4kv57k/03yn9ufv5rkTyV5+YjH+Z7sBiuvTPIFh0KVTq31bUm+P8n3l1Ku+c9GWxnzDYPdX1xrvf3Ae7+ulPLnkrws24Dlo5M8N8lXX+tYAEtU27tUmipeAQAAgFvKXluwmLlyYoQrN9cPJvkXtdY7h78opRx4+vUppTwzybN6u34jydNrrR8473vUWq+c42nPTXJbb/sHDgUrvff8YCnl2VmHSR/W7v7yUso/qLW+6bznBrAU3UVSo3YFAAAAbi2H2oINK1eEK4t2dtEncCuptb7rULAygf9tsP1VxwQr51FKuU92A5wkef61XldrfX2Sl/R2XU7yl0Y8NYDZ2N6RIlwBAACAW8qwi0Vt9tqACVeWTbhyYkopT0ryKb1dr6q1vmqCQz01yYf3tl9Ta/3Nc772RYPtZ45zSgDz0t2R4lIJAAAAbjF7bcHq3r2XwpVlE66cnq8YbA+DjLE8bbD980e89lVJ+m3HnlhKefANnxHAzDRmrgAAAMCt6VBbsEG6sqqDofcsinDl9PzZwfbPTHScxw+2X3PeF7Ytyn51sPtxN3xGADPTXTSJVgAAAOAWMwxOat2rVBnOYGFZhCsnpJTysCQP7e26o9Z6R/u7B5dS/nop5ZWllDtKKR8qpby9lPJrpZQXlFKeUUo55p+Hxw6233Dk6b5xsP1pR74eYPYMtAcAAIBb1F5bsEblyom5fNEnwKg+a7D9G6WUkuSrkvzDJPcb/P5j2j+PS/KV7fO/vtb6s/d0kFLKA5M8cLD7zUee6/D5n3zk6wFm7x3vvzNJcucVF0sAAABwSznUFmxQqaJyZdlUrpyWhwy2fy/JP07yz7MfrBzy2CQ/XUr5ums87wGD7T9uW30d4w8H2x955OsBZu/Ou9fjpcxcAQAAgFvMgYH2KldOi8qV0zIMPZ6c5OG97VcneWGSX0nygSQPy3ow/ddkG75cSvLdpZQ311p//CrHGQY1H7yOcx2+5v7X8R57SikPSvKxR77sUWMcG2DIzBUAAAC4RR1qC6Zy5aQIV07LMFzpgpWa5G/WWv/R4Pe/leTnSinfneSns517UpL8YCnlEbXW9x44zjBcufM6znUYrpynsuY8vjbJc0d6L4Ab0l0kuVQCAACAW8xecLIdaH+5XM6VekXlysJpC3ZarvZ5/u8HgpWNWutbsq5geU9v90cluVZ7sM1bnPN5N/oagEXZVq74Vx4AAADcUppBcNJrC3bp7NJ6l/WCRROunJb3H9j33iTfdq0XtgHLdw52/+VzHuc+1z61PcPXHDp3gEWr7R0pLpUAAADgFnMPbcEulXW4shoGMCyKtmCn5VBA8W9rrecNLv7PJN/e2/60UsqDaq3D4fNzDle+J8m/PvI1j0py+0jHB9hozFwBAACAW9MwXEn2Klea7D+H5RCunJZ3H9j3i+d9ca31zaWUtyZ5SG/3pyYZhivvGWx/eCnlvrXWD5z3WEkeNNg+dO5Ha4Og4fneo1LKGIcG2LOduSJeAQAAgFvKXuXKti3Y5bJelm8OBDAsh7Zgp+X1B/a99cj3+P3B9kcPn1BrfWeSdw12f8KRx/nEwfZvH/l6gAXQFgwAAABuSQfagnVhyqZyRbiyaMKV0/LrB/Z96Mj3GD7/3ld53m8Mth995HEeeY33A1i8TVswBXIAAABwa9kLTurm7suzsl2WF7Asl3DlhNRa35XkjsHuBxz5NsPnv/Mqz/u1wfbnnvcApZT7JvkT13g/gOVr24K5TAIAAIBbzDnagiXClSUTrpyenxpsP+68Lyyl3Cv7FSjDsKbz04PtJ533OEn+dHbn/fxyrfVtR7weYBGaTUMwjcEAAADglnKgcmXYFiwRriyZcOX0vHiw/bQjXvv5ST6st/2OXL1d10uTfLC3/bmllE8953GePdj+t+d8HcCibAfaAwAAALeUAzNXusqVS0W4cgqEK6fn5Un+a2/7s0op/+05X/s/DbZ/qnYrgwO11j/OfpDzt651gFLKY5J8UW/XlST/9znPD2Bhmt5fmYvXvu21ec7LnpM73ne14kwAAAC4QYfagrVLrZfPtAU7BcKVE1NrvZLkfx3sfmEp5UH39LpSyjdlXbnSaZI8/xqH+ztJ7u5tP7uU8t/fwzHuneRF2a2OeWGt9Y3XOA7AIrk8mqcf++0fy8/f8fN5+VteftGnAgAAwKk60BZM5cppEa7cZKWUh5dSHjH8k+TjBk+9fOh57Z+PucZh/p8kr+xtPzrJq0sp/92B83lAKeUfJ/nOwa/+aa31dfd0kFrrm5L8k8HuF5dS/loppR+gpJTy2CQvS/J5vd3vTPJ37/HvBGDJuoH25YLPgx2rt63/87Z6+29e8JkAAABwsg61BWvXCfozV1Z1dTPPihFdvvZTGNkvJPnEczzvYUl+5yq/+8Hszy3ZqLXWUsozk7w6yWPa3Y9K8u9LKW9O8itJPtAe43OyW0mSrEOQv3mOc0yS/znJ45L8+Xb7tiTfneRvl1J+Kcn7kjwyyWck6S8v3pXki2qtbz3ncQAWpxtob+bKvNQ737X++b4/uOAzAQAA4GQ1g9Ck1jRtj4vL5XJvt1WDpRKunKha6ztLKU9O8sNJ+jNXPqH9czXfn+Rr2vZi5znOqpTyJUm+L8lf7P3qQUmedpWX/WGSL6u1vuo8xwBYLAPtZ6lufvpkAAAAmMiBtmDd19Czsm0opXJlubQFO2G11rckeVKSr07y/93DU1dJfjbJn6m1fnmt9a4jj/P+WuuXJvniJL94D0/9oyT/PMnja60/fcwxAJaotnekWMKfmS70cncQAAAAUxl+56zNpnLlrJyltE1+3Pi3XCpXbrJa6yNu8vFqkn+Z5F+WUh6T5NOTPDTJ/bOeeXJHkl+otb5nhGO9OOuZK5+UdRuwhya5b5I/SPK7Sf7DscENwJJt24K5UJqTOvgJAAAAo9ubuVJ3bvK7VC7lSr2S1bB9GIshXLmF1Fpfn+T1N+E4v5Orz4sBuIUYaD9HVbwCAADA1Lpw5exy0qwnMHTfR8/K2bo1WHVD5pJpCwYAE2lcH83SJlrRFgwAAICpdOFKubTZ7r6HllI2c1fMXFku4QoATKatXLngs2BX1a4NAACAqXWhyVnbPKrWzffQkm240uwNvmcphCsAMJHtzBVmpf1AVK4AAAAwmU1bsEvdjk2Q0q9cEa4sl3AFACYjXJmj6nMBAABgapu2YO0SvMqVkyNcAYCJWMSfpw/evS7Nfv+H7r7gMwEAAOBk9Qfat9tdB4XNQPsIV5ZMuAIAE+nClaZc8Imw484r6wvXd3/wrgs+EwAAAE5W14q6C1eicuXUCFcAYCJmesxVHfwEAACAkQ1nrtS6XScoEa6cAOEKAEykW7pvonRlTjbRimwFAACAqTTrltQpXbjSbCpXzrJtC7aqq4s4O0YgXAGAyZi5Mk8qVwAAAJjYsHIl28qVUrZtwXS9WC7hCgBMxED7edpGKz4ZAAAAJnKoLVivcuVSW9GicmW5hCsAMJHGQPtZE64AAAAwmU24cnmzvZmvUtZD7RMzV5ZMuAIAE7OEPy+biiIfDAAAAFMZhivZVq6UlFxqK1qEK8slXAGAiWwqVy74PDhMQREAAACT6e7oa2erpG7nq5yVM5UrJ0C4AgCTaSskimX8OapiLwAAAKbSzVLZzFxptgPtUzYzV4QryyVcAYCJ9LtOVT2oZmPTFuyCzwMAAIATdk9twUpJaW/EbNz4t1jCFQCYSH9getOsLvBM6Nt8KgIvAAAAprIZXt9VrtRNlcpO5UojXFkq4QoATKRfrVKV+c6OaAUAAIDJXKNy5aydxaJyZbmEKwAwkd22YC6W5mJbUSReAQAAYCKbcOXS7naSs5xtwxXrBYslXAGAyfTagtUrF3geHFKFKwAAAExlL1zZtgVLiXDlBAhXAGAi/cujaubKbGzqVmQrAAAATKUZzFxJ3bQPL9m2BVtV6wVLJVwBgMn0K1fciTIf2oIBAAAwsQNtwboOCmdl2xasuvNvsYQrADCRnZkrjbZgc7GNVlzAAgAAMJHhQPuqcuXUCFcAYCK1bBfvDbSfI+EKAAAAExlWrqRubvIrpahcOQHCFQCYSP8CqXEnymxoCgYAAMDk6mDmSm02LcNVrpwG4QoATGS3LZiLpbno7hTSFgwAAIDJHGoL1q9caZfmzWhdLuEKAEykv3S/MnMFAAAAbh1dRcqmLdjWWTnL2ZlwZemEKwAwkf7MlaZxsTQXm7Zg+toCAAAwlWu1BVO5snjCFQCYSH/tXuXKfJi5AgAAwKT6CwJd5UqtOzf5XWpDF+HKcglXAGAi/coVA+rmSLwCAADABPqBSTdzJTVN1vvPyllKKUmy2cfyCFcAYCL9pftmJVyZi+1AewAAAJjATriyrVzpvoiWlG3lijbiiyVcAYDJ9CpXGuHKbJTugXgFAACACfTDld7Mle5mv1KKypUTIFwBgIn0L48abcFmw8wVAAAAJtW/wbKrXEndGWhv5sryCVcA4CZQ5js/VbwCAADAFK7SFqxfuXJW1kvzwpXlEq4AwET6i/er1ZULPBP6Np9KFa4AAAAwgUMD7WuT2n4PPStnwpUTIFwBgIn0L49W2oLNhoH2AAAATOpQuJJe5UpUrpwC4QoA3ARVW7AZEq8AAAAwgYMD7eumcqXfFszNmMslXAGAifSX7leNi6W5Ea0AAAAwiX4b6rN2Cb42abI/0L5qWb1YwhUAmEh/5krjTpTZ6D6VcqFnAQAAwMnqrwF0lSupmy+kJSWlrL+VqlxZLuEKAEykf+9Jo3JldqraFQAAAKbQtQUrZ0kboqRu56uclTOVKydAuAIAE6m90ghtwebDQHsAAAAm1QtXmm5xoDab76MfutKkROXK0glXAGAiO5Ur1UD7+RGvAAAAMIF2DaDJWb7rZ3+727kJV170H/5rXv+2D6yfY71gsYQrADCRnXBl5U6Uuaibn8IVAAAAJtAGJquc5d31Q+tvn7X2WoCVvOsDV5IIV5ZMuAIAEzHQfp7q4CcAAACMqg1MXnmfe+X2R/3HvPAjPyL9ypWnnL0297373UmSJsKVpRKuAMBEdgfau1iaH/EKAAAAE2jnrr7ptsvtz9vWM1faypVPKXfkIR960/qp1gsWS7gCABPpL90baD8fde8BAAAAjKgNUZrSDq0v631dC7CS5HLTzWURriyVcAUAJtJfu696qM6OmSsAAABMYjPQfh2u1Pav3ffQ0v5JzFxZMuEKAEyklu1jZb7z0X0uohUAAAAm0QYmV7rKlXZf1xbsLDVnXXWLcGWxhCsAMJGdtmDRFmwuVKwAAAAwqWHlSilJrTvfR0uEK0snXAGAiey0BTNzZXaELAAAAEyirtcAmn7lSq8t2FmSSypXFk+4AgAT6S/eu1iaD5EKAAAAkxpUrjTtvq4tWKlmrpwC4QoATKS/iN+oXJkdlSsAAABMogtXyuG2YCUqV06BcAUAJtL0B9q7WJqNOvgJAAAAoxpUrnS3W3ZrAyVJacOVVXUz5lIJVwDgJjBzZT7qgUcAAAAwmi446QbaJ7ttwVJzpnJl8YQrADCR/uXRysUSAAAA3Bo2bcHWm6uSnbZgZ9kuzAtXlku4AgA3gZkr86EtGAAAAJNq1wCaTeVKSVJ3BtqbubJ8whUAmEj/8qjGxdJc1PbOIeEKAAAAk2gDk1V/5spgoL22YMsnXAGAifQX75tqKX9+fCYAAABMoA1Mum+dTVnv6w+0P2tvwhSuLJdwBQAm0lVIJNqCzYm2YAAAAEyqq1wp64WBpmsLtlO5sn6qcGW5hCsAMJH+4n11sTQb9cAjAAAAGE030D5duJKk1s3X0BIzV06BcAUAJlKzLV1xsTQntfdXAAAAGNlm5srapi1YurZgddsWzIzWxbp80ScAAKdqZ6C9cGU2tAUDAABgUt3MldKrXElNbatVSt1WPayqNuJLpXIFAG6CphGuzI94BQCPpyM+AAAgAElEQVQAgAkMKldqSlK3M1fOklzqIpfqu+lSCVcAYCJNf6C9Mt/ZcNkKAADApLrKlbZd+Krdt6lcSXLWPla5slzCFQCYiLZg8yZkAQAAYBJd5Up702V382VXuVKicuUUCFcA4CZo3IkyG/XAIwAAABhN7YbVl+3PWtPU7UD7S+1XUpUryyVcAYCJ7FSuNBby58JAewAAACa1CVey/VmbncqVs/axypXlEq4AwERq2Q5dUbkyI+XaTwEAAIDr1qzXADbhSkmSurnL76wmZ13rMOsFiyVcAYAJDO88adRJzMa2csVnAgAAwAT22oJl3RYsXVuw5HJVubJ0whUAmMBwgL2B9vPhshUAAIBJtYFJN8h+HbLUnSDlUvvtVOXKcglXAGACTbN7cSRcmR8hCwAAAJPoWn61m01Z7+sqV86SnLWPG+sFiyVcAYAJDMMUF0vzUQ88AgAAgNFcpS1Y9zW0JLnUVbdYL1isyxd9AgBwiuqgrLfGxdJc1MFPAAAAGNUmXEn7s20L1n4TLanbcMV6wWKpXAGACQzbgjUG1M2GTwIAAIBJtTdcdt8/N23B2tCl1F5bsEa4slTCFQCYwN5AexdLsyNkAQAAYBJ7lStJar9yJbnchSsqVxZLuAIAE9AWbL5qaX+KVwAAAJhCF6603z/XWzW17WpxluRS+5XUzJXlEq4AwASaqi3YXPkkAAAAmNSwcqWUpDaHK1eEK4slXAGACdTBzJVhmzAunpAFAACASWyG1Wf7s2ZTuZIkZ1W4snTCFQCYwLByRVuw+RCqAAAAMKlDM1dSN0HKWa25TbiyeMIVAJiAypX5qintTzELAAAAE2jXBLbhStkELsm6LdhZ+510Nbg5k+UQrgDABFbNbphi5sp8+CQAAACYVO1qVdY39zUlSa2bm/zOklxuH1frBYslXAGACQzLerUFm59aLvoMAAAAOEldy6/Sn71Sd9YKLlWVK0snXAGACaxWd+9suxNlPrpPwkcCAADAJDYzV7rKlbJTuVKS3NZFLr6cLpZwBQAmMLzzRFuw+dhUrKhcAQAAYAqDgfZJ0tTVJkg5q8lZ+1uVK8slXAGACTSNtmBzVQc/AQAAYFSbmSvbb55N6iZcKam5rapcWTrhCgBMYNUM7jypwpW52IYrLmABAACYwMHKlUFbsGLmytIJVwBgCsO2YBbyAQAA4NawqVzZamqzGWhfkpy1v3Xj33IJVwBgAleGbcGU+c6OTwQAAIBJdJUrvVmf/ZsuS9ZzV5IDnS9YDOEKAEygWV3Z2TZzZT6EKgAAAEzqYOVK3VSunGW7MN9YL1gs4QoATGBVVa7MlU8CAACASR2YubJKrwVY3bYFa8xoXSzhCgBMoA7Kel0szUct67psfW0BAACYxKZyZfu9s6Y/0L5u2oJZL1gu4QoATKAZzlyxkA8AAAC3hvaGy53KlVo3XS36bcESActSCVcAYALDgXTClXnot2fziQAAADCJrnKlN9C+1mbznbRk2xYsEa4slXAFACYwvDAyc2Ueau9z8YkAAAAwiXYNoL8y0JS6GV5fkk1bsES4slTCFQCYQNNc2dlWuTIPtXHBCgAAwMQOzFxpem3BSpJLvacLV5ZJuAIAE9ivXHGhNAc1KlcAAACY2CZc2Wp6W6WuA5bN76wZLJJwBQAmMKyQULkyD0IuAAAAJncgXFnVuglRzlJzqdc+fFV357ayDMIVAJjA8MKoEa7MQ3+gfbmH5wEAAMD1atcEdgbat/9L1lUrKleWT7gCABPYuzAy0H4Wdgfa+0wAAACYwIGZK6tsZ64kZq6cAuEKAEygGbQFU7kyD/2ZKwAAADCJA23Bat1WrpxF5copEK4AwASaZtgv1YXSHPRn4Yi7AAAAmMQ1Kle6gfZnbcSis8IyCVcAYALDwelVW7BZcMEKAADA5No1gP7MlSY1TbqB9mulrB+pXFkm4QoATGClLdgs7c5cAQAAgAkcqFyptX/jZTfYfp2+CFeWSbgCABOodbctmIqJeai9dm0+EQAAACbRfvfsf+9cZTtzpStoOROuLJpwBQAmsNIWbJZcsAIAADC5Q5UrvZkr3aL8mbZgiyZcAYAp7F0YCVfmoKn9C1sAAACYQBeu9Gau7Ay0b/d1bcHckLlMwhUAmMCq2W0L5h6UeWiqtmAAAABM7ODMle1A+9Lu3sxcsWqwSMIVAJhAszdzxYXSHNSm9zmUqz8PAAAArlvXzWKnciXrqfbZr1xZDdYQWAbhCgBMYGcRf73nQs6DXU3vY/CJAAAAMIna7H3nbA4NtC/agi2ZcAUAJjAcaK9uZR5224K5eAUAAGACtcmwFmWVuhlcf7YJWdq2YAbaL5JwBQCmMLgwchfKPDR7FUUAAAAwsgOVK7VXudI5E64smnAFACawf2EkXJmFXsjlEwEAAGAStUkzmPO5qtsbL7czV9aEK8skXAGACQwvjLSgmocqXAEAAGBqtUmT3XSlSd18Jz1rv5CetcvzjWbiiyRcAYAJ1L2ZK5by58AFKwAAAJM70BYsBwbadz+1El8m4QoATGA40J55UGoNAADA5Or+rX2rUjbfSctgoP2qrm7m2TES4QoATEDlyjxpCwYAAMDkmlVWg5kr61WC3cqVbqC9ypVlEq4AwASG4YqZK/NQm+3dQD4RAAAAJlFr6t7MlRxoC7Z+pMvCMglXAGACw3DFUv48NP27gcrVnwcAAADX7UBbsCbb76TdQPvua6lwZZmEKwAwgaYZVq4wB/0LVp8JAAAAkzgUrpSicuXECFcAYALDyyj9U2eiEa4AAAAwsdqkHpi50q0NDGeu7EcxLIFwBQAmUOtqd7tYyp+DRqQCAADA1GqTZjhzpRyaudL+TuXKIglXAGACzWANX+HKPDQqVwAAAJhaXR2YuVJ6lSu7IYtwZZmEKwAwgeFA+2opfx56KZdPBAAAgEnUJs2BtmBdN4WuuUWpZq4smXAFACbQDNuCXdB5sKv/ufhMAAAAmMShgfa9x9uZK+3TtbtYJOEKAExgeGGkcmUeGhesAAAATK3W1MHMlVXZbneL8iUqV5ZMuAIAE9hvC8Yc9D+XWu7hiQAAAHC9DlSu9PtbGGh/GoQrADCB4YWRypV56F/e+kQAAACYRLPam7nSr1zZC1f2ohiWQLgCAFNQuTJLtXHBCgAAwMRqk2bYFqz3uLSrBGftYoHKlWUSrgDABJpBnFKLeGUWejNXfCIAAABM4kBbsCu9rKVbIuhmrhhov0zCFQCYwF5bMNdJs9DshCuGrgAAADCB2uzN+Vzl6m3BVnUVlke4AgAT2Btor3JlFpreBatPBAAAgEkcGmjfC1u6RXltwZZNuAIAExiW9FrInwel1gAAAEyu1v22YAe6J3R7qlWDRRKuAMAEusuo0i7mu1Cah35FkU8EAACASdTV/kD7A5Ur3S6VK8skXAGACXQXRpfabQv589C/YB32vwUAAIBR1CbN4DtnszNzZb1KULQFWzThCgBMoa1Y6fqnClfmoe4MtAcAAIAJ1GbvO+eVXtjShSrd4rxwZZmEKwAwgW503Vm0BZuT6oIVAACAqdVmvy3YTuVK+1PlyqIJVwBgAl2FhLZg8+UzAQAAYBIH2oL1Z65swpX2m6lwZZmEKwAwga5CQluwedEWDAAAgMkdagvWq1zZDLRXubJowhUAmEB3GaVyZV5qXV30KQAAAHDqmibDb5/NgcqVbnFeK/FlEq4AwATq3kB7F0pz0KhcAQAAYGoHZ65smblyGoQrADCBTVuwbrtc/bncRP1wpfhQAAAAmEBt9tYBrrTfQUvve2m3ZiBcWSbhCgBMoKtUMXNlXlywAgAAMLm6yvDbZ1e50s9cuqDFd9VlEq4AwAT2Klcu7lTo6Q+0P7QNAAAAN+zAQPtVV7nS26dyZdmEKwAwgc1AezNXZqXZC1dcwAIAADCy2mzClM7hypX26dYMFkm4AgBTaBfxu4sml0lzsRum1Ea4AgAAwMiaA23BDlaurFcLVs0qLI9wBQAm0FWunLWXTcKVedhrC7Z3uQsAAAA3oNYcqkXp4pOz3vfSrnKl8d10kYQrADCJduZKd6FU7uGp3DTDPrbaggEAADCqbkj9YPeVe6hcMQ90mYQrADCB7sLIf2jnZe+C1QUsAAAAY6rrGpXmiJkrq6ot2BJdvugTOI9Syn2TfGaSxyR5RJIHJblvktuSfCDJe5O8JcnvJPmVWusbL+ZMAWCtq5Ao7WWT+oh5GFaqqFwBAABgVO33zL22YG2qonLldMw2XCml/KkkX5DkaUkenyNu/i2lvCvJK5L8ZJKfqLX+4SQnCQBX0XVX7dqCuUyah8bMFQAAAKbUDqcf1qKscqAtWNdK3I1/izSrcKWU8vAkX5nkryT5hG734GlXW5/qP++BSZ7R/lmVUl6a5IVJbq9iQABugroz0L4eGGXHhRiGK40LWAAAAEbUVa4MVrWvtNtnva+lZTOfxXfTJZpFK/hSyqeXUn44yRuTfGuST8w2LKnZDVTKVf701d5zLyd5epJ/k+QNpZSvK6Xca4q/DwDodFl+1xZMtDIPwwtWoRcAAACjasOVZrBkPdxOtovzjRv/FulCK1dKKY9M8u1J/mK2IckwSLkryeuS/Jckv5vkjiTvSvLHSa4kuU/W81cemuRhSR6b5E8k+bjh4ZJ8UpJ/muRvlVL+TpIfqJqtj66U8klJnpD1Z3K/JG/N+rN7da317os8N4CbZdsWrA1X9q+huADD/+w3hgYCAAAwpm6g/WD3lc3Mle3yd0kXxFiiXqILCVdKKfdO8reTfFPWQ+n7oUpJ8tok/y7Jy5P8x+tZkG9bjP3ZJE9O8oVJHtD79cOTfG+S55RSvrbW+prr/Fu5bm2w9NlJPqv9+RlJ7t97yu/WWh8x4fE/Pev/n28b/Op/rLX+wHW+57OS/I0kn3uVp/xRKeVHknxbrfUd13MMgKXoZnn0yzCZgWFbsJULWAAAAEbUfu/cG2jfrhD0W0ld6ua0mmSxSBdVufKbST4+u+287sg68Pi/aq2/c6MHqLXekeSHkvxQKeW2JE/Jep7LX0hyqX3an0zyqlLKV9ZaX3Sjx7yWUsqTknxL1oHKA6c+3j2cx6Uk35/9YOV63+9+WX92X3qNpz4wydckeWYp5ctqrS8d4/gAc1RrktLNXBGuzMVwoL27gwAAABhV1xZs0MFitalc2drMXNFcaZEuKlz5hGzXmf5Tkr+f5MenatHVVr78ZJKfLKU8NMk3JvnqrFtWlayDnpvhCVmHPBftm7IOeG5YG9T8SNZzbfrenuSXk7wnyaOSPDHbf3c8OMntpZQn11p/YYzzAJibbtG+C1dcJs1DHXwS+toCAAAwqmbdFmw1mLHSbff3dlUsKy2rF+kiB9r/SpKn1lo/p9Z6+82afVJr/f1a6zcn+cQkz0/yoZtx3Gv4UJI33owDlVI+Ocnf7e163w2+5fOyG6zcneQ5SR5ea31qrfVLaq2fmeTxSfrt1+6V5CWllIfc4PEB5qkbaF9VrsxJbVSuAAAAMKFN5cru0vumcqX3tbSrXNEWbJkuKlz5slrrZ9Zaf+aCjp9a67tqrd+S5FOSvOImHvrurIOl70vyVUk+M+tZK18x9YFLKSXJC5Pcu9314iS/dAPv98gk3zDY/cW11n9Wa72rv7PW+rokfy67ActHJ3nu9R4fYM42A+1joP2c1Ji5AgAAwIS6cGWvcmWtv/dS+x3VjX/LdCHhSq31hy7iuIfUWt9Sa71Z4coPJvmIWusTa61fWWt9Qa31l9q2ZTfD1yb50+3j9yT5+ht8v+dmd27LD9Rab7/ak2utH0zy7CT94OXL25AG4KR0i/il/U+te1DmYVgo2/hkAAAAGFPb4mtVBuFK6Qba19xV1yPBz1SuLNpFtgW75bTVMndexLFLKZ+QdQuvzjfXWt96A+93nyTPGux+/rVeV2t9fZKX9HZdTvKXrvc8AOaquzDazlxRujIHZq4AAAAwqau0Bbuy83g9Cr20N/yZubJMwpVbxwuS3K99/Kok33uD7/fUJB/e235NrfU3z/naFw22n3mD5wIwO9vKFTNX5mR4M9BNGvkGAADAraL9ntkNsK9tlUpXuVKSXMlu5Urju+kiCVduAaWUZ2cdhiTJh5L81XrjtWZPG2z//BGvfVV2w9onllIefIPnAzAz2oLN0+CCVek1AAAAY2oGM1fqel2gq005S3KlXSu41H4l1RZsmYQrJ66U8nFJvqu36zuOqDC5J48fbL/m4LMOqLV+IMmvDnY/7obPCGBGmsFA+0ZXsFkYXrC6OwgAAIBRbdqCdeHKoHKlbtuCnbU3AGoLtkzCldP3fyT5qPbxr+ccc1HO6bGD7Tcc+fo3DrY/7QbOBWB+NjNXVK7MyTBc0RYMAACAUbVBSbNpC7ZbuVKS3N22BSsqVxZt8eFKKeUppZQfLqX8dinlvaWUt5VSXltKeX4p5VMv+vwuUinli7OdZ1Kzbgd21wjv+8AkDxzsfvORbzN8/idf/xkBzE+3ZG/myryoXAEAAGBSw8qVdgm+2cxcqbnSVrNcTtdCzHfTJbp80SfQKaXcO8lTkjwhycdmPRvkTUl+7lAbq3aB/4eynf3R/dN6v/b1T0jyjaWU59Vanzvx6c9O+//PP+vt+p5a66tHevsHDLb/uG31dYw/HGx/5A2cD8DsbAbal92LKC7WsFKlir0AAAAY02CgfdcWrLM70H69z41/yzSLcKWU8tVJviP7i/bd738q66qLt7bb90vys0n+ZNb/PNbs3xRcktyW5FtLKQ+otX7DRKc/V/8kyYPax7+X5H8Z8b3vN9j+4HW8x/A197/Oc9lRSnlQ1uHaMR41xrEBdu22BUvWVRNFyHKhhmFKXelrCwAAwIia9ffMVXuz5TBcWQ+0b8OVrnJFuLJIFx6ulFK+K8k3ZFt5kqxXpPrbT0/yylLKZ9da353kH2ZdmVIPPLf/Hml/99dKKS+ttf7U2Oc/R6WUpyf5y71dX1drfe+IhxiGK3dex3sMw5Xhe16vr01yy1UqAfPTHApXUjdtwrgog7ZgKlcAAAAYU9cWbLO9O5ljPdBe5copuNBwpZTypUm+sd3shyGHgpZHJvmOUsrzknxFb/8Hk/x4kl9K8t6sZ4F8XpKnZh0Eds/7ziQnH66UUj4iyb/o7fo3tdbbJz7s9axMWc0CTlzbFqwXrjTNKmeXFj/ubNGa4cyVxgUsAAAAI2q/d3btweuBsefdQPtLbQRjoP0yXVi4Ukq5nOQftZtdAHJnkp9L8lvt9mOSfH6Se7fbfyXJ25Jcal/zn5N8Ua319w+8/+OT3J7kEe2uTymlfG6t9TUT/S3NxT9I8vHt4/ckec4Ex3j/YPs+1/Eew9cM3xNg0bpF/LPSq1xpVsml2y7qlEg2dxBtt13AAgAAMKK6bgvWXGXmylmS1aZypQ1iDLRfpIusXHl6kodkW8Hwn5I8q9Z6R/9JpZSHJ/nRJJ+T5MOTfH37qz9K8vRa6zsPvXmt9ddKKV+YdUVLt5L1hUlONlwppTwpyV/t7frmbk7NyOYcrnxPkn995GselXUQBzC6sjNzxXyPizbMUrQFAwAAYFSbtmBduDJoC5baawu2rjlYWS9YpIsMV/58+7NkHZR8Qa31HcMn1VrvKKX8/+zdeZw1Z1nn/+91Vz+BbCQEEiAECIlAWFzYCYogmICoiLiAooIO/EZGdH6DzgjOMOA4L1xARkYdFXGQRRCEQcbfz2EZlH3NEJmwKbKJIyRkYQlJyNOnrvmj7rvqrjqnn+5++j5dVd2f90z7nHO6zukip8/pOvdV1/V9lKSPS7q5mrFfLukPtyqsZPf9qJm9TtJj433uWXD/J8XMTpT0InUj1d4h6Q/X9OO+PLh+kpmd7O5f28VjnDW4/qU97pMkyd2vkHTFbu5DuDSAdfAtxoJhXMNAe8aCAQAAAACKisWVha3uXDFJm57GgjXFFcaCzdOYxZVU6HBJL1lVWEnc/Uoze7Gkn89u3ml+yl+qKa5I0l12vZfz8RNqOjCkJi/pOZLusIPCwU0H129pZudm16+LBYuWu19lZteoKXYlt5f0sV3s7x0G1z+xi/sCwOSlRfxg3UFUzZkoo1s6YOUAFgAAAABQUp3GgjWGmSumLtC+yVwJBNrP1JjFldtnl9+6g+3fpn5x5eM7/Dlpwd8knb7D+8xRPmYrSPofx/k4z41fyeslPXrFdh+T9MDs+jdod8WV81Y8HgAcGG1xJT+IonNldD6YY0vBCwAAAABQVOpckUny5bFgngXap8wViiuzFLbfZG1Oyy5/agfbf3pw/Zod/px83NQpO7wPtvfhwfULd3pHMztZ0jdt83gAMGvtWLCQjQUjoG50w86Vms4VAAAAAEBJKXNli7FgQdJm7HkIorgyZ2MWV/JOi52EmffyPHznqcBHs8vVlltht94wuP6QXdz3Qep3TV3q7pfveY8AYIL6mSubI+4JpOXMFecAFgAAAABQkvfHgg2X4HtjwehcmbUxiyu5nZw2yqmlx+Duv+XuttsvNePWcj852GbVSDBJeqOk67PrF5rZBTvc3ScOrr9uh/cDgNmo45+tKstc2fl5AViXYTGFbiIAAAAAQFGpYCKLV4eB9q7NuCxfxc+kwxMBMQ9TKa5gZtz9OkmvGdz8i9vdz8zuLOn7s5s2Jb2i4K4BwCSk8VNmXaOe1yzkj22pc4XnBAAAAABQUspc2WIsWNO50qwVVPEz6oKTMWeJ4gr24tnqj117opk9aquNzeymkl4s6YTs5j9y90+uZ/cAYETxGCoPtOdgaQKGGStkrgAAAAAASqoHY8GGgfaSFtYfCzbMB8U8bGy/CUoys3O0+r/7rQfXN8zs3C0e5lp3v7Lkfh0Pd/+Umb1A0i9kN7/GzJ4m6YXufmO60czuKulFkh6YbXuVpF/el50FgH2WDoyCZZkrC4orY6tFoD0AAAAAYI1SoH0663JQXAkuLVLnStqWzJVZoriy/94p6Q472O62kj69xfdeouXckrE8XdLdJX1XvH5E0m9LeqaZfVDSVyWdJ+leas/jliTdKOn73f3z+7ivALBv2iX7UCm4qzbTZk1xZXQ+LK7wnAAAAAAAChoE2ruq5U1S54oItJ+zsYsraYXjqWb2pW22PT2/Yma/tMOfcfr2m+B4ufvCzH5YTVfKY7NvnSXpEVvc7QpJT3D3d6x7/wBgLCnbI1iQxb929WJzxD2CtNypQus1AAAAAKCo1I1iqztXmrFgKXOFzpU5G7u4IjW/Tz9/HPf5lV1s7+p3TaAgd79W0uPM7DVqnssHbLHp1ZJeJelZ7v7F/do/ABhHDLRXaP8AbdYUV8Y3LK5wAAsAAAAAKKgdC5au9ztXgly1bUjeXG625bPpHE2huLKbwke+IrKbYslkTkt193PH3oecuz+k4GO9Rk3myh3VjAE7W9LJkr4g6bOS3pXnsADAQZYOi4IFhfiXjoX88Q2fA84OAgAAAAAUVTefMxft8vUWnSsuHSHQftbGLq7stpvkeLtP6FrZR+7+aW2dFwMAh0I3FszaP0ILMldG50udKxzAAgAAAAAKaseCpev9zhVzMlcOijGLK6/QhDpKAABYBwtBFps0a4oroxsWU+gmAgAAAAAU1Y4Fa6orviJzpQ4b0oLMlbkbrbji7j821s8GAGDd6tS5otA2ANO5Mj00rgAAAAAAivLms3+XubKiuJIC7Z3iypyF7TcBAADHy6z7U1vXHCyNbblzhYIXAAAAAKCgWCjpPn0OA+274soRYyzYnFFcAQBgDdJBVJUC7SXV9eZo+4PGMHOlpnUFAAAAAFBSOxYsXa+WNwlNcaVdL6C4MksUVwAAWIN2LFgIbaA9B0sTsPQcUFwBAAAAABQUR4KnOQnDzJUgbztX0ndqsV4wRxRXAABYJ+uKK5tkroxu2LlCoD0AAAAAoKhBoL0NluDNJYUqfo+xYHNGcQUAgDXwODe1krXFFae4Mrph5goHsAAAAACAouLnzjouBgRt9L5tktyOSOrSWIafVTEPFFcAAFiD9rAoz1whPH10y50rI+0IAAAAAOBgip/908dNs0HnirrMlXhephasF8zSxvablGdmvzTGz5Ukd3/OWD8bAHB4pEV8y8aC1TVdEmNbOhuIzhUAAAAAQEmDQPvKljtX6tDPXKFzZZ5GKa5I+o8aL0GW4goAYO26M1QsC7TnTJTxkbkCAAAAAFijQaC9tcO/0vWucyWkzBUC7WdprOLKbtkWtw8LNMfazlZsDwDAWqQ/OMGq9o/TgsyV0S2PBePQAAAAAABQUDyJr10XUNUrnQR31XFZvhsjTnFljsYsrmxVCNlKvvphg3+323a3PwsAgD1Ji/gh71yhuDK6pUB7zg4CAAAAAJQ0GAsWrFr65Flb082SxoJRXJmnsYorF+1i2/Mk/Zqk09UUSTYlvUXS+yT9naQvx+1Ok3RnSfeX9DA1/9tc0tWSniHpUyV2HACA3anagDoyV8Y3LK7QuAIAAAAAKCqOBK/jmZbBgswlT9cleai0cJOlsWAUV2ZplOKKu79lJ9uZ2f0l/aqawopL+gNJz3b3K7a531mSflnSkyXdXE1x5rvd/b172W8AAHaqO0Mlz1zhYGl8ZK4AAAAAANYonsWXPn1WFrRQnsEiuUy1QpvGwsjqeQrbbzIOM7u1pL+QdIaabpUfcfd/sV1hRZLc/Qp3f4qkH433vbmk/25mZ69znwEAWBJC1ubLWLCxLbVicwALAAAAAChpOBYshHaihRTzKyyoVmgzVxasF8zSZIsrkp4t6ZZqinzPcfc/2+0DuPur1XS+SNIt4mMCALB2dZu5UnW3MRZsAgbFFIorAAAAAICSYt5qWgGoLMiySPC2uJJNuqBzZZ4mWVwxs5tKely8eoOk5+3h4Z4r6Xo1v7ePjY8NAMBadbNUQzYWjDNRxjYcA0agPQAAAACgqKVA+/X0RS4AACAASURBVJCVViRzl6wZCxZS5gqfTWdpksUVSQ+SdDM1p5e+192/drwPFO+bslZOiY8NAMC+CBYUYqXF6VwZ3fBcIDJXAAAAAABFxc+Z6fNnCrRPgqRalTwbC0ZG6zxNtbhyTnb5CwUeL3+M2xV4PAAAjikdFpl156dwsDQBw1ZrWq8BAAAAACX59mPBzIIWCr3FedYM5meqxZWzssunFXi8m2WXzyzweAAAbCMu2htjwabEB70rBNoDAAAAAIpKnStxMaAK/bFgzffSWLAOxZX5mWpx5Zr4r0m6514eyJpThu+94rEBAFib7gyVqv1jS6D9FPjgGs8JAAAAAKAgTzkqzb/NuPDu20GSrJLLZNlnVELt52eqxZXPZJdvbWbft4fHerSkW2/x2AAArJX1OldYyB/bsHPFaw5eAQAAAAAF1c3UivRpc9VYsBRoX2UfSQm1n5+pFlfeJumran4HTdLvmNmus1LM7PaS/rO63+WvSnproX0EAGBLbXBdCIqHTnLGgo1ueCbQsNgCAAAAAMCexBMre5kreeeKu9wq1dYfF7aoWTOYm0kWV9z965JeqmY1yiXdVtK7zOyinT6GmV0s6Z2Szs4e56XufmP5PQYAoK+OR0hmVXsQRefK+JaKKzwnAAAAAICSvN+5EkK/c0WSZGEpc4WT/+ZnY+wdOIZ/J+kH1YTbu6RzJL3BzN4j6ZWS3ifpE5K+Ere/maQ7SXqApB+J/6aiiiRdHh8TAIB9Y2Zd5goL+ZND5goAAAAAoKg20L5Zlh52rjRjwYJcppCdAMiawfxMtrji7l82s0dKerOkm6sbEXZh/NpOKqyYmhD7R7r7V459FwAAykiHRMGq7jbGgo1uKXOFE4MAAAAAACWl4kq8WoUg2+w6V5pAe1vqXKG4Mj+THAuWuPulkr5D0kfU70Kxbb6krrBymaQHu/vf7N+eAwDQ/MmyrP23Jjx9AhgLBgAAAABYo5id0mauhH62iklyq+RGcWXuJl1ckSR3v0zSvSU9XdI/Sr3fRR98JRa3fbqk+7j7h/dnb4EZ+so/SR9+rfTJvxp7T4ADpetc6Q6iCLQf33LmCgUvAAAAAEBB8XNmmpxQWdXLXEljwWr1iy4UV+ZnsmPBcu5+VNJvmNnz1HSyfJuk+0i6lZqRYVIz+utySZeoCbL/a+d0VGB7n/+Q9Jqfkm57H+n8h469N8CB0QbXKRBoPymD4gqZKwAAAACAklaMBcs/ipp7zFwJcQyTyeP/w7zMoriSxGLJW+IXgCJijZxFX6Aojy8tC+kMFWcE1QQsHaxy7AoAAAAAKClOregC7atej0pzKai2EC+ZFnItaqZdzM3kx4IBWDNLbwOsMAIltWeo9MaCUVwZ23AKGM8JAAAAAKCoYeeKWe/bQZKCyeNqQRoZRufK/FBcAQ47o3MFWId0SNR0rjRq8j0mYDgWjOcEAAAAAFDQ0liwSsH7BRZZJbequRhXDRglPj8UV4DDri2usMAIlNRmrliQ2gMlWnzHNiymEGgPAAAAACgqjveq4+fPjdBfgk+B9qlzJRjFlbmiuAIcehRXgHVoiyuhav/YMoJqfEvFFQLtAQAAAAAltZ/9Y+ZKm8XaCC4pBNV0rszeKMUVM3voGD93FTO7mZnda+z9AEZD5gqwFu0rykJ2oMTrbHTD56DmOQEAAAAAFJTGgsV6ykYIsuyj57BzheLKfI3VufI/zewvzOzuI/18mdkRM/tZSX8v6XvG2g9gdGSuAGtRp4OoeCaKJDljwUY3LKXUFJYBAAAAACUtBdqHXueKySUFeTzhOaTiCpMVZmfMsWCPlPQhM3utmd1nv36omZ1iZk+T9GlJvyXpFvv1s4FJSp0rnFEPrEcInIUyIUsB9rz3AQAAAABKaosr3Vgw9Yorkocgj0vzac2ATND5Gau4co2a36Mg6dGS3mdm7zeznzSzU9fxA83sPmb2+5L+j6TnSrpN3AeTdNU6fiYwD3SuAOtQx9dWZVXb/kvmygQMDlY5MwgAAAAAUNSgc+XIirFgZkEeJ12kBfoF0y5mZ6ziyp0lvUTN71gqcNxb0oskXWFmrzezJ5nZ+cf7A8zsJDN7uJk9z8w+Jel9kp4s6dTsZ35O0mPc/Xf39j8HmDEyV4C16ALtg9S2+PI6G9tS5wrPCQAAAACgpDoWSewYgfYKcutnrtC5Mj8bY/xQd79K0k/GTpJfl/Ttih1Rkm6iJgPleyTJzC6X9DeSLpP0WUn/qKbz5XpJm5JOlHSymk6UcyRdIOmbJd1V3f++9NubfkO/Iul5kp7v7tet638nMAtkrgBrkf7gWKi6P0K8zkY3LK6QZw8AAAAAKGowFmwjO+lS6VKosrFgDUaJz88oxZXE3d8n6SFm9nBJvyTpQdm30+/VrSU9PH7tlGWX82WTL0v6PUm/6e5X736PgQOIzBVgLVKgfbDuDBWvOVCaHt77AAAAAAAF+aL5pBnXBaoQZG79bcyWA+0prszOmIH2LXd/o7s/WNJ9Jb1Y0rX5t7PLtoOvVfe5VNLPSrqdu/9bCitAjs4VYB3ysWDtWSgs5I9u2GZNNxEAAAAAoCjvz0zYsKrXCRDkTeeK9QPtKa7Mz6idK0Pu/r8k/TMze6qasWDfraZj5Va7eBiTtJD0AUl/KenP3f3DpfcVODDIXAHWIr2i8tmqTnj66JYTV3jvAwAAAAAU5HXv0/9GFSQfjAVTkIZjwVgzmJ1JFVcSd79e0p/FL5nZuZLuI+kuks6VdJakk9Ts//VqMlQ+J+lTkj4k6dL4GAC2Q+YKsBZt5ooFxoJNyqCYwkhEAAAAAEBJ9WKpuJIH2pskM1NtlaRuLBiB9vMzyeLKkLt/RtJnRt4N4GBqiyvj7gZw0Hh8bYWwwViwCVkKtOc5AQAAAACU5LVq64oplVWy/KOnNyPEZf3OlYUv9m8fUcQkMlcAjInOFaC0/GyTYJXUnoXC62x8dK4AAAAAANZoMBbsSOjWBRommbrMFSdzZa4orgCHHZkrQHF13Z1tEqoqa/HlQGlsw1pKTXEFAAAAAFCSL/qB9qE/FkwyBbOlzhXGgs0PxRXgsCNzBSiuzlp5q6wVmBFU41sOsOc5AQAAAAAUtBRoX/UD7b0pqKTOlXRCJoH280NxBTjsUucK1XGgnCy4PthGF2hPEXMC+u91PCcAAAAAgKK8Vp01qjRjwXJN54qr37lS13w+nRuKK8ChR+cKUFqtrnPFsvZfRlCNb7lvhecEAAAAAFBQXavOxoAFM9lgGd5MUkiZK/FudK7MDsUV4LAjcwUozrPMlSpsZLNVOVAa37Bzhfc+AAAAAEBBg7FgVajaAkrDZGZyq+K1BoH280NxBTjsyFwBissPiEKo2iMlOlcmwIdXeU4AAAAAAAV53UasuFtcerPeJs21fuYKJ//ND8UV4LAjcwUozuvN9vJG2FCIR1VO58roloopvPcBAAAAAEryRTYWrMlX6RVXUsEl9DtXFr4Q5oXiCnDo0bkClJaHpFvoDqI4C2UKBmPB6FwBAAAAAJSUjwWLhRTzvHMlBtrHaTJpZBhrBvNDcQU47MhcAYqrs7NNQqhkljpXeJ2NbekZ4OAVAAAAAFBSvcg+e1pcE1gxFixmrqSVOQLt54fiCnDYtZkrLDACpXheXLGN9hDK6RCbADpXAAAAAABr5K5FW0sxmVZ0rgRrT3hmLNh8UVwBDjuKK0Bxdd0dEFVVJYt/blnIH9/wOaDtGgAAAABQlNfyWDIxheXMlTQ6PHWuMBZstiiuAIcemStAaXXdvZ42wkY8T0WqOVAa3fApoOAFAAAAACjKF9mArxher+XMlXTCc/pOzdrc7FBcAQ47MleA4haLzfZyqCq1Z6UwP3UC6FwBAAAAAKyR16rb+eArxoJ5rKsMOlcorswPxRXgsDM6V4DSNmPnirnLLGSZKyzkj225U4XnBAAAAABQkNfZJ80gM2vHhDXifIs2c6XZmuLK/GyMvQOrmNmtJN07u+k97n7NWPsDHGipc4VFX6AY96ZzxSRZsHYsGCOoxrdcWuE5AQAAAAAUVC+0aIspzVgwy4or7nEsWKjiFvFuFFdmZ5LFFUmPkfQ78fJ1km4z4r4ABxydK0Bpi9i5EiQFM5kxFmw6GAsGAAAAAFgjr3uZK8FMysaCWZvD0pzw3Abac/Lf7Ey1uHJzdUW7S9z92jF3BjjQyFwBiqvrhaTYuaLuDBUW8se31LnCcwIAAAAAKMm9raWY0qjwrHNF8SRMOldmb6qZK1fHf13S58fcEeDAI3MFKK72WFzx2LnCWLAJIXMFAAAAALBGvuh3roTm31yeuUKg/XxNtbjyhezyiaPtBXAYkLkCFJfGgpk81i/pXJmK4VNAwQsAAAAAUJTXWYB9c8KleT/QPpgUqy4E2s/YVIsrl2aX7zzaXgCHQnpzZ4ERKKU3FsyUZa7wOhsfmSsAAAAAgDXKMldMltpUum97HAtG58rsTbK44u6flfReNb91F5jZnUbeJeDgsuxtgEVGoIhFLK60gfbxzy3FlfEtDwXjOQEAAAAAFFQvtGhrKSnQPl+Gj50r1mSupO9QXJmfSRZXoudll399tL0ADjrL2hJ5EwfKcALtp2qpmMJTAgAAAAAoyev2o2YXaJ8zyUwWT3g2ZyzYXE22uOLu/03SS9SsS32fmb3ALJbzAJTTK66wygiUsJkyV1KgfTsWjAOl8Q3GgvGcAAAAAABK8oXqtqQSms4V9TNXTJJCv3OFyQrzM9niSvRkSb+r5rfvqZI+aGY/bmanj7tbwEFC5wpQmreB9jFzRWSuTMXyWDAAAAAAAApJXShxuc1kzXnN2VgwT6PCjED7udsYewe2YmZvyq5+VdKpkr5R0h/H739G0hXxezvl7v7wQrsIHAx55grLjEARi16gfZa5wktscih4AQAAAACKiQWS7pNmKq4MOldMstS5EjdexBHjmI/JFlckfaf6K72ubny9JN1R0rm7eDwTK8fAMjJXgOLqLHOl+ZfOlalYfg54TgAAAAAAhcSTLdMKm8X/l0+OcY+B9qE5ETPEz6XktM7P1MeCDfngC8AevfsLH9DDbne2nnqrMymuAIX4sLhiFFemYqm0wsErAAAAAKCUuLZWW5650vybtAWXGC9u8WMpY8HmZ8qdK1I/6QfAGhytN3XFxoZutblgZhFQSDsWLL6k6FyZkkGgPe97AAAAAIBSUnElXm0yV6w3Fsw95rNav3OlFsWVuZlyceXI2DsAHAbpjbw20bkCFJIW7NvzUuLrjOLK+HgGAAAAAABr48OxYCFO5M+KKwpNPusgc4XOlfmZbHHFnQQfYD9YbEH07P8C2JvUuZKEeBBV8xobnw+v8pwAAAAAAApZEWgfTJL30zmaSWGxcyWeoElxZX7mlrkCoLAQ0hn1RucKUEgdiyvdH9l4iRFUEzAYC0bbNQAAAACglEHmyjDMXmo6V0JQ17lCoP1sUVwBDrl2LJjEwi9QiNf9BfuUY0eXxPiWngOeEgAAAABAKfUwc6UJtPd8Gd5jpP0wc4WTnmeH4gpwyPXGglFcAYpYxAOi0Abak7kyVTwnAAAAAIBihoH2FpYD7RVPwgxNYgeZK/NFcQU45EIeaM8iI1CExwOidOgUYusKr7DxLT8HPCsAAAAAgELa4kpado+ZK71l+BRoT+fK3E020H4VM7uHpEdJepCk8yWdIelUSXL3m6zY/tT0fUk3uvuV+7SrwGykFsSmc4U3caCE2pvMlfa8FKNzZToGmSs8JQAAAACAUuJ6wCLLXBnmrngsuNgw0J5M0NmZRXHFzO4m6fmSLspvzi5vtTRysaRXx8vXmtlt3P26NewiMFvWnlFvrDIChdR1v3OFsWDTQecKAAAAAGBtlgLtQzMCzPOl7JS5EseC0bkyW5MfC2ZmPybp/WoKKzb49nYrIq+T9I/xfqdIekzxHQRmLvQC7XkTB0rweKZKYkpFTBbyxzfoXOE5AQAAAACU0hZXmvU2M5MNAu3dt+hcYV1udiZdXDGzR0v6Y0kn5TdL+rykD2u52NLjzdD7P81uelThXQRmr130JXMFKCZ1roR4ZkrIx+9hVMPngOIKAAAAAKCYejgWLCyNBZMsBtpXkuhcmbPJFlfM7NaSXqbmNy+tfLxQ0l3c/RztvFDy+vSQkh5cdCeBAyCQuQIUV6vfuSKjc2Uqlp4DxiECAAAAAEoZBNqbgkKQ5FnnSiy2hLZzJd7O59PZmXLmyjMlnRwvLyQ93t1fnX1/p79tH5B0VNIRSbc0s3Pd/TPF9hKYuZS50owF400cKKGum9dSOi8lkLkyWTwjAAAAAIBihpkrtirQPiiYJGs6V6r4yXQxGDGO6Ztk54qZVZIer2bNwyU9d1BY2TF3Pyrpb7ObLtj7HgIHR5cFYXSuAIWkVt70RzYVMalfTg8FLwAAAABAMW3nShoL1uSr+DDQ3kyhimPB4mIBn0/nZ5LFFUn3l3QzNSW9o5J+fY+P97ns8u33+FjAgdLPguBNHChhOdCezpWpYCwYAAAAAGBtYnFlYd1YsOZ8y6xzJQXaG5krczfV4sqd4r8u6RJ3//IeH+8r2eVT9/hYwIHSjgUz0bkCFJIOiFJnmJG5MhnpGTDODAIAAAAAlBYD7eveeoDJVbWbeAy0typlrlBcmaupFlfOzC5/bsutdi7/zTyhwOMBB0Za/CVzBSjHU3ElvqSs1yGGKUgHQBRXAAAAAADFtJ0raSxYzFfxPHOlGQtmoZ+5QnFlfqZaXMlXOkrs4xnZ5WsKPB5wYKSxYJIorgCFLNrOFcV/GQs2Fek5sG22AwAAAABg1waB9sFC273SbRNkkkIKtKdzZbamWlz5Ynb5NgUe7+7Z5asKPB5wYHSdKybOqwcKGRZX6FyZnBCfDKeoDAAAAAAoJWawLoaB9tkyvMsUzKTQz1zh8+n8TLW4kkaBmaR7mdmR430gM7uTpHOymy7by44BBw2ZK0B53dkm3ZkqDQ6UxtZmrrTXeU4AAAAAAIWkfM9sLJjJJO8XV5raSnNb6lxZxMIM5mOqxZV3S7pBzRrIiZIeu4fH+tns8hXu/vG97Bhw0AQxFgwozeumuJJeXWksGOXLKWje50JbVOF9DwAAAABQSMpcaQPtg2xV5opMFjYkSSGuFnDy3/xMsrji7l+X9BY1J5aapOeY2Wm7fRwzu1DSU9SsnLik/1ZyP4GDIJ1R3wTas/QLlDCck2qhOYhy40BpbMudKwAAAAAAFFLHsWBxvc1il4pnmSvuTch9CLFzhUD72ZpkcSV6TvzXJd1W0hvM7BY7vbOZfbukv1Dzv9EkLSQ9r/ROArMX39tTjRzA3qUDolRLaceC8RKbgNi54v3rAAAAAADsWQq0j1eDBQUzuefL8Nb8/5i5QnFlviZbXHH390h6tbqTS+8v6W/N7Blmdn52e8saDzazl0v6K0lnxO1c0u+4+6f3Z++B+UhjwVxG5wpQiLeB9ulPVewQW/rLhf221LlCbQUAAAAAUEpbXBmMBVsRaB9SccUprszVxtg7sI2fknQXSd+sZj3kDEn/MX7dkG9oZpdJOk/STdNN8T4m6b2S/vX+7DIwL+mMejexyggU0nauxOtdEZPX2NjSMxDa6zwnAAAAAIBCYih93QStxDh7648FU5BJChXFlbmbbOeKJLn7dZIulvQ2dcUSxcsnZpuapLvH2/Ix6qYmu+W73eNvNoCedGY9mStASc2fq/QHySz0bsf48sNaAAAAAACKWNG5EkySDzpXgrVrBZXSfViXm5tJF1ckyd2/KOlhkv6tpKvVL56s+lLc5quSniXpEe7+pf3cZ2BOzGLQdvZ/AexNXad6fjyYiiF1HCaNL3WqpDwc3vUAAAAAAMXUzSf/RVxvCzFfxfOxYJ46VzbiNul2PqHOzeSLK5Lk7rW7/6qkO0j655JeI+lyNatW+de1kt4o6WmS7ujuv0LHCnBs7Vgwic4VoJDUypv+yFr+OsMktAdAHLwCAAAAAEoZBNpbDLRv5vHHTWQy607E3Ij3WbCMPTtTz1zpiWPC/jB+ycwqSbeQdIKkK939hmPcHcAK3VgwY+UXKMR7jZTxTBXxEpuSvA0WAAAAAIAiUqEkrQdYsyJQq+o2kcnMFEKzNF+leTKc/Dc7syquDMWulCvG3g9gztqxYCY6V4BChoH2zbkAEkv54+uXvQi0BwAAAAAU1Au0l4Ji50qe/JnGgoWUuUKg/VzNYiwYgPXpjQVjkREowtviSjyYInNlQvqZK7zvAQAAAACKWRoL1owA82wsWB0LLqFqTsTcSIH2FFdmh+IKcMh1Y8FE5wpQSB1bebvOFTJXpiI9BxwAAQAAAACKa4srzYqAWYhrb/mn0JS5koordK7M1WTXFszs1Wb2JDM7d+x9AQ6ydiyYRLAzUMygc6X9c8trbCqM1BUAAAAAQGl1HAuWZbBaaEaBJe4WO1eaxI706bRm3sXsTDlz5Qcl/YAkmdmnJL1J0psl/ZW7f2XMHQMOknYsmJm8XmQTIAEcr+HZJulslJoX2OhSxgqZKwAAAACA4tpA+0YKtPesx8EHI8RD/FhKoP38TLZzJWOSzpf005JeK+lKM3u3mT3bzL7VupRgAMfB8kAtKuRAEW3mSjwuMjEWbCraQPv24HW0XQEAAAAAHDTxQ2bbuWKVgllbUGm+189cCfGT6sIXwrxMuXNF0tLMDlOzz/ePX8+U9FUze6uarpY3u/vf7fdOAnOWOlekbkEYwN54m7mSDqbmcC7D4ZKfMwQAAAAAQBGxQFJbWg9IgfZ5f0CQmRTCRrwW78rZf7Mz5eLKmZK+U9LF8d/brdjGJN1M0vfGL5nZ5xQLLZLe4u5X7cveAjOVMlckqa5r0QoG7F3t+TkBXatvzUL+6PrPDGPBAAAAAAAFtYH2DbOwonOlKbhUbedKvJ2TnmdnssWVWBR5VfySmV0g6aL49RBJpwzukn5Dby/pp+KXm9nfqMtreae7H137zgMz0hsL5psj7glwcKQRe+kAyYyxYFPFcwIAAAAAKGZQXAlx3a2XudIG2jfFFWtHiVFcmZvJFleG3P3jkj4u6bfNbEPShWq6Wi6SdB+tHiFmku4l6Z6SflHSdZJO3cfdBiavNxaMZUagiO5sk/5YMF5h4+sC7YeHDQAAAAAA7FHdjAVbxEkxqXNFnq+/Vc3CdYwST1Nk6priytzMcgi8u2+6+zvc/Znu/gBJt5T0Q5JeKOkz2rrQctJ+7yswdXnnSl0TnAWU0C3gNyxU8XZMBaUVAAAAAEBxg86Vyqomc6WX/GnNmP64VpA+n9K5Mj+zLK4MufuX3P217v7T7n6+pLtKenn6tlg7AbaUZ64QnAUUUm/RuWJbbI9905514cNbAAAAAADYoxRoH68Ga05rds8zV5pAe6XQ+/ixlHW5+ZnNWLDtmNm56saEPVTS6WPuDzAXvbFgTucKUEI9GD0VYqsv56CMr2tpNUkujl0BAAAAAMW0+SndyZZNoH2/cyXEwsqmB4X4SZVA+/mZbXHFzE5VU0RJBZXz82+rWT/JzxG+VtJb92v/gLkI2Zs7b+JAGelsk1RcsbaIyUr+6Kw/so3nBAAAAABQzDDQ3poulXoQaN+NAutW5hac9Dw7symuWLMydT81xZSL4+Uq32RwF5d0iaQ3xa/3uPvmPuwqMC/ZK6fmTRwoIhUq28yVWFyhfDm+PIwtvw4AAAAAwJ7VaSxY6lyJ+SoKMne5mdyrNBFMCwXGgs3YpIsrZnaemq6UiyV9h6TT8m+vuMtnJb1ZTTHlf7r7l9a+k8DM5Z0rzMcBSul3rlQE2k9OOxaMZwUAAAAAUEo82XIRV667cfymIGmh2K0SqytN50rqduGUzLmZbHHFzP5e0h3zm1Zs9lVJf61YUHH3T+zHvgEHSZ65Utd0rgAluFLnSj9zhUD78aVSSiDQHgAAAABQ2tJYsDh4yYLO3tzUlVWlsDih3XxhQabY7VJTXJmbyRZXJJ234raFulFfb1Yz6ovVYGAPzLrVXsaCAWXUqQssnakSmiImy/jjYywYAAAAAGBt4tpae2JfPKnZZHrZP12uG4Lp1/yIQug6V1LuBZ0r8zPl4orUhdK7pL+U9HR3/8i4uwQcPObNGfWMxwHKSK+l4CnQnrFg09Ef2QYAAAAAQDErAu0lSSbdoq6luimo5IH2FhcLUn4r5iNsv8no0lrUIyX9bzP7iJn9JzP7LjM7ccwdAw6K9EbgjAUDivB0QGRpLBidK1PRPQcWr/OsAAAAAAAKWSquxM+e+Vh+2SBzJd6VLOTZmXLnykck3X3F7RfEr5+TdKOZvVvNmLA3uful+7h/wIHRVsupkAOF9LsjQgy05xU2HXM4uwQAAAAAMDMxNyWdvpwH2rebKKRzMWNxpVlDWDCuf3Ymu7bg7t8o6TaSniDp5ZK+EL9l2ddNJD1E0nMkXWJml5vZK8zsiWZ29v7vNTBPbfYAxRWgiGGh0lLmCpOoRtdlrtC5AgAAAAAoLK4HLGWuDDpXesWVuDGdK/Mz5c4Vufvlkl4Wv2Rm3yjpIkkXS3qQpBOl3tD0MyU9Nn7JzD6m2NUi6W3ufv2+7TwwI00rorPICBTig86VKpC5MjVdUXnU3QAAAAAAHCRpLFj80FmlMeGWd65Yu15QWzcWjED7+Zl0cWXI3S+TdJmk55vZCWoKLBfFr29R19GS3E3SXSX9SzUjxN7p7hft714D09eOBSNzBSginW3SjgVrA+1pXZmKLtCe6goAAAAAoJA42iuVSaqwqnOlPxbM4udSxvXPz2THgm3H3W9097e4+9Pd/d6SbiXpRyW9RNI/ps3UHyH20FF2Fpg4xoIBZQ07V8zIXJmKbixY/zoAAAAAAHu2FGi/vPzug0D7Kt5OcWV+ZltcGXL3K939T939JyU9Wk1Oi9Ssm7B2AhxDSNkDvIkDRQyLK+lgij9G42uLK055BQAAAABQ2BaZLMnvsgAAIABJREFUK8rGgi3albh+5grFlfmZ1ViwrcTw+ovj18Mk3XLcPQLmpXtD500cKMHdY9/kIHOFqWCT0QXaAwAAAABQSBy5nwbvdydb9gPt284Vq7KJMnxCnZtZFlfM7CRJD1ZXULkg/3b8dzj5Q5KuWv/eAfPDWDCgLI+FynToFKrmzy2vsPF5nBhKnQsAAAAAUFwskKSF6RRob2btjbVCuxjnCgopc4VVg9mZTXHFzO6tJrj+YkkPlHQkfSvbLI0ASzkrN0p6t6Q3S3qTpA/u1/4Cc5KaEeuaN3GghLZzZSnQHmNL3UME2gMAAAAAihsG2q8orjSZK4rb9ceCuXuzLWZhssUVMztHTSHlIjWjvm6Rfzv+mxdT0u0fVVdMeZu7X7cvOwzMWNe5sjjmdgB2pstcaQ6iqkDmyvQwFgwAAAAAUNgWmSu9sWBubQHFzdriSrOdM2thRiZbXJH0D1oe7TVcAzFJV0h6i5piypvd/Z/2Z/eAgyO9vTvLjEARS4H2beaKcRbKyNoD3La4wvseAAAAAKCQWFyp42fNdLLl1oH2VVZ2abpXUkEG0zfl4kouH/V1g6R3KnanuPuHxtwx4CBIC8A1mStAEcMQOotjwSTOQpkKngEAAAAAQHEx0H7YuZIXV7wXaB9k2RoCa3PzMvXiiqn5XbxM3aivd7j7DaPuFXDAEGgPlNV2rsSDqKrq/tx6XUsVZ6GMpTtkpXMFAAAAAFBY6lyJi20hz1yJaoW21uIKqrKPpRRX5mXKxZWXqRv1dcXYOwMcZO14HN7AgSJS50o7Fqw3W3WhatJ/fg+2dt4oo9kAAAAAAKW1Y8Ea7ViwfF1A1hZXaqt6kxUorszLZFd33P0JY+8DcFhY7BGrnTO4gRKWMld6nSuLUfYJfYxmAwAAAAAU1wbaN+sCG2lM+FLmSgq0D73MFaYrzAtzSQBkY8FY9AVK6MaCpUD77s8tr7NxtZ0r7XUOXAEAAAAAhbTFlUaXuZKtC8gUUueKgkJ2svOCNYNZobgCIBsLxiIjUMKwc6XKAu1p8R1X99yEeB0AAAAAgEIGY8FC27EyzFxJnStVv3OFtblZmexYsO2Y2UmSzpR0hpq1kWskfdHdrxt1x4AZSgvALPoCZSxlrvTGgm2Osk+I4gEsY8EAAAAAAMXFUeDpxL4qNCdbZo0rqoedK/ndWZublVkVV8zsAZKeKOnbJF0gLa2MuJl9XNI7Jb3E3d+zv3sIzFN6IdXiDRwowQfDpzZCP9Ae42meG2MsGAAAAACgvNS5Ej90Vm3nyjDQPt5uRqD9jM2iuGJmd5X0IkkPSDdttamku0m6q6Qnm9l7JT3Z3T+6/r0E5qsbC8YbOFBGs2CfZqtaINB+KrqyF5NRAQAAAACFDQLt284V648Fay9bJVNzCqDLKa7MzORXFszsRyR9QE1hpTvRtPvSFreZpAslfcDMHr8/ewvMU2pFZK4jUEY96FxJB1MSnSvTEYvKI+8FAAAAAOAA8TQWrFG1J11my/BZocXj8nz6LsWVeZl054qZfZekl0qq1BVO0m/f1yR9QtKX4/XTJH2DpFPi9fQ7fKKkF5vZNe7+l/ux38D8pMwVFn2BEtrQdFuVucLrbEzp4CD0ztcAAAAAAKCAeOJyW1xpO1ek2k3BXK7uBEy3+H2ZmtUEPqPOyWSLK2Z2uqQ/UVdYMUnXSXqhmoLLh3xwmr01q1jfJOknJP0/kk6O992Q9HIzO9/dr9m3/xHATLRjwXgDBwrpB9pvZGPBKGKOq+0pMjpXAAAAAACFDQLtQ/zsaYpB9vJ+50rqbInrBwvWDGZlymPBniHpdHWFlQ9Iuoe7P83d/2ZYWJEkb3zI3X9e0j0kvV9dp8tpkp6+P7sOzEt6IyBzBSgjvZLSwVHIxoItFrzOpsDoXAEAAAAAlDbMXLEuc8Xbk5u7JfnUucJYsHmacnHlJ9SteHxY0kPd/TM7vbO7f1bSw+J9U4HmCYX3ETgg0lgwFhmBIjx1rsTZqRZk8bZFvTnabiEPZqNzBQAAAABQWFtcaWxUaV1Aukan6qhXutZO6jYfdK6QhzwvkxwLZmbfIulW8apLeoq7f223j+PuXzOzp0h6R7zpTDO7p7tfWmhXgQMhBdpTHQfKaEfsxdeWVU2ZZSFpQebKqLriSuhdBwAAAABgz1KgvaXOla548sQb/41uZtfp2urkbnM6V2ZtksUVSXeL/7qkT7n7u473gdz9XWb2SUnnZ49NcQXIEOwMlNUG2isF03UzKimujCwVvLIZtwAAAAAAFDHoXOnGgkkf9XMll06sts5cobgyL1MdC3ZmdvkjBR4vf4xbFng84EDhDRwoKx1Epa6wYF3CB4H209CNBaOoDAAAAAAoZJC5EuLCQH6CX8jO9Uv5K4G1uVmaanHlptnl6ws8Xv4YN91yK+CQSm/wvIEDZXRjwdJsVVOINzmZK6PqSil0rgAAAAAACqsHmStp7Ff2ETQvtLSdK/EOtVibm5OpjgW7Mrt8ToHHu+0Wj33gmdnNJd1d0p0knaGmuPQlSV+U9L/c/ZNr+Jl3lPQtks6WdIqkz0v6rKR3u/vR0j8Pe9dWWQnNAopoz1CJry4zyeSSTJs1r7MxdV1FBNoDAAAAAApLnSvW/LsRmuV36xVXsu2tGycuEWg/N1Mtrvyf+K9Jup+ZneHuVx/PA8Xiwv1XPPaozOw8SfeVdJ/4770knZpt8ll3P/c4HveIpIdK+l5JD1FTWDnW9v8k6Y8k/Rd3/8Juf97gsX5Q0tMkXbjFJleb2ask/Xt3P1RFrqlrx4JRHQeKGB4KNcWVRk3nyiRYW1bmwBUAAAAAUEgsrtSxFeWEjVhcyaYn5LWVYaD9glHiszLVsWDvlHRUzYrHhqR/v4fHeqakI/HyZnzsUZjZQ8zsjWZ2laRPSvpTSb8g6cHqF1aO9/HvL+lySW+Q9DPaprASna3mv9HHzOzHjvPnnmJmr5T0Z9q6sCI1nTNPkfRhM3v48fwsrAeZK0BZbedKNhaMQPtpSKWULnMFAAAAAIBCYnEkrQsciZ0r+ViwELYOtKdzZV4m2bni7tea2dskfWe86alm9lF3f+FuHsfMniTp59StnbzN3a8tuKu79S2SLl7j458p6eYrbr9R0mWSviDpy5JuoaZj5hbZNqdLepmZneXuz9/pDzSzStKrJD1y8K0vSro0/rzzJd1TXWH2VpJeb2bf6e6jFbvQacfj8AYOlBFfS6k7wqQsc4Xiypi6d7mpnl8CAAAAAJgtj3NhUudKFc/5t511rnDi87xMeWXhP8R/Xc1+/p6Z/UnM8zgmM7uDmb1M0h+o+X1Nv7P/Yet7jerrajpZSrpW0n9VU6A63d3v4+7f4+6Pd/dHqCnEPEbSPwzu95tmdtEufs6vqV9YOSrpZyWd4+4Pd/cfdvd7S7qHpPdk291E0p+b2W129z8L69DNdeQNHCihbgPtm1cXnSvTk7qKAAAAAAAoxmvlw8A3qhWdK9ZrY5GUjRJnZP+sTLJzRZLc/Z1m9lJJPyHFFGDpcZIea2bvlfRuSX+npjPCJZ0m6c6SHqhmNFUqqnj8evlEuiSOSvqIpEskfSD+e5mkb5X01wUe/wpJvyHp9939a1tt5E2LwuvM7O2S3iHprtm3/7OZ3c23aWOIuTH/cnDzD7n761f8vI+a2cMkvUXd6LBbSHqWpJ/e5n8T1qzLXKFzBSgpHTDlmSsUV8a1PBaM9z0AAAAAQCH1QptZ8eQmoelc6WXYZ1fazpW4+k3nyrxMtrgSPVnS7SR9h7r1kKBmcf5Y2R55UcUkvVXSk9a2lzv3EjVFjxuG37D8VXX83ifpvGMVVYbc/Soz+xFJH1TXyXSBmrFhH9jm7s9Sl2cjSX+8qrCS/azrzeyJaopJJ8Sb/5mZ/Ya7f2qn+4yy3v/pq3X1145KJ9C5ApSSguvS26plnSte8zobk8cnwmLnCqUVAAAAAEAx7trMlnmPtJ0rvfJKdrmfuUJxZV4mPRPD3Y9KeoSk34o3paKJsuv5V3vX7LYXSHpEfKxRufs1qworBR//i7sprGT3+5CkYVfPdxzrPmZ2oqQfHNz86zv4WX8n6c+zmzYk/egOdhNr8pXrj+roZvPGTeYKUEh8KeUHTylzZeF0roype5crclIDAAAAAAAdX2gz+7yZiiu9SWC92gqZK3M26eKK1BRY3P1pku4r6ZVqxmoNiylJun0zbntfd/9X7n7jfu3vjF06uH72Nts/XNJJ2fX3uPvHd/izXjy4/pgd3g9r0Ix2TNVxiitACa5+50puUW8u3Yb9lwpfvOsBAAAAAIrxWou4au1u2gj9zhRpOBYsfj9+OKW4Mi9THwvWcvcPSnq8mT1J0v3UjK06S9LN1awMX60mb+QSSe939+vH2teZGq72nbByq84jBtffuouf9Y7489Lv3z3N7FbufvkuHgOF5CPpyB4AymhLK1loehX/5UBpXF3myuTPLwEAAAAAzI3XXeeKV6pCl8Wa9EaEGZ0rczab4koSiyZvi18o5xsG1z+/zfb3GFx/z05/kLt/zcwuk3TP7Oa7S6K4MoLKTOYp0J43cKCEVKjMi5fpQGmTzpVRudKBLYH2AAAAAIDC6kWXueKhLaT06in59oOxYIzsnxdO24TM7GaSLhrc/P5t7nbXwfW/3+WP/eTg+t12eX8U0rzJx0VG3sCBIrpXUvdnNmWu1IvRI8AOtbZzxTgEAgAAAAAU5rU220pKV1zJu1V6U2TSWLD4aZUTn+eFlQVI0j9XPz/ly5L+equNzewMSWcMbv6HXf7M4fZ32uX9UUgeouW0HgKFNAdF+ViwdGlBcWUS0rxbSsoAAAAAgGKysWDuVbvu1utcyVtX4lgwMlfmaVJjwczsmyVdrKaL4Zbx5islfUzSm919GLqOPTKzcyU9c3DzC9z9xmPc7fTB9evc/Wu7/NFXDK6ftsv7r2RmZ0k6c5d3O7/Ez54rM2sXGXkDB8pIr6Q8sC51rjAWbFy9zhWnuAIAAAAAKCgLtM8zV/qdK9n2gcyVOZtEccXM7iXpP0n6tmNs9qtm9i5JT3P3S/Znzw42MztB0qsknZrd/BlJv7HNXU8ZXL/+OH788D6nrtxq9/6FpGcVeqxDIZja1UWyB4BSYuZK6DpX2iImxZVReXvWUFNcaU8PAgAAAABgr/JAe4XeCLCkH2gf4pYNiivzMvpYMDP7PknvUFNYseyr3ST7+jZJbzezR+/3fh5QL5J0v+z6QtITdtCFMiyu3HAcP3tYXBk+JvZJCGSuAKWlV9LKsWAUV0bVPjeMBQMAAAAAlOZ1FmhftTf3Olfy7VPmSjrxmbW5WRm1uGJmF0h6paQT1fxeubKJHep+1zz7uqmkV5jZMFAdu2BmvyLpxwc3P8Pd334cD3c8r3reKSai6U6MZ9TztABF1O2R0nKgPcWVaSDQHgAAAABQXL3oBdonebNKv3MljQVrFg0Wvlj3HqKgsceC/b6aYkleUDkq6RJJn4vXz5F0b0knqF9g+QNJ377P+3sgmNn/K+nfDW5+vrs/d4cPce3g+onHsRvD+wwf83j9F0l/tsv7nC/p9YV+/uyYWTcWjNZDoAxPgfZZ5kosYi5qAu3HNOwqoqQMAAAAACjGa7WnVGadK/1ulezyMHNFrM3NyWjFFTO7h5riiKvrWvlNSc9x92sG254u6RmSfiG7+VvN7Jvc/X/v0y4fCGb2ZEnPH9z8e+7+87t4mMkWV9z9CklX7OY+q2YfHiYhC7QncwUoo831WNG5QubKuLqzOSiuAAAAAAAK87rtXLEtxoLllz0VV+JJmowFm5cxZ2L8QPw3FVZ+zt3/9bCwIknu/iV3/0VJP5NtL0mP2Zc9PSDM7MfVdAvl1YQXq/nvuhtfHlw/ycxO3uVjnDW4/qVd3h+FVNZN4Kt5AweKSIXKfPSUtZ0rtPiOqS2utM8N73sAAAAAgEJ8oe5T/+qxYL2w8TgWLN3GWLB5GbO4ct/4r0t6r7v/7nZ3cPffl/Qudb9v9zvG5siY2ePUFFLy5/xPJD3Jd1kSdferJA2LYLff5S7dYXD9E7u8PwrJ39zJXAHKaBfwQ3aWSvyXzJVxeXzTYywYAAAAAKA4965zRdlYsC06VxSaz6YVnSuzNGZxJQ+kf8ku7vfS7PIFhfblQDOzH5D0Mil7RTe5JE/w4w/Z+Njg+jfs8v7nbfN42CfBrJthxBs4UESb65Gdj2JO58qUEGgPAAAAACguz1zR6syVXkKBDTJXyEOelTFXFk7PLn9wF/dL29rgMbCCmT1K0ivVz9f5c0k/6r6nPrMPD65fuIt9OlnSN23zeNgnTYE8jgXjHG6giGOOBXM6V8bidXeQGshcAQAAAACUVi+yzpUsh3WrzOfQLNlaymmluDIrYxZXTssuX7WL++XjqE4ttC8Hkpk9Uk2HypHs5v9f0mPd97y694bB9Yfs4r4PUr/Yc6m7X77H/cFxCr3MFd7AgRK6XI+s7Te+zjYXR0fYI0jqdeflI9sAAAAAACgiC7SX52PBuk3yQks6KTPElQTW5uZlzOJK/rN300GRb8tMjy2Y2UWSXivphOzmN0n6AXe/scCPeKOk67PrF5rZTse0PXFw/XUF9gfHKZjUNSdyDjdQQjsWzPLMlVTEZCzYWFx0rgAAAAAA1igLtLetAu3zJpaYuRJS54oorswJxYkDyMweLOn1km6a3fxXkh7t7l8v8TPc/TpJrxnc/Is72Lc7S/r+7KZNSa8osU84PmaWtR6yzAiUsHIsGJkro8vHghmB9gAAAACA0rLOFcsG92wdaJ8yVwi0nyOKKweMmV0o6f+TdGJ289slfa+7X7/6Xsft2ZLy+TZPjBkvW+3bTSW9WP1umj9y908W3i/sQjCTk7kCFNV1rmTzVeO/FFfG0+tcIdAeAAAAAFCa1zoaaye2q0B7xoLN0cb2m6AkMztHq/+733pwfcPMzt3iYa519ytXPPY9Jf0PSadkN/+tpJ+RdJZtFZy02g3u/oVjbeDunzKzF0j6hezm15jZ0yS9MB8/ZmZ3lfQiSQ/Mtr1K0i/vZqdQXpVlrjhv4EARsUmlt4Cf2oFrAu1Hk7/HWWy9dqOoDAAAAAAoIE5LWOjYgfa9LpbUuRI/mi4YJT4rYxdX0orGA45RSBjqFSHM7EHqF/+O/QPd377TbdfknZLusIPtbivp01t87yVazi2RpO+TdNrgtrtIumynO5d5m3YWUv90SXeX9F3x+hFJvy3pmWb2QUlflXSepHup/zzdKOn73f3zx7FvKMhMslRcGXlfgIOifS31OlcYCza6rL06pDOIeOMDAAAAAJQQT+jbXNW5kmeu5PeJxZWKsWCzNHZxRWp+n165h/u+dRfbu6bxv/nAcPeFmf2wmq6Ux2bfOkvSI7a42xWSnuDu71j3/mF7IVh7mj2th0BZ/c6VWFyhc2U0eedKiJ0rOz89AwAAAACAY0jFlbZzpSuu9DtXsvvEsWDmLslYm5uZKQwcb35zdvfl2ddu74vC3P1ad3+cpB+S9N5jbHq1pN+TdA93f8O+7By2Faw7cZvaOFBGvSrQPv7JXXCgNJo8c4VAewAAAABAUXGk1yKNCt8ic6VXaKkGnSt8Sp2VqXRx7OW3Zqf3nURhxd3PXeNjP1tNyPwo3P01ajJX7qhmDNjZkk6W9AVJn5X0rjyHBdMQ8swV3sCBosKKsWA1Y8FGk/+3t3h2EO96AAAAAIAi4smUR225cyXPWemH2+edK2SuzM2YxZV/EGsaB5K7f1pb58VgYpr39jQWjJckUELqj7AVY8FqDpRGU9fde1z+3AAAAAAAsGeeAu0bqXDSXO42C70r/c4VxoLNy2jFlXV2cADYuWBd5gqhWUAZ6ZVkIZuvGseCcaA0nrw7LzAWDAAAAABQUpyWsLmqcyXfLg+3j3mgIX44ZW1uXjhtEzjk8rFgNcuMQBGe5qvSuTIp+ViwwFgwAAAAAEBJg0D7YKsD7UOvuNL0PlRxBgZjweaF4gpwyFVZ5wpn1ANlpEOhypY7Vwi0H08++pCxYAAAAACAolJuyqpA+7ygkrWutJ0rKdCezpVZYWUBOOSa9UUC7YGSUvmkCkfa29JiPp0r48kLyOkAlnc9AAAAAEAR3h8LFrYItA/5inzqXIlFlVqckDknFFeAQ46xYEB5tTWvpZAXV+hcGZ1n/+27sWC87wEAAAAACoifOY/GdbatAu3zzpUQs1oDgfazRHEFOOSCSd5mQYy8M8ABsYivqbxzpQ205yyU0dR1XlyJh0BmW2wNAAAAAMAuDALte6PC8+JKL3OF4sqcUVwBDrlgJnPGggEl1Wm+amzvlfKxYBwojSWfXZueG973AAAAAABFpED7WD0xZWsCec5KXl2JxZUNp7gyRxRXgEPOep0rLDICJaRUlVCt6Fwhc2U0vcwVI3MFAAAAAFBQ/My5WJm50m2Wz09IY8EqAu1nieIKcMjlmSucwQ2UsTLQXnSujM2zwlbI2rMBAAAAANiz+JkzZa6E3liwLGelNxas6W4JdK7MEsUV4JDrFVeojgNFLOKBUhVOaG9LGR9kroynrvOxYCnQHgAAAACAAuK62qrMlVw+FsxCs1aQOlcWTLuYFYorwCEXTPKYuVKzzAgUkVqAq41uvmpbXKGIOZq8sJUOcnk2AAAAAABFDMeCWb4msEXnStV8Nj0hrhUcrY+uey9REMUV4JAzs3bwI+fTA3vXz/W4SXc5zlqlc2U8Xnf/7UPgEAgAAAAAUFAdx4Jtk7mSp66ksWBHUtdLvbnefURRrCwAkDljwYBSFovuQGgjC7S3diwYr7OxeFbYCgTaAwAAAABKiidbbsbiSRXyzJVus7zQkk78OxI/nd64uHHNO4mSKK4AaN/VCbQH9m6RHQgd2egyV9IYqpr5qaOp67yrKL3vAQAAAABQQDsWrLka1I0Fsy3HgqXOleY6Y8HmheIKAKV2RM6oB/ZuUXfFlY2suGKpuMLrbDQeA+3Nve1ckR3jDgAAAAAA7FQ8mbLtXLHVY8FsxVgwMlfmieIKgPZNnSVfYO/yzpWNjS5zJYixYGNLow9NkgXGggEAAAAACkpjwVLnSl5cyQoqeQRoOxaM4sosUVwBIEuLvmSuAHvWGwt2pOtcCUag/dg8HuiapIrMFQAAAABASW1xJXWu5GPBus1Wda5sOJkrc0RxBYBcaZGRZUZgr3qdK1U2FiykzBVeZ2NJXUOm/rxbAAAAAAD2rE6B9o28uLJ1oH2zVsBYsHmiuAKgfVOnuALs3SIeCG24q6qyAyk1B0y8zsbj9aK9TOcKAAAAAKCoQaB9FVaPBeuF21em2k1H4nWKK/NCcQVANhZs5B0BDoB60RwIBZeqqvszm8aCLVjOH42rGwvmRtYUAAAAAKCgQaB9nrmSd670L5sWCl3myoLiypxQXAEgMRYMKGYRD4QquaqQB9bRuTK2NJLNXArGIRAAAAAAoCDvjwXbyMaC5bPA8iHVwUx1Xlyhc2VWWFkA0LYmErMN7N1i8XVJzR/YvLhStYH2FFfGUsexYE3mCodAAAAAAICChmPBtsxcsd7tCwWdEJcKKK7MCysLAJRq5pxRD+zdom7OUalcqvIzU+JBFcWVEXn3394CmSsAAAAAgILqNBasUYWuuNLPXOnuwliweaO4AkCKZ3DTuQLs3Y1Hu86VjZBlrgQ6V8bm3mWupLOG3LbeHgAAAACAHUtjwdrOlW5NIC+o5IWWKphqmY7EtYIb6xvXv58ohuIKgO5N3Vn0BfYqnWVSuZTVVhToXBldHf/Tm1wmOlcAAAAAAAXFdbVFvLoRVo8F648IU79zhbFgs0JxBUCbPcCiL7B3qbgy7FxJs1ZrOiVG48oyVwKHQAAAAACAgnwhV/e5f8OOtN8yO/ZYsDZzhbFgs8LKAgAC7YGCjm42LbzDzpWqYizY2Oo6y1xps6YAAAAAACjA6zZvRZIqq9rLw4JKftnpXJktiisAxFsBUM4inmVi6neuWEhjwTAWV5e5kjr2XLQSAQAAAAAK8Fqbluep7CDQPjRjwTay4ooztn82WFEFwFgwoKCji6ZzJXh/jmolMldGl/2n74orAAAAAAAUUC96nStbZa7YoHNloaATsk+nm3X+KJgyiisAJMbjAMVsLpqDoKDBAVPVzFqlc2U8tcfMFZeCcQgEAAAAACjIay3yzpUtxoLl8xOCmWo3HckW5RgNNh+sLADIzuCmvALs1WbbudIfN1UFOlfGlmeuJDwbwP9l7+6DJMnv+s5/fpn10D3PM7s7O/s8q12tkXa1WvSAAElYGIF4Mhw6EJgzgWzujkBhDgfnABxhDhPnON9ZIeyz8dlxvjseDyyxIGE7EA/WgdGyPAgkWK00q12ttM/zPD3T09Pd9ZD5uz/y98uneuiqrO7Kqtb7FSGqKjurKneays7KT36/XwAAAAC7wsbqu1MB1ho1gly4MqItWOgqV5q5VmBdd14Bi49wBYD8roAr6oHZ5StX8hqhC1cY8VGjbOaKr1yx/D4AAAAAALvBxuqnIUqgMBgxZyX3wARSrEChsgCGypXlQbgCIN15cwU3MLu+G2hfrlwJGGhfu9hdCWQkmYD9HgAAAABgF+UqV2SDQqvwwv3cU/zMFSOp5c4bEK4sD8IVAJLrAUlbMGB2UTy8ciU0zFypm7VZ5YrhEAgAAAAAsJvylSs2VFgYXJ+tZgpzWZJwRZIa7vwc4cry4MwCgHSnzklfYHZ9dxBkVJq5Qluw2tlcD9u0LVhdGwMAAAAA2F/iSH13js3aoBio5FYrDLc3SVswSWq6cIWZK8uDcAVAegU3JxmB2aUzVwbagvnKFT5pdYnzlSuEKwAAAACA3WRjRempgFBBLl0p3DfF+7GLXppUriwdwhUAyfQs0RYM2A2+ciUoVa40Gkm4Es19i5AiXAEAAAAA7BUb5dqCBcXB9bnV8vfDIGsLRriyfAgCYgAvAAAgAElEQVRXAFC5AuyiOE7ik4GZK75yxdAXrC5p1ZDN2iFafh8AAAAAgN1QGGgfKsydGCgOt8+WB7m2YOnMlYhwZVkQrgBIr+Bm5gowu74baF+eudIIqFypW74tWBBwCAQAAAAA2EWFgfalypVCoJJfnq9cSW67MTNXlgVnFgBkV3DXvB3AfhC5cKXcFixgoH393ED7fFswSbIx0TIAAAAAYEZxVrliVW4LNmK6vXID7ZVUrviLNrH4CFcASG7nTbgCzM6HK6Y00L4RtiRRIVYrm+3l8ge51vJbAQAAAADMqL+lyH/XtKGCUvuv7H7xfAFtwZYX4QqAtHIlJl4BZhalM1eKf2IboWsLZoys5bNWB7+PG6hcIVwBAAAAAMyqt6205sSGCoPhbcHKDS1id9FzQ7QFWzaEKwAKJxkBzCaySbgyMHPFVa5I2ewPzJdv/0W4AgAAAADYdf0t9Uw2c8WUZqt4A5UrxrcFS5b3YipXlgVnVAEoYKA9sGtGzVxpNJrp/ThmrH0dbG4vlx9ob9n7AQAAAABm1duW/7ZvFRQrV3KrmVEzV2gLtnQIVwBIbufN6UVgdlnlSqktWJBVrkQRJb51sLmB9oW2bTFt2gAAAAAAM+pvqT9y5srwKhZJsi56aVC5snQIVwAMtC8CUF02c2Vc5QoHSnVIwxWr4jRB5k0BAAAAAGbV286FK0EpUMlWG5i54jrKpDNXuCBzaRCuAJDxlStkLMDMYjtioH2znd6PKPGtRX7WTeAGBkrMXAEAAAAA7IL+VtoWLKlcGRGulM6/Wff9tOnOI1C5sjwIVwCk5Yhcuw3MbpK2YDFXodSi0BYsZOYKAAAAAGAX9bbTgfblmSvBBAPtaQu2fAhXAMi4hJxwBZhdVrlSPFhqNrJwpR8TrtQhq1ApHcjG0eDKAAAAAABMo1S5Uq5Q8QbagolwZVkRrgCQcQk5124DsxtZudJsKnCVE3HUn/t2QVKucsXv9yQpZqA9AAAAAGBWY2auFO4HpQv+3EXPabhCK/GlQbgCID3JyOlFYHZ+rkdgin9igzBM/+hGXIVSi1i5tmCGtmAAAAAAgF3U21Lf5ya22BZsVBWLJFn3/bRpqVxZNoQrANKTjFZKr+wGUM2oypXQGIXu4xVzoFSL/OD6oFC5QlswAAAAAMCM+luK5GeuhMoXqDBzZX8iXAEgBbmZK4QrwEzSypXSn9ggkAJXOREx0L4WhYH2br8nSTH7PQAAAADArHrb6qWVK2EhRMnHKeUqlnTmivtq2uWcwdIgXAGQ7uxjI8nSHgeYRexaTBkTFpaHJqtl6fe5CqUO+cqV/NFsHLPfAwAAAADMqL+lvobPXDEjgpZkgWsLRuXK0iFcASCjXOUKk1eAmUQjKlcaQZC2BevGXIVSB5vbvwUBM1cAAAAAALuot61ogpkr5bZgtjzQnnBlaRCuAEgH2scyVK4AM8oG2hcrV5K2YAkqV+rhfzfGlmeuECoDAAAAAGZgbVK5kgYnYSFQGdsWzBTbgvUizhksC8IVAGn7ImauALOLRw20D4wC9/Hqc6BUjxEzVyz7PQAAAADALKKeZGNF7qEtVa6MahEmSbYUrtDtYnkQrgBId+qWmSvAzGLXemqgciU/c4VwpRZZhGJkctcNxez3AAAAAACz6G9Jkno+OCkPtB9RxSJlbcGavnKFtmBLg3AFgIKgIUlu6gBXcAOziNKB9lSuLBo/0N6oeNWQtdGIZwAAAAAAMIHetiRlA+1VHGhfvF98atoWzL8U5wyWBuEKgPQkcNIWjCu4gVn4KohQxcqV0Jh0ST/qz3mrIBXbf+XbgjFzBQAAAAAwE1e5EvnvmjYshij5ypURbcGa7jtrP+acwbIgXAFQClc4yQjMwrcFM0F5oL2RSYfT0T+1DsXKldxAexEqAwAAAABm4CtXwqT+ZNzMlXLlinVtxZvuqykzV5YH4QoAhW4nHstQuQLMyJ+oL89ckbI/uhGVK7UykkyQHQLZmP0eAAAAAGAGrnKln1auBIUKlUKeYspTV5LHDXexJm3BlgfhCoD0JKM1EjNXgNn4ypVwaLiSHDBR4luP/OD6/LGspXIFAAAAADALV7mStgVTWKhcGTfQPnbnD8LkxBwD7ZcI4QoA2oIBu8ifwDfDwhX38aJypSZu/2YkGRkZ9zimcgUAAAAAMIveZnJjssqVfPuvUcPtpVxbMPcdlbZgy4NwBYCMSfpBxhLhCjAjX7kSuM9VnnHXp0RchVIL6yvz3I0/nLUMtAcAAAAAzKLvZq747jA2LIQohdn2AzNXigPtaQu2PAhXAKSDnZm5AswuC1dGz1zpU7lSi3SgvTEyJheusN8DAAAAAMyil8xcidw5NpXDlQkG2jfchX+0BVsehCsA0nAlwRXcwCzScCVoDvwsbQvGgVK9rG8NlogJVwAAAAAAs/CVK2mIEoyZuVJKV9x5uYb7bkq4sjwIVwAodCWLsRGVK8CMJhpoT+VKLeL8zJXckW1MqAwAAAAAmMVA5cromSuj24K5l6It2NIgXAGQ7uCZuQLMbqKZKzaa6zYhYZWFx/nKFRvz+wAAAAAAzKBUuWJtWLior1C5MmqgfZx8Z+3bPh0WlgThCoBiWzB23sBMIuMqV8Ih4YploH2dbKFyRTK2uBwAAAAAgEp6SbjSS6/iK7YFCwptwYrScCV3Tq4f0/FiGRCuAMgNtJeYuQLMxh8KDatc8X90o4hKiTpYFduCMXMFAAAAALAr+q4tWPpNMywNrs8FLeUz8q6SpRFn302Zu7IcCFcAZG3BjKFyBZhRNtB+WLji24JxBUotRuzfLPs9AAAAAMAser4tmHtsg5FzVgYH2rvKldwFz92ouyebid1FuAIgHWhvJcIVYEbpQPtgcKB9OnOFGR+1yAbaG3fr0BYMAAAAADALV7nS9wGJDRUU2oKNHmgfu3AljK1Cd5/KleVAuAIg3cEn4QonGYFZ+NgkNM2Bn1G5UrMR+zcqVwAAAAAAM3GVK/6cgLWBwnygklu1PNBefhayjdQMknMJhCvLgXAFQHHmCicZgZmkbcHGDLSPYz5ndcjPXEluk8cxmTIAAAAAYBaucqWXtvYKCjNX8pUrQXmivet8YXLhCm3BlgPhCoCsLVg5OQcwNZefKAwGK1eytmBUrtQirVwptgWzok0bAAAAAGAGfuaKHd4WbNzMFWt8uBKrGVK5skwIVwAoNNmuwDILApiJ/wQ1wnFtwfic1SEuVa6kyyldAQAAAIB9yVqra51re/9GvU1JUpSfuTJizspA5YoLVxTTFmzZEK4AKOzsY076AjPxDb+CoDXws8D92WWgfV2KIUpWuUKbNgAAAADYj37mL35Gb//3b9cTF5/Y2zfq+8qV5Pvl4MyV0QPt/cwVY+MsXIkIV5YB4QoABT4hl2SZBQHMJHIHSY1hM1fcwRQhZj3i0kwpY9MfzH9jAAAAAAB77szlM7Ky+tSFT+3tG/WSmStRdsmlco1iSoFKqS1YbuZKK0wu1KRyZTkQrgAoJOlcwQ3Mxn+CwiFtwQhXamZHtAXj9wEAAAAA+1I3TgbDn7txbm/fyFWu9Pz3SxsWzreNG2hvfApD5crSIVwBoCAXpccM2gZmklauDB1o79qCWULMOlgfrtjiQPvYUrkCAAAAAPtRN0rClbM3zu7tG/W2ZZX7vm+DkTNXjBkx0F4xM1eWDOEKAIVBfuYKJ32BWaQFwOHomStUStTD+pkrpnAjsd8DAAAAgH2pE3UkzSFc6W8p/03f2lBB7sx7MMFAe2MjNUPClWVCuAKgULliGbQNzMR/gprD2oK5q1NiPmf1SCtXkoemuBgAAAAAsM/4kGLP24L1ttUvVKQUK1c0bqB9kA20bwXJhZq+4gaLjXAFgMJclM7MFWA22UD7IZUr1rcFI1ypQ+wrV0pTV2L2ewAAAACwL/nKlSvbV7Tt5qLsif6WCo32B2auZD8qtwXzlSuykRphQxKVK8uCcAWAwsLMFU76ArOI3EFSY1zlCifza1IcaJ9VrlC6AgAAAAD7Ub4CZM+qV6K+FPfT8wGSJBuMnLNSLlxR4NuCMXNl2RCuAFCQr1xh9gBQWX5m0dDKlXTmCp+zOqQzVxzfHozfBwAAAADsT70oCynObe5RuNLfSt4rtygwQSFQGV+54tuCRWm4Qluw5UC4AqBQuUK4AlQXxVkRcKPRHvi5MYQrdfIVKgNXCfH7AAAAAIB9ybcFk6SzG3s01L6XtBvzlSvWBoX5xpJkNDxoSRZklSstd6EmlSvLgXAFQGHAFid9geqifnZlydC2YFSu1Cpr/2Vy/zc/iwUAAAAAsF9Ya9WN59AWzFWu9P1FljZQUEpQCi3Cypf8uZkrAW3Blg7hCgAqV4BdEucOfprNwcqV0B0wMXOlHuXKlTRcYb8HAAAAAPtOOaA4e2OvKld8uLKSPLbhQHVKPlwZ+Jlr128UEa4sGcIVAIU0PbYMtAeq6ufKjcPG4MwVY5M/uxEn82thRlWoMNAeAAAAAPad8tySvQ5XIn+RpQ0LXWKk0pyVEW3BlG8LFhGuLAPCFQAKjFHgTi7amHAFqCrOHfy0hsxc8T1XqVyph2//ZUptwSzhCgAAAADsO/l5K9JetgVLZq70wuQ8gFWgsBSuBIXKFdqC7ReEKwAUBlm3R8vsAaCyfOVKY1jligtXaL9Xl+L+LQtX+H0AAAAAwH4zrC3Ynlxc59uCNbOZKwP5Sa5cpVy4kg60F+HKsiFcAaDA5GcPULkCVBXHfUlSaK3CsDHwc8PMlVqVZ654MZUrAAAAALDv+LZg7bAtI6NO1NFaZ23338hVrkSupZdsqDAYU7kyMOzehSs2N3OFtmBLgXAFgIwxMu7coo056QtUFbkDt9BKYTj4JzaQD1c4mV+H7Aqlclsw9nsAAAAAsN/4tmAHmwd18+rNkvZo7ko60N63Bw+GtP4aetetnmsLFibhSjfultfCAiJcAaDAGE4yArsgcleWBLIDV6lIuZkrfM5qUqxcSUNlfh8AAAAAsO/4gKIZNHXbwdskSec29mDuiqtc6btgxNpwsDol3xZsxEB72oItH8IVAMW2YKItGFBV5K6KCaUR4UpywBRRuVKL7F+9+LuhKxgAAAAA7D/5tmCnDp6StNeVK74tWKDyKYH8Y2OGtwULaAu2dAhXALjKlWTHTlswoLrIzVwJrBQOXIqSDbRn5ko9rPt3TytXSssBAAAAAPuHD1daYSutXBkIVy4+LXU2ZnujtHIlN3NlIEAZM9A+zCpXWu41aAu2HAhXAMgY2uMAu6HXczNXJDWCITNXXLhiqVyphR0oUTEjlgMAAAAAlp0PV5pBU7cdGhKuXDgj/es3S4/+3dneyFWuRGHDLQgGqlMKA+1HVq7QFmzZEK4AKMxcYRYEUJ0/cAusNCRbUWCSA62Yk/n1cP/sZqAtGPs9AAAAANhvhrYF2yiFK5J05dnZ3mhg5kow0Cp83MwV404gBLmZK/2oP9s2YS4IVwAoDAhXgN3Qj3aqXEmuRompXKnFqLZgDF0BAAAAgP3Ht9ZqhS3deehOSdLz15/PuhdsXnYr3pjtjfzMlcBVrthwYOaKyZ0iGKhccQPtJanpLsqkcmU5EK4ASNqC+QeEK0Bl3X5y8DO6csWHK3zO6lBux5aGyoRdAAAAALDvdKKOpCRcOX30tEIT6nr3ui5uXUxW2FpzK+7WzJVcuDJQuTKGD2UktVzQ4qtusNgIVwDQFgzYJVHkwhUNH2hP5Uq9snCFtmAAAAAAsN+lA+2DltphW3cfuVuS9Pm1zycrpJUrG7N1NChXrigYMldl57ZgktR05w2oXFkOhCsAknDF/Q2JbVTvxgBLrJebuVLuryrlZq7MdauQSmeuFG8ZaA8AAAAA+48PKFphS5J0/7H7JUnPXH0mWcGHK7JpQFLtjXy4kgQj1gYDF1yOG2gfFNqCBYVtx2IjXAGgINcWrNw2B8DkIjdwLpApXJXi+QMmKlfqMWr/RuUKAAAAAOw/+bZgUhauPHvVDbBPwxXNNnfFtQXb9I9tMFidMmagvc21BaNyZbkQrgCQybUFszGVK0BV+cqVYXzlCiFmPbIKlWSP5yv2+H0AAAAAwP6TtgUrhSufv1pqCyYlrcGq6m3JSvrNa2ckSfH2XQPdLMyYypVhbcGYubIcCFcAFCpXmLkCVNdPK1eGo3Klbsm/e7ktGPs9AAAAAFgQ5z8jPfoD0uVnZ34pH1C0w7akYrgS21javJJbeYZwpb+tx1ZX9Mz2BbWDVXXXvmLIzJXc/dLTi23BqFxZJoQrANzMlWTXTnscoLq+O/gJ7GBLMEkKXeVKRLhSC1sKV9J7zFwBAAAAgMXwyV+SnnxUeuKDM79UfqC9JN115C41g6a2+lt6ZeOVUrgyQ1uw3pb+n6NHJElfdcu3SPEBBUF55kq+LVj5Z8xcWVaEKwAKO3ja4wDV+Zkrw6MVKQjdQPtRK2CPldqC+aWEKwAAAACwGPpusPwsA+adbpyEK82wmdwGTd179F5J0rOXPyv1coHKDJUrT8Q39OerK2qYUG+/9d2SigPspeJ5goF5LIFR5C7SbPnKlYhwZRkQrgBQEOTb4zBzBagqirOB9sOE6cwV1MFnKOXfDqEyAAAAACwId9GidmHmSLktmCTdd+w+SdIzF58srVy9cuXnGx1J0rfc+pU60rxZ0uBclfzjYT+L3Gn6pqhcWSaEKwCStmDuPldwA9X5K0tGtQUzgatc4WR+Lax828Ni5YpEO0QAAAAAWAg+VJk1XInjgbZgkvTqY6+WJH1+7eni+j5cifrS//dPpBf/bLL32V7Xn4fJd8r33Pstit3X/XCKmSthYBT7cMWtGNlIUcwF0IuOcAWAm7mS3LcxJxmBqnaqXGmk4QrqkM5ccb+etGIvJuwCAAAAgIXgKzZmCVcuPyv9i4fUeeFxSVIrzMIVP9T+2fXnis/puLZgz35M+sP3S7/+A3r/J96vb/6Nb9a5G+dGvpX95C9p3fUAO3XHVyiKi987PVOYuVL+mQYqVySqV5YB4QoABUbytSsxp32Byny4MnLmig9XDCfza+H/2UdUFgEAAAAAauZnjVSdORJH0kfeJ62/rO71s5KGhytf2Dynfv55fubKxoXk7a++oEc/9yG9eP1F/cqZXxn5Xpt/9m8VubTkSPuoYtcRJiwPXVEWqoxrC3YgbKXn6DZ61efAYD4IVwDIFNqCEa4AVfV3mrniwhUKe+tRnq2SzZpivwcAAAAAC8F9r1a/U+35f/yvpRf/RJLUc3OF8+HKHYfv0Eq4oq6N9GKzkT3PtwXbviZJ+mKzqc1oW5L04c9/WJ0o2Z5zN87pk+c/maz7uY9q/frLyXsELa00VtJwpRygSKMvxMy3BQus1ZH2EUnS1e2r0/yXowaEKwCUD9M5yQhUt+NAe9qC1SprC2b8AndLJREAAAAALIRZKlcuPJXMS3E67rtfPlwJTJAOtf9MK1teDlc+3c5+drVzVb/73O/q0tYlffeHv03f/9vfr+c+/s+kx/+V1sPk9LoPRHy3/WBI5YoPXMo/C3JtwWQjHWsfkyRd616b/L8dtSBcAVCcuUK4AlQWuatizIi2U2HQlES4UjdTuqUdIgAAAAAsiFkG2j/2z6WoI93/9dItX6auD1dyA+0l6S23vUWS9PsHViV3EWTaFsyFK0+4cOVw44Ak6YOf+6D+0WP/SFeiLUnSC49/QHrxT7QeJt/zj7SScCVKK1cGN+9guyFjpNVmWFhujFHsv6HGkY62jkqSrnUIVxYd4QqAJFxxO/Fy2xwAk4siX7ky/M9r4A66mLlSk/Sf3bj/6ytY+H0AAAAAwELwbcGiCm3Brr6Q3D7yvdLh29JwpR22C6t9/T1fL0n6+IFVbR+9I1lYCleeXFmRJP299t1qmIb+6uJf6Y9e+aP0Na4dv0uStH7/10qSDrcOS5Ksn7kypC3Yv/ieR/SB73q9Thwshj2BydqCyUY62iZcWRaEKwAU5PYEsWUaBFBVWrkyoi1Yg8qVWln3L1/+7VjCFQAAAABYDLO0Bdu8lNwevFk6cntWuRIWw4wHb3pQpxRqKwj0+LFbkoVpW7Cr2jJGz7SS7+9/47lP6Wvvekf63CNR8r3/6lv/B+lHz2j9oXcny13lSuy+Xpoh4crX/rWTevcb7hxYHgb5tmAx4coSIVwB4CpXEjbmtC9QVWTHz1wJQjdzZchBFvZeFqGY3P+VYir2AAAAAGAxxD5cqdAW7MbF5PbAza5yJXnYdBc6esYYvbOftOb6z/5HuZkrZ1otRZJuiWLdunFRf+fmN6kRNPQtx1+nb7qxKUm62r0mHbld6/3keX7mSuTSlXCKs+4mX7kSZ+HK1Q4D7Rcd4QoAN3OFtmDArKLYV64M//PacFfLUB9Wj3Sg/cAPCJUBAAAAYCFEvi3YlOFK1Je21pL7B28pVK6U24JJ0jtvbEuS/iC6qp5UaAvmh9k/1DgqI+l1mxt6/G89rn96+HU6FiXfH31VyXp3XVJWuWLTmSuTX1QZGKPIDmkLxkD7hUe4AqAwZCuOOe0LVOU/P6MqVxq+cmVuW4SCtP0XlSsAAAAAsJB8qNKfMlzZuuLuGOnAibFtwSTpkfXLuqkf6Xrc1Z+trhQqV3y48vCR08my809qtbEqc+ULOuY6vviqkvVOMVzxlSvBsIn2I4TGZG3BGGi/VAhXAMjk24JxkhGoLJu5MvzPaxi4yhW6gtViZOUK+z0AAAAAWAxV24LdcPNWVo9LQSgdvk2dUeFKd1Nhf0tft5m0+PqdgwekTr5yJal0eejWNyTLzn8mub3yrI76mSs+XHGVK36gvZ+5Ml3lihhov6QIVwAoMNkA7pj2OEBlsfWVKyPagjUYaF+nbG69Kd4y0B4AAAAAFkPaFmzKgfZ+3spBN6D+yO3q+XCl/B1987Ik6V1byXt85NBB/V7QlaK+LvU39UqzISOjB0+/M1n/whkpjqTLz6aVK6PagsXu+2U4xUWVplS5cqx9rPAeWFyEKwAKaXrMSUagssiObwsWuqtlYmPSPqyYI+MrV0ptwfhdAAAAAMBiSCtXOtM9b9NVrhy8OXn6ynH1fbiyVRoM78KVN4eH9d2v+jZZY/QTxw/qQ5/5Rb3v1ElJ0quO3qvDt75OaqxIvU3p5U9K21fTmSvlyhU/0D6uMHMlDMzwyhVmriw8whUAbqB9ct+fHAYwvXiHtmDNsJlbl/qVeRsZaBGuAAAAAMBiiKq2BUsCEx24SZLUVT/9UfvGleK6bj6LWT2hf/imH9M7bmyqGxj9z5/65zrTbulwHOt/fNM/SNqLnXxN8pwz/0GSdGw1eX1fVXK9e11SfuZKsvo0M1eStmBu/TimLdgSIVwBoCDIruTmanqgusgFJoEZ0RYs1+c1mrbEGbvAVa64Y9Z0v8fMFQAAAABYDHHFtmClypVuLpxpblworevClgMnFLYP659dvKxHtpNKmXdf39B/vGr19jvfnqxz64PJrQtXjh67V5K01d9SJ+oMDLTPKlcm3/RCW7Bc5Yp/DywuwhUAxbZgMZUrQFVZNcqIgfaNRno/iqe8CgczyyKU0lEuoTIAAAAALAYfikxduVKcueLDlcBaNTbOF9fdzFW5BIFWmwf1c2fP6/f/2n+vn750RTe5cEOSdOtDye3ac5KkwyfuU2hCSdLV7atpWzAfiMRuon04RbpSbAsW61DzUHrRJtUri41wBYALV5KdfsRJRqAy31YvHDXQPmyn9+NpDxQxM1+ZZ2xp5gqVKwAAAACwGHzFStyX4inaad9wlSsHXOWKu6CxZa3M9bPFdTeLLcTUOqiGpJs3XZCxkg9XHiw81dx0fxqknN88r56bEXO4dTjZbPf10kwxcyUwKgy0D0ygoy1agy0DwhUAMiad85zOjAAwvVjJgZ9xV7GUNRu0BVsIA8e4hCsAAAAAUDtrpfx5qWkuSvSBycEkMPHttJpW0gThiiRp/ZXkNh+unCyGK7rpvjRceX79eUlSaEIdaBxINtld1BdOFa4U24JJYu7KkiBcAVCoXImpXAEqS2eujGwLlhtoHxOuzJ+/6qlUuWKnuBoKAAAAALA3yhchThOulCpXeu612tZK6+Vwxc9cKYUr115KbvPhysGbpMO3ZY9PvErH2sckSS9ef1FSMm/FV6rYSjNXlLUFc+36j7STGS6EK4uNcAWAAsNJRmA3+M+PGTHQvpkbaN+nLdjc+ejY7+98ezBmrgAAAADAAihfhDhVuDJ85krLWmn95eK615JQRAdOJLeupVdWuXKsuH6+Ndjxe9OqkheuvyApC0IkKXJ9waZpCxYGRpHNZq5ISgOca13ClUVGuAIgqVyxxYQdwPSsfOXK8LZgYdhU6D5jcdyf23YhYQfiFbec/R4AAAAA1K8cpkwarsSRtLWW3D+YVK74tmAta5O2YP573/nPSi99QjKBdPdXJsvStmAuhMlXrkhZuHLkDql1YGjlSrop7m2mGWhfaAvmKlf8zJWrnasTvw7mj3AFQDJzxd2ncgWoLrLjZ66EYdYwLGbmyvz5gfbuob+1zFwBAAAAgPpFpYsQJw1XNq8o7VWwmlSj5Afaq7+dhS9/+m+S29f8TenY3cl9H670NpPbcrhyxxuT25OvlZRVlby4noQrfpi9lLXbn6YtWJBvC8bMlaXSqHsDANQvX6oYEa4AlfmB9sGItmBhYBRYKxmjiLZgc5fWrZhSvELlCgAAAADUb6At2IQXJW66eSurJ6QwOd2dtgXzFz9eP5u03PqrDyaPv/J92fNbh4qvVw5XvuxbpW/7Wen02yRl4cpaJwlsCpUrrnQlmLJyJfbfT2PClWVCuAJAkmQ4yQjMLB1oP6pyJTBpw7CIgfY1KLYFSyv2qFwBAAAAgPqVw5R+Z7LnpfNWbk4XpeGKn3363GPS9roUdaTbv1y66y3Z833lilcOV4JQesP3pQ99uMobY/0AACAASURBVOLlw5UorVyp2BaMypWlQrgCwEl2+lSuANX59lIjwxVjFLjz+P1yuTP2XBqtDGQphCsAAAAAULvybNJJOz7ccJUrB3Lhim8L1jyQLPjoj2Xrf+X7kh75XnuHypWSgXAlN9DeX7McThmuZG3BGGi/TJi5AkASM1eA3RBpfOVKkKtc6fZpCzZv6eB6U6xcsez3AAAAAKB+AwPtJ20Ldjm5PXhTushXrrRPPpiEKX4uyuHbpNf+V8Xn71S5UuKrSrxC5UpcYeZKoJED7alcWWxUrgCQlLUFs7QFAyrzlSsjB9oHWeVKxED7+TN+oH1x5gq7PQAAAABYAOXvydNWrhy8JV2UtgVrH5be8U+ld/yE9NRvSbc/IjVaxeeXZ66sFitTysa1BUsH2k89c6VYueIDnKudqxO/DuaPcAWApOxkI5UrQHW+rV44ri2Yu98jXJm74sSVXOUKbcEAAAAAoH4DA+2nnLmSawvWcc9tBs1kwcpR6ZG/Nfz5U1auHFsphiuHfVWMcuFK1ZkrpYH26531iV8H80dbMAAFDHYGqovTmSvDr10Igyxc6U96BQ52TVaZVzrIJVQGAAAAgPqVZ5NO3BbMV65k4UrPBTXtsL3z88vhSm6GyjC+ZZeXn7kSu6+X4VSVKxo50H472tZ2f3vi18J8Ea4AkJRrCxZzkhGoKt5poH2QH2hP5cq8pRUrxj92+z1CZQAAAACo30DlyqRtwdzMlQODM1daYWvYM4pylSdqH5GC4d/pvWbY1MFmFsgUZq5Y3y5857f1giBrC2Zd5cqh5qG0KwZzVxYX4QoASZKxri0YJxmBynaqXAlMdoK/X74iB3vODjQG88sBAAAAALUrX4TYnzBc2RycueLbgk0WruQqV3ZoCebl564Mm7kSTtsWzBbDFWNMWr1yrUu4sqgIVwAkDDNXgFn5cCUMhocrxhiF7kx+b9KDROyi4kB7U1oOAAAAAKhR5YH2buZKri1YWrkS7E244oMPqdgWzHejnm7mihSnHWWi7HVdaEPlyuIiXAEgSTJu55/NJAAwLR+umBGVK5IUuAOmKKZyZd6ykSvFg1wq9gAAAABgAVRpCxZH0uaV5P6BIeHKHleuGBkdah5Kl0ex62gxzcyVQluw7FyBfw/ClcVFuAJAUnYlNycZger856cRjg5XsrZgzFyZN5tWrsjdunuEygAAAABQv4HKlQm+N2+tKe1GcOBEurgbTxGutHMzV1aOjV4vx1euHGodUmCyU+y+LdgU2UrSFsyfps/NQvbvcbVzdfIXw1wRrgBwXPkhJxmByiI/KH1c5Yr7iFG5Mn/Z3q00c4X9HgAAAADUr/w92c1NGcu3BFs5JoXNdPFetwXzVSX5eStSbubKNJUrRmm4km8Lls5coXJlYRGuAJCUr1xh5gpQld1h5oqUtQXrE67UxuRqV6T8oHsAAAAAQG2qzFzZOJ/cHj5VWOzDlXbY3vk1GqtKL8KbNVxxp9XMlAPtfVuwOBeunFhJKnEubV2a+LUwX4QrABwqV4BZRWm4Eo5cxx9eUblSh+L+jYH2AAAAALBAymHKJG3BNi4kt4dOFhZP1RYsCLLqlSkH2ueH2UtS5CtXpgxXsrZgWbhy1+G7JEkvXH9h4tfCfBGuAJCUnWSMLZUrQFX+0xOY5sh1AusqVyLClXnLZq7QFgwAAAAAFk55oH1/grZg188lt4eKlSsd11KsGY7+fl4wZbjy5lNv1rH2MX3NHV9TWG4rzVzR0IH2dx+5W5L0wjrhyqIa3bcEwJcUX65IexyguqRyxSgcM9DeX9UQEa7Mnd+7+XAlG2hfz/YAAAAAAHLK35OnaQtWqlzpuaqXidqCSVLrkKTzE4crDxx/QH/43X840P4ril24MkW6EgZGF21SAWOuvZguv/twEq68tPGS+nFfjTEtyFEPKlcASJKMu5o+5gpuoDL3MVIYjL4yJp1vZAlX5s/t34wPV/xSKvYAAAAAoHblypWJ2oJlM1e2+lv61IVPyVo73UB7SWofTm5Xj0+4scPnqrhsRcEUbcGMMTpj75EkhRc/my4/dfCUWkFL/bivszfOTvx6mB/iri8RxpimpLdKulvSbZI2JL0i6VPW2ud2+b3ulfSIpNslHZJ0VtLzkh631k6wV0QtDDNXgFn5zqiNMWXHvi1YL9dHFfNRrlzJlrPfAwAAAIDazTLQ/tCt+sCff0Af/NwH9TPv+Bl14inbgr31R6TP/qb0qr8+xQYPiiu0BZOkz9mkSiW8+pzU2ZDahxSYQHcdvkvPXntWL6y/kM5gweIgXKmJMeZVkt4s6U3u9g2SDudWed5ae3oX3ucWST8t6bslnRixzuOSfsZa++szvtd3SvpRSV81YpUrxpgPSvqfrLWXZnkv7L70anqu4AYq858eM0nlCgPta1AOUWiHCAAAAAALo1K4kg20f+XCH0iSPnHuE9O3BXvo3cn/ZuTDlXDKdOWaOapz9rhOmTXpwmelu75CUjJ35dlrz+r59ef11jveOvP2YXfRFmyOjDHvMMb8jjHmsqRnJf17Sf9A0l9XMVjZrff7JklPSvohjQhWnK+W9Kgx5peNMQcrvM8hY8yvSvo1jQ5W5LbhhyQ9aYx517Tvg71G5Qowq9gdO427MiaduUK4Mnd+/5bNXPE/qGd7AAAAAAA5A23BJghXcgPt/RD7p648ld6fuC3YLvEzV4a1DBsnCIyeipPqFZ37dLr8niNJu7AXrjPUfhERrszXI5K+QeODjl1hjHmHpI9Iyk9zspL+QkkI8nuSytUj/42kXzXGTPz/F8aYUNIHJX1P6UcXJf2ue69Pqnjq6lZJv2mMeduk74O9l82B4CwjUJVv9BWMDVeSz1pEW7D6pAe5VK4AAAAAwMLwlSu+2mSncKXfkbavJvcPnUwDlc9d+VwWroTzDVf8zJVw2nDFSGdcazCdfzJd7luBvbBOuLKICFcWQ0dJJcuuMMbcKek3JOX3Hn8k6UFr7Zuste+x1n6DpDsl/YikfCz8NyX9kyne7n+V9M25xz1JPyzpTmvtu9x7vVHSQ5L+OLdeW9JHjDG3TfFe2EOGk4zAzNLKlXFtwawPMglX5i2buVK8pWIPAAAAABaA7/DQOpDc7jTQ3s9bCVvS6vF0iP1mf1NXtq8kLzXvcCWuNnMlMEZn4qRKReeycIXKlcVGuDJ/PUl/Ken/kvSDkt6opCXYf7uL7/HTko7nHj8u6Z3W2jP5lay1HWvtv5T0ntLzf9QYc89Ob+LmxvxIafF3WWt/1lpbiJattZ+V9HUqBiw3Sfqpnd4H80G4Aswuq1wZffBm3J9e2oLVwLj9mym1BWO/BwAAAAD182FK61By2++MXz+dt3KrZIy2o+2BVeZfueLClSnTldAYfTatXPmMFCdTXX248vL1l9XnPMLCIVyZr1+QdMRa++XW2v/OWvt/Wms/aa3dIYadnDHm1ZK+P7eoK+m91trBvYtjrf2I2zavrclCj5+SlL88++ettb855n22JL3XbZP3Ay6kQe38QHtOMgJV+YH242eu0BasLr5AxYi2YAAAAACwcHwbsOaB4uNR0nkryVSE7pD1Jx5ov0si9/UymLItmDHSF+1tisO21LshrX1RknTywEm1w7b6tq9XNl7Z7c3FjAhX5shauzYu5Ngl3yspzD3+DWvtMxM8738rPX6PMWZl1MrGmFVJ37nDawyw1j6tZBaM11CyzaiZH7RFexygur47dmqMrVyhLVhd7EBjsOwnAAAAAICa+YH207YFO3RKktI5K3nj2nbvBX9eLZzyrHsQGEUK1T3xQLLAzV0JTJDOXXl+/fld207sDsKV/ec7So9/bpInuZZhf5pbdFDSN4x5yrskHcg9/mNr7VMTbeHgNr17wudhD9EWDJidr1wJJ6lcIVypjd/fpfs9dnsAAAAAUL/Iz1xxbcGGhCUFaVuwpHKlM6SN2NwrV9zMFTNl5Uro1u+ceG2y4Pxn0p/dfThpF8bclcVDuLKPGGNOSXp9blFfySD7Sf1B6fE3jVn3G3d47jgfV7Jt3pcbY26d4vnYE/5qes4yAlXENpZ1B0PNMZUrtAWrjw+P00Nc45fHQ9cHAAAAAMxRWrlyMLndsXLFtQU7PLpyZf4zV5LbcOq2YMn6Wze9JlkwbKj9OuHKoiFc2V8eKj1+wlp7Y4rnP156/OAU7/XHQ9cawm3Tp6d4L8yBH7JN5QpQTX5AfdjYeaA9bcFq5AfaWyr2AAAAAGBh+DBl0pkrucoVa626cbL+iZUTkqSGaSgw8z39Hbt0ZdqZK4FbfeuEC1fOZ6dO7z6SVK48f522YIuGcGV/eW3p8eenfP6zO7xe3mvm+F6Yg6w9DicZgSqifnbQN65yxdAWrDZZ5Yop/wAAAAAAUDd/0WJr2oH2p9JgRZJef0vS2GfeVStS1hEmmHbmiq9cOeZOuV59Qepcl0TlyiIjXNlf7i89nvYTV44/bzLGHC+vZIw5IenEjO9VXv/VUz4fuywdss1ZRqCSOHfQN1nlCq2o6jIwc4X9HgAAAADUz3+v9jNX+pNWrtyq7f52uviRk48kL1NDuBLZapUroStd6bWPSqvutOvac5KymSuvbLwytPUZ6kO4sr8cKz2+MM2TrbUbkrZLi49O8D6bU7Yfkwa3bdj7YI58b0cqV4BqojjrBdtsjh6Y5w+waAtWI3+Qm85cYb8HAAAAALWLyjNXxoQr1kob55P7h06q69YNTajX3fw6SdJqY3WvtnTsZklZWDIp/zU1tlY6cW/y4MoXJUknD5zUiZUTimykM5fP7NamYhc06t4A7KpDpcdbFV5jS9JK7vHhPXyfvGHvMzVjzElJt0z5tPt2472XH1dwA7OIcgd9zTGVK4G7riGicmXuym3BpjvUBQAAAADsKd8WLJ25Mmag/daa5C9yPHRSna2LkpJqlTecfIP+9mv+th66uTwyeu9F6cyV6Z6XXYhppeP3Si//hbSWhCvGGL3u5tfpv7z0X/TpS59OK3NQP8KV/aUcepSrUCaxJSnfCqz8mrv5PuNes6r3SfqpXXqtLylp5QrhClBJPlxpjJ25wkD7uqXhiqViDwAAAAAWRlq54k4TjmuB5atWVo9LjXbaLqsdthUGoX78K358Dzd0tHjGtmCx1UDliqRCuILFQVuw/a3K2aJFfg72kD/hy0lGoBrfFiy0Vo1Gc+R6abgiKlfmbSA8pi0YAAAAACwOX4kyyUD73DB7SWm4UseclTx/Wm3acCVtCxa7yhUprVyRlLY6+/RFwpVFQriyv2yUHldpLFh+Tvk15/k+mKNsoD2AKvxA+9BKYTj6z2vAQPva+Uo9kzYGI1wBAAAAgNr5yhXfFszGUjyi60M6zP6kJKUzV1bCleHrz4lvCzbtzBUfxkRDZq5I0kO3JC3OXtp4SWvba7uwpdgNtAXbXwhXpP9D0q9N+Zz7JP3mLr3/0qItGDCbvjsIDGTHHkQZQ7hSl3TvVrqCiL0eAAAAACyAclswKaleCYacekyH2d8qaXEqV3xbsCkLVxT683JWWeXKtZeSf5OwqSOtIzp95LSeW39On770aX3NnV+zi1uNqghX9pdrpcdTDXY3xhzSYOhxdYL3OWCMOWitvTHF252c4H2mZq29IOnCNM8x0+7t9inDQHtgJmnlisZfoUK4UqfyQHtmrgAAAADAwkjbgh3MlvU7UnNMuHK4GK60w/ZebuGOqs5cSduCWSsdPiU1VqX+lnT1Bemm+yQlrcEIVxYLbcH2l2dKj++Z8vnl9a9YawfqzKy1lyWVl98943uVtx1z5+dAcJIRqKLvDgIDm11xMkzIzJXa+AwlawfmlrPfAwAAAID6Rf3k1rcFk7JqlrLrZ5PbQ4sWriS3VduCxVZJ0nL8dPKD/NyVW9zcFYbaLwzClf3lTOnx/VM+/1Wlx5+d43uVXw9zlrUFA1BFr5dVrjSC0X9ejUJJhCt1sO7YNgtX0on2AAAAAIC6+cqVsCH59l6jhtpffSG5PZZc770o4YqfuTJltpKGMbFPZ4bMXXn45oclSU9eepIODAuCcGV/ebL0+GFjzIGhaw731h1eb9zPvmrSNzHGHJT08BTvhTnwrYrEzhmoxA/PC6w0JluhLVitfOmKbwvmGPZ7AAAAAFA7H6QEzVy40hm+7tpzya2r8Oj0FyNcqdoWLMi3BZNylSvPpes8cPwBtYKWrnWu6cXrL864pdgNhCv7iLX2rKQncosakt42xUu8o/T4o2PW/e0dnjvO21Wc9/Mpa+35KZ6PPRC404y0BQOq6ftwRePLf4M0XOGzNm/+XzybteUrV/hdAAAAAEDtfFuwMB+uDGkL1tmQblxM7h9LJg+klSuNmsOVuOrMlVxbMCkbap+rXGmGTX3ZTV8mSXriUv4UMOpCuLL/fLj0+O9M8iRjzJdJektu0Q1JvzvmKb8jaSv3+Kvca0zivaXH5W1GLRhoD8yi108O+EK7U7hCW7D6lAbap13B2O8BAAAAQO3StmDN8W3BfEuwlWPS6jFJWTeJ+itXktvpZ64kt1G5LVhu5ookvf6W10uSPnHuE5W3EbuHcGX/+X8lRbnH7zbGvHqC5/146fGHrLXbo1a21m5KenSH1xhgjHlA0nfkFvUl/coE24c95lsVcYoRqKbvrqYxGj/QPkhnrvBpm7fsX7xYucJvAgAAAAAWgK9SCXYIV9KWYPeki7aj5DRmyz+vJpHrjDBl4UoaxqSzVHzlytpzhW4Lb709merw2MuPMXdlARCu7DPW2mck/UJuUUvSzxtjVkY9xxjz7SpWk3Ql/fQEb/ePJeVr895rjPm2Me+zIunn3DZ5/7e19tkJ3gt7zMiHK+yYgSp8uLJT5UrDJF0R+4UcHPOUVq74Cffs9wAAAACgXtaWKleayf3+sMqV55NbP5dEi1O54gOPaStXBtqCHbtbMoHU25Sun5M++YvSmf+oN516k1bCFV3YvKCn157ezU1HBYQrc2aMudMYc7r8P0mnSqs2hq3n/nfzDm/zU5LWco+/WtJ/LrftMsa0jTE/LOnXSs//gLX2+Z3+W6y1X5D0v5cWP2qM+XvGmEJMbIx5jaSPuW3xLmuyEAdzkO7Ea94OYFn5cCWQyc30GBSa5ACxx6dt7vxFPenvh5ErAAAAALAY4twFiEFD8rNTxlaunE4XpTNXag5XooozV9K2YP4LaqMlHbkzuf+h75P+ww9Lv/ZetTs39OZTb5aUVK+gXo2dV8Eue0zSPTuuJd0h6YsjfvYLGpxbkrLWvmSMebeSuSg+5HirpM8aY/5C0hckHZX0Bkm3lJ7+nyT95ATb5/2EpAclfZN73JT0ryT9pDHmk5KuS3qVe6/8XqUr6TustWeneC/sISpXgNn03RU2wQ4foTBIDvT6hCtzZ0060t79X/9nid8FAAAAANQqH6LkK1eGDbRfc9eEH8tOsS5KuOIrT6YNVwbagknSidPStRekl9x8lbgvff5jetsdb9PHX/64Hnv5Mf3A635gF7YaVVG5sk9Za/9AyWyTi7nFRtKbJL1H0rs0GKz8qqTvsdZO3KvGrfseSR8s/eikpG+U9F2S3qhisHJB0rdbaz8+6ftg7/krubmCG6jGD7Tf6Q9rGCRdGnu0BatNVlnEzBUAAAAAWAhxLkQJWxPOXDmdLvLhSp0zV+I4+3Y5ZVewNIyJC+HKfclt86D0qnck95/+bb39zrdLkv7ywl9qo7tRcWuxGwhX9jFr7W9JekjSv1WxTVjZn0j6Tmvt91prb1R4nw1r7fcoCVL+ZMyqVyT9G0kPWWt/e9r3wd5KK1cMpxmBKqLYD7QffwQVhkm40ueU/tz5yrx05kppOQAAAACgJlE/ux80JV+B4kKTlLVDZ674cGUlHDl2es/lg5GqM1eifGOFr3yf9OXfJ/3dj0rv+IfJss//nu46cJtOHzmtvu3rT86OOxWLvUZbsDmz1p6e8/tdkPRDxpgfUdIa7B4l811uSHpZ0qestaPaj037Xo8qmblyr5I2YLdLOijpnKTnJf2RtXZI3IxFEBgXrlC6AlTSdweCO7UFC8yqJKlraEVVt7SChf0eAAAAANTLV66YQAqC0W3BblxMhrzLSEfvShf7gfZ1Vq5Eue+W42axDhO61QuVK7c8IH37z7ofRNLqcWlrTXrxT/W2O96m59af02MvP6Z33vPOWTcdFRGufIlwocbvz+m9vqjR82KwoNK2YDVvB7CsotiFKztVrjRWpa7U49M2d+nEFRMMXQ4AAAAAqIkPUQIXqoxqC+bnrRy5Ixn67mxH25LqnbmSz0WmrVwJzJCZK4UVQunV3yA98UHp6d/W2x78Rv3ymV/Wx1/+uKy1U4c52B20BQPgJLsDrqUHqulFfqD9+AOaIEgqV/q04KuNP+g0NmsMBgAAAACokQ9RfMWKv+2X2oINmbciZZUrdYYr0QwzV0w6c2XMSg+8K7l9+nf0plNv0mpjVUfbR7XWGTcNAnuJyhUAklxbMCtxkhGoxleu7HT81GgckCTRI3H+stkq7rdExR4AAAAALAb3nToNVRp+5kqpLdjV55Lb4/cUFvuZK3WGK/mWXsGUlSQ+jInGpSv3fZ1kQunS59S+9rJ+7zt/T0fbR6tsKnYJlSsAJGUD7alcAarpuf6w4Y5twVy4QsVubdLKFfeYWVMAAAAAULOJ24I9l9yWKlc6/QUIV3In1aYNV3wbsbHfT1ePSfd8dXL/d39SRzm1Xzt+AwAkScbvxLmGG6ik666Sadrxf1rDxiFJUo9wZe6yuhWT3ktu2O8BAAAAQK38QPtyW7BRM1fK4Yr7Tl7nQPt85UrVmStj24JJ0lf/sBQ0pKf+k/Tv/oZ04alpNxO7iHAFgKSscoVTjEA1XTc8L9whXGk1k3AlMkZ9X/aMOfOVK7QFAwAAAICFELnvx4GbYuErUEaFK8eKbcH8zJWVxspebeGOIjvLzBX3GjulKw+8S3rvb0mHb5MuPZ0ELJeemXJLsVsIVwBIytrkULkCVNPtu3BF4dj12u1D2XO6m3u6TShL9m+m1LqNtmAAAAAAULOBgfZD2oJFPWn9peT+AleuGJOdZ5uUr3SJJ/l+evdbpB/8uHT67dKr3ynddP/U24rdwUB7AJIkY5ITwpxiBKrpxcmBXGDH/2ldbR9O73e66zqwcmRPtwuZtC2Yn7mSHuyy5wMAAACAWqVtwVw4krYFyw20v35WsnFS1XLoZOHpCzHQ3s1cmXbeSv45E1/7d+gW6fs+koRPFd4Pu4NwBYAkKaA9DjATX4Ic7vCntbVyUA1r1TdG3e7GPDYNTjlckTgABQAAAICFMNAWzIUsblC9JGl7PbldOToQKCxEuOKSkWlbgkm5tmDTdFYIG8n/UBvaggGQlK9cIV4Bquj6yhU1x67XbrXUdgdL3e71Pd8uDDIDM1fY7wEAAABArcoD7RtD2oL5CxRz7bYlKbaxeu75ixGuTJ+uhGaKtmBYGIQrACRlV3LHNW8HsKz8gdxObcHajUBNd6zUoXJlrtIQxbcF88s5eAUAAACAevn2X0F55kquLVjHfYduHSw81VetSF9CbcGwEAhXAEiSAsPuAJhFz7pwxYwfnlcMV27s9WZhiHSgPX1pAQAAAGAxlCtXhg20990fWtksUylr0y0txkD7sEJfsMCdloti0pVlwtlUAJKkwLUFi2mPA1TSdQeCRjuFK2EarvT6m3u9WcgZnLlSXA4AAAAAqElauVKauZKrSkkrV0ptwXzlSsM01Ajqm0Hi56VUuY7P0BZsKRGuAEi4VN1yITdQSVfJ8L1gp3ClGajpSoU7PSpX6mDc4Y/JGoPVtzEAAAAAgCxc8aHKsLZgvrV265BiG+v59edlrVXHDb2vs2pFylpOV6lcyWau7OomYY8RrgCQJAVud8A+HKimZyNJUmBWxq7XbgQKXYrZ6VG5Mk9+5koWqgAAAAAAFsJEbcGyypX3f+L9+tYPf6v+8KU/TCtX6py3IknRTDNXkltmgi4XwhUAkrK2YOzCgWo6LlwJg/EHc+1GqAbhSq1MOtDeVeyx5wMAAACAekVJN4isLZgLWfq5cMW1BVtrtPShz31IkvTk5SfViV240qg3XPEtvaqEK/57KjNXlgvhCgBJ2U6ck4xANT25cCXcoXKlGSi0yZ/f7e7Wnm8XMuWZK1m4AgAAAACoVblyxQclQypXfr17Tt04Wb62vZYOtK+/csWHK9M/17cSI1tZLoQrACRJgaEtGDCLrpL630Z4YOx67UagwIUrW1SuzNXAQHvDzBUAAAAAWAg+RAnGtAXrbKgn6Vc3Pp8uWtte03Z/W9IizFxJbqvMXKEt2HIiXAEgSTKEK8BMuu7Ts1O40grz4QqVK3OVHt8GhYfs9wAAAACgZr4tWDpzxd2WBtp/7OABXYiyCxXXOlnlysoOnST2WjRDW7CAtmBLiXAFgCQpCJKZK3HN2wEsq65JDoCajYNj1zPGKLTJ563T297z7UJmoHKFeAUAAAAAFsPAQHvfFqyTrdO5rl85ckiS9Mgtj0hKKlf8QPu6K1fSmSsVzrj7apc+4cpSIVwBICmrXAFQjb+WptUaH65IUqgkXPGly5gPP1PKz1pJZ65Qdg0AAAAA9fIVKmPagr3YvaZPrayoYQL94Ot/UJJ0ZftKGq7UPXMljqtXrrQb7iLMfrSr24S9xdlUAJKycIXKFaCajjt2ajYO77huWrnS7+ywJvaC39+ZCge8AAAAALCwvvAH0pUv1L0V1aSVKw13O9gW7C+j65KkBw/fo1cfe7Uk6Vrnmrb6Scvt+itXktuwwnfN1VbyPXW7x5m5ZUK4AkBSlqpbwxXcQBVdd+zUau9cuRIoOVjsxIQr8zS4dzMjlgMAAADAkrnyBekXv1360PfXvSXVTFC58oRJ7j987AEdXzme/NhGurR1SdICzFxx6UqV6/hWmq7DRY/KlWVCuAJAkhQEycle9hUwEgAAIABJREFUTjIC0+tHPUXu6KndOrLj+j5c6fZ7O6yJvTBQuUKoDAAAAGDZXT+X3G6cr3c7qvLhig9VGu62nwtXgiR4ePimh9QKWzrUTOavnLuR/LfXXbniW077+SnTWGkQriwjwhUAkqTAnWzkFCMwvU5nPb2/0j664/qhSa7E6druDmtiN2UD7UvL2fEBAAAAWHa9zeR2zrM9z904p7//+39fnzj3idleaKAtWLFyZau3qadddcfrTybD7H31ig9X6p65EtkZZq40k/NyW4QrS6VR9wYAWAxGzFwBqiqEK6s7z1wJlBwkdmMqV+rg93fpQHtiZQAAAADLrudClf58L+L72Asf08de+JiiONKbT725+gtF/eTWtwVruBZfUUeKI5258FfqG6Nb+n2dOnqvpCRcefH6izp746yk+sMVP3OlSriymrYF48zcMiFcASBJCgIqV4Cqut1kqF4rtlppre64fmh8uNLf0+1CUbp/cwe6PlwBAAAAgKXnK1b620l5fpXBHxX4YfKv3HhlthdKK1dcuLJyTB87sKpVa/XVW1f1xPm/kCQ93OnKtJOLGk+0T0iSzm8mrdBqD1dcuhJU6BXFzJXlRLgCQJIUBMlOnHAFmN62q1xpWauV1s5/WsMgCVd6loOmefL7N98GUca4hez5AAAAACw53xZMVor7WUixxzbd+76yMWO44gfXu8qVi501/ejJm2Uk/fr5v9QTl56QJD3cs2l64duC+YCn9nBlhrZgPlzp9KlcWSbMXAEgKTdzhQu5gal1ujckSS0rtRs7/2kNTXLA17VUrsyXC1FKlStEKwAAAACWXi83a2WOc1e2o+S9NnobWu+u77D2GL4tmJu58tSVpxQbo8gYvf8z/05/deUpSdLDykIjH6547UbNM1fiWcIVN3Oly0WYy4RwBYAkKTBJQk4+Dkyv20vagjWt1HZXm4wTuqtpeuKgaZ7SypW0HRgzVwAAAADsE2nliuY6d2U7F+Sc3Thb/YXStmBJp4en155Of/RHVz6jC501hdbqteZAuvzEyonCS9RfuZLcBhUuXE5nrvQ5T7BMCFcASJKMYXcAVLXtKleak1auBMlgvp4lzpyrNFNxlStz6kEMAAAAAHsuX60Sdeb2tvlwZabWYJELV1xbsGeuPiNJOhZlYcMD3Z4OuHkr0mDlSssFM3XxbcHCCukKM1eWE2dTAUiSwoDKFaCqbi8JVxrWpAdE4zQbydD7Hp+4WqQzV2gLBgAAAGC/6G1l92toCybNONQ+LrYF85UrP3ZlTceCpCLl4U5Hah1Kn3K8XWoLVnvlSvLtssqFfG3XFmy7F8tavqUuC8IVAJJyM1dq3g5gGXVc+XXDBmmf1HEaQRKudA2fuHlK/7Xd/i4Y/AkAAAAALKdCuDK/tmB+mLw0Y1uwXOVKL+7pi9e+KEl643ZH//jIw7q/fbPefX2jEK4sWlswP3MlrBCurOYu1GSo/fIgXAEgSQpc5QoD7YHpbafhilG7sXPlSqOR9IilcmW+spkrHpUrAAAAAPaJfk2VK/1dqlyJXCAUNvXctefUj/s6FDR1Wz/S10VNffie79Jruz2pnatcKQ+0rzlc8QUnQYUz7vkuGLQGWx6EKwAkSYHb83OqF5jeppu5EsSTVa40mz5cQS1c5Yov1WagPQAAAICll69ciZZ5oH0zbQl2/8rJ5JK4zctSdyP5eWt0uLIoM1eCCpUrzTBIZ7Vs9zg7tywIVwBIkoxxlSs1bwewjLbdQWxog4kqV1rNg5JoCzZv/l/bqDhzBQAAAACW3rLPXInczJWgqWfWkmH2Dxy6K1m2eVnqXE/u5wbarzZWtRKupI/z9+vg24JVCVckaaXh565QubIsCFcASMoG2ltONgJT23IHsYEN1Qx3/gxl4Qqft3lK24L5f3b+/QEAAADsF/lApaaZK1e2rxQqWfIubl7UB/78A3px/cXhL5SrXHnmahKuvPrY/cmyEZUrUrF6ZVHagoVBte+aq63k3NwW4crSIFwBIEkyDLQHKvMHj4FtpK2mxmm7g8Eu5/bnzO3hfFuwdCl7PgAAAABLrtAWrDO3ty2HKWdvDG8N9ujTj+rnP/Pz+qUzvzT8hXID7X1bsAdufm2ybPOy1HHhSnt0uFJ3W7AobQtW7fm+EwaVK8uDcAWAJCn0M1eMsqgdwEQ6/eTANdTOLcEkqe3KmCNj1O/P76D3S13WFswUbtnjAQAAAFh6NbcFW22sSpJe2RjeGsyHLpe2Lg1/IReurMcdnbtxTpJ0/8lHkp91N5KARZJaBwtPy4crdbcFm2XmiqR0hiszV5YH4QoASVIQNCS5k4yEK8BUtl1AEqg50forK0fS+11f2oy58dVFWcjCPg8AAADAkquhLZi1Nq1cOX3ktKTRc1cubF2QJF3rXBv+Yq4t2Oe3zkuSTh08pSNH7pTcjGBdfSG5bR0uPO1E+0R6v+7KlXjWmStNV7nSp3JlWRCuAJAkhYW2YJxoBKbRiZMD13DCcGU1N4Cv21nfk23CIOuObwO3v/MzV9jjAQAAAFh6vc3s/pwqV3pxT5FNgoB7j94rSTq7Mbwt2KXNpGJlrbM2/MVc5crTGy9Lkh44/kDyne3ATcnPfbgypi1Y3TNXulHy7bIxwSzWYVZduNKhLdjSIFwBIEkKwqRyJZYkS/khMI2uD1fMZFfJrLRX1XAVYp3ejT3bLhSlIYqvXGGgPQAAAID9opcLVKL5VK7kh9nfd+w+SaMrVy5uXZQkXdseVbnSlyR9cfOVwuvp4M3JrZ8jM2agfd2VK9e2koDo6OpkF16W+coVBtovD8IVAJKkIPCVK4a2YMCUuq58OdBkB3LtRqiW+5zRFmz+AlOeucI+DwAAAMCSq2Hmim8J1jAN3X34bknDK1d6cU9Xtq9Ikq52rsoOO+/kKlfW3Hfkk6snk+W+csUrVa6cWMnagtVdubLuwpUjlcMVZq4sG8IVAJKkwPWwTAbasxMHptGxyRU2k1autJuBmu5YknBlfrLDd9ezl4H2AAAAAPaLfj5cmU/lih9mv9JY0W2HbpM0vHLl8tbl9H437hYqXlKu2matd12SdGzlWLL8wInieqWZK8fbSeVKI2goDELVaX3GypW2n7lC5crSIFwBIEkK8wPtOdUITKXrypfDYGWi9duNLFzp9AhX5sXv2Xw3MF+5AgAAAABLLY6KrcB8C6095itXVhoruv3g7ZKkC5sX1HPdHbwLmxcKjweG2seR/De2NTeX1IcmO1Wu+LZgdVetSLO3BVtNwxUuel4Wjbo3AMBiyNqCicoVYEo9JVeVhMFkB3PtRqimm67ezQ8dxFykA+195Qp5MgAAAIBl1itVgsypLZivQFkJV3TT6k1qBk314p4ubl7U7YduT9fz81a8q52rSaXL5Wel3/9fpJWj6c/WuknwklWulMKV1sHCw9NHTmslXNG9R+7drf+syta3XVuwldnagjFzZXkQrgCQJAWuciU2zFwBptWxLlwJVydav90I1PBtwQhX5iYbaJ8csPqB9tawzwMAAACwxMphSg1twQIT6EjriC5vX9b17vXCehc3B8MVSdLj/1J68tF0uZXRVVfVklWu3Fx802YxXDm2ckwf/a8/qgONA7P+58xs5oH2jaRypUO4sjQIVwBIkhom6xJo44hmOcAUeu60fTOYMFxpBmrEyadsu3tjz7YLRWlbMLeH8+EKAAAAACyLXtRTMyydvK+pcsW3BfPBxsHmQV3evqwbveL33HLlim8LdunFP9VvHD2i77jtrbpFobZuf0TdL/6ipP+fvfcOk6ys0/4/p3JV5zAdJufADBPISBAQFEmiIIqyKKuoGDAt67u7r7qGDfru/tYVxICoCCJZGYmCwJCHyTlPz0yH6Zwrh/P74znnVFWH6VRd1cV8P9fVV3VXV3i6qrrqOc/93PcNpe4hnCuuQrANbrmo9FYOOi8XTFhckc6VvEM6VwRBAMBmT5Z+6UgsmCCMhYjxP+NwjNa5YsduxIIFI+JcyTY2Q1TRrEJ7ca4IgiAIgiAIgjD1eWD3A5zz4Dlsbtmc/ouB4ko8S86VlM4VUOIKMFhcGeBc6Qp3QbiPP0SPc2d5KQ/MWQEf/wNdp30CUP0pXvP4OrXQ3pXetzLV6A2qPtZi7/j8DF6XdK7kGyKuCIIAgM2WFFcSRjm3IAijI2LESjkcBSNcUuF22LDr6iM4JLFgWUM3jSoDOlcEQRAEQRAEQRDygU0tm4gkImxv257+i1iOO1dGElcM54rTphwd3eFuaNxEvRGD1WT0rHSHVFxYmacsmTSQ6lxxT11xJRJLWF0p43WuuB3SuZJviLgiCAIAjhRxRZdCe0EYExHD+eByji7jNU1ciQRHuLSQKUx/iulcMU/FtyIIgiAIgiAIQj4QjAfTTi0GxYJluXPFPjrnyoLSBYARC9awgRaHcni0BloBw9FCSt8KDI4Fm6KYkWAAReMutJdYsHxDxBVBEIBkoT2AnhBxRRDGQsTYUONyFo3q8pqmYdPNHSkirmSLZKG9ZWHJ0UgEQRAEQRAEQRDGjnn8GBzoVBkUCxbOyngGxoL5jA2HwzlXFpYuBAznSv0Gmg3nSnuwHYCukBJXrL4VyBtxpTekxJUijwO7bXzHmpa4EpN1uXxBxBVBEACwpRSCJaRzRRDGRMRYrHe5RieuANgxJk1ZmvQKSTQzFkyTzhVBEARBEARBEPIHU1QJDYz9GvRzdsUVsx/Fcq7EkuJKNBGlM9QJwKKyRYCK/4o3bKDN6P9tC7ah63pSXPGkiCsuH5gpEVM4Fsx0rhSP07UC4BXnSt4h4oogCEB6LJh0rgjC6NHjccLGphS3Zwziiq7+58JZysIVUmPB1PRHE+eKIAiCIAiCIOSM1xpe4+o/Xc22tm25G0Tb/sGujymMGcM1SFwZ2OWZJXHFjCezYsGMHlJ/JCmudAQ7AHBoDuYUzwGgx99Ke6SHuLHhLRgL0h/tV44WBsSCQdK9MoWdK6a4Mt6+FQCP0+xmFXElXxBxRRAEAOwpzhV02cUtCKMlFulHNyaEXlfJqK9nQ0XxRcS5kjXMdzazGNF0sMg7niAIgiAIgiBknxePvciR3iOsq1+XmwE0boKfnQlrv5Kb+x8HpnNlcCyYIbaYLv1sFdpHBxTax5XAkOpcMftWKrwVlHvKAegOttHisKfeFG2BNqtzJc25AuBT15vKzpXejIgr4lzJN0RcEQQBSBY7gzhXBGEshCI91vceT/Gor2c3xJVwPDtFg0ISTZwrgiAIgiAIQrbZfD/seCzXo5hSDNsfki3aD6rTjoO5uf9xYDpWBseCGY+hx9jwl6XjTKvQ3uEBXadg84MA+IOd1mXMvpVp3mmUuNX4eqL9NNvTxZXWYCvdofx1rpjiSrHXMcIlhyfpXJG4/nxBxBVBEABwpHyoJXR5ExeE0RIO9wGg6Tped8Gor2fX1G6WiLGzR8gepqiiSeeKIAiCIAiCkA2C3cod8efbIC6bGU2GdWFkC7N0PRI48eWmEMM7V0xxxXB8ZMm5kta54m+nIKAiwAL+NusypnNlmm+aVVTfp8dodKaLECd2rhjiinv0UdzZJjOxYOJcyTdEXBEEAQCHlnw70HV5ExeE0RKJKHHFpYPHZR/h0klsGOJKQpwr2cLqXDFiEE3DnkgrgiAIgiAIwqQS6gZ05SaI+ke8+MlCzsUVU1QZ2FcyRUnoCcJGrLTZdWJhxoKZzpVYlpwrhrjisXugfT8FRsy8P5xMeEh1rhS7iq3NbvtdrrTbagu2De9cWflxqF0FS66YlL8jE/SGlHCaCXElKOJK3jB+n5IgCO8qNFsyHkefAs6VtkAbdpvdyuMUhKlKKGyKKzoex+jFFcu5IjF8WUM33uZspnNF9pgIgiAIgiAI2SDVGREJJBfAT3JyLq6YokqkPzf3P0ZSo8CGLbT3Go6PLHV7WoX2DkNcSaj1JH80+Zha4opvGg6bgyKHj96Yn70erxqyw0swFkx3rrgHOFcWXaq+pjA9ASMWzDNxcSUssWB5g6wqCIIAgENLiQVL5FYhj8QjfHjth/noXz4qEWXClCcSVeKKU0/mo44Gu82trq+LuJItLIeK6dSzYsEEQRAEQRAEYRKJ+If+/iQnEAuknWadSH7FgqWKUIMEKVNssWLBsiOuWM4VhwfaD1CQMJwrKeOzYsG80wAotam9/nUOdVy2vGI5AC2BFnoMx0uZZ4BzJQ+wYsF8ExBXjMckEk8QT8iRaj4g4oogCADYbcm3g3iOxZXOUCc94R5aA634xTItTHHCxkTcqWu4x+RcURbomIgrWWdwob1MWgVBEARBEIRJJPW4Vo5xLXLuXDHFlXgYhlgHaexvZGPzxiwPanhSH6fBzhXjd97ciCteh9eIBTOcKynx16nOFYDSuDr+Mh/xUytPBeBQ9yHiRkz9oFiwPKA3NPHOFW9K1Hg4JtFg+YCIK4IgAGDTVCE35F5cCaTknfZGenM4EkEYmbBhIXfq2jidKzJhyhYDO1dAnCuCIAiCIAhCFhDnypDkXFxJ7VoZ4nn5+stf55bnb6G+rz6LgxqeVEFlxEL7RBQSk58EEoqniiv78Bn3GUg5zh3oXCmJpI99ReUKAI72HgWg0FmI0z5+gSJXmM6VCcWCpWzYDEZkrSAfEHFFEAQANC3ZPhDPwgfwiUh1q/SGRVwRpjZhw8Lu0DXcztE7Vxw2DwBRZMKULUwRxXSsaJo2/IUFQRAEQRAEIVMM7FwRgBRxJZpj58rA7w2a/E0ANPubszWiE3JC54r5u9Q+nyz0rphj8iSA7noKjSiroAaxeJR4Ik5nqBOASm8lxKOUhpLrPA7NwdLypWq4hiAzqG8lT7DElQk4V2w2DZddrc6FYhKTnw+IuCIIAmA4V4zvEzku2PbHUsQVca4IU5yQsdvJntCsfNTRYLcrcSWCTJiyhW6KKrb0WDBxrgiCIAiCIAiTSmphep6Up082uq5bAsGUcK5E00UvXdfxG4JLIDo1BDHTJQIqXjqaiCZ/GTV+500RJgYKMJMxJrNzxd8K6BQ4CqzfBfqa6In0oBtHXKWeUmjbR0ksOe4qXxXVBdVpt5mPfSsAvcGJx4JBsss1FJWNmPmAiCuCIABgtyXbB+I5LpFPc66IuCJMcQJh9Xq16zY8Y3CuOO1eAGIirmQdy7kinSuCIAiCIAhCNhghfupkJBQPWYvuuetcGf55CcfDVj/mVOmCHfg4pf1svsbcxVhbZ2MRJhurc6WnEQBX9Sk4jMj5QNdhukPdABTZPThtTmjeTmlKWkp1QTVuu5sSd9Jxk4/OlURCpy+sXi8TF1fUuoKIK/mBiCuCIABg0zQ0Y30xHs+tcyWtc0ViwYQpjmlht+s23GNwrjgMcSUiC/tZw+pc0SQWTBAEQRAEQcgiqQv3U8QFkWtShYFgLIiu5+C4KDp8LFh/NOkwSk3XyCUDxZW0aDDze6cXHKrfc7JjweKJOBGjuN7TZfTSVC6mwFhu9ncdocvfAkBZqA/q34Hj2ymNJ8WVGl8NkOxjgfx0rvSFYpgv4WKvY0K3JeJKfiHiiiAIAGha8g0hkYtJTQqp4kpfpC+HIxGEkTFjwWy6HYd99B+rTqcPgKgm4kq20A0txaapyaoprsgzIAiCIAiCIEwqad0eEgsG6UKBjk44C/0gg0gTvdIFlFS3ylSJBTuxc8X43ukFuyGuxCb3MU19zjyddeqbysUU2pRzw997jO7mrQCUxRPwyn9C83ZKBjhXIF1cyUfnSm9IRYJ5nDbcjtEnWgxFMhZMUi7ygYlJaYIgvGuwpezgjidyq45L54qQTwSNCatdH9sEymWIK+JcyR5Wob04VwRBEARBEIRskiauTI2F+lwzsMQ+EAvgcXiyO4i0WLD05yXVuTJVxJWBJfZpP5uPp8NwroSZdHElEEs+Lu6OA+qbysX4jrghFqG/r5HOoOFcicfh0N/A5qTMldyUWFNgOFd8+e1c6clQ3wqAV5wreYWIK4IgAEpcMT/eci6uSOeKkEeEjQmtbYwfqS5nIQBRWd/PPpr5bqdOdXkOBEEQBEEQhMlEOlcGcUIXRrY4QSyYP+XnvOhcGSoWbJLFFatvxe5Baz+kzqxcpErtY30E+lvoTqgxlmJsRkxEKSVZel/tU86VKl+VdV4+OldMcaXYM3FxxW2JK+JcyQckFkwQBABsGlbnSiIhnSuCMFrCpnOFsU2iXC4lrkRkYT9rDOdcEe+QIAiCIAiCMKmkRoFNkYX6XDNIKIjmQFxJdatEp37nykDnypCF9lnsXDHH47G7IBYEuwtK51DgKgLAH2ijq68BgLK5F4IRz1xSvsC6Dcu5ktq54s4/50pvBp0rZudKUJwreYGIK4IgAGqR0VzjjSdyq46nWkvH7FyJhuC+a+BvP8jwqARhaMIJU1wZm3PF7VK7dSKaBjnuOTpZSIoravqTfNeTx18QhHc5e56Cjb/N9SgEQRBOXiLiXBlI6nE/5MC5Eo+liw8DYsHyoXMlPRbM+N7hSelcSRdjMk0obogrpiulfAHYHRR4lPPE39dEtzGGshlnwqobASidfoZ1LGaKK6nOlZM9FszjMDtXRFzJByQWTBAEC3OZMZHPsWCNm6BuHRzfCu/7doZHJgiDCcfVJMqGa0zX87hLAIhpGvFoELvLl/GxCemYEorNFFeMU5FWBEF4V6Pr8KfPq13TSz4IRTW5HpEgCMLJR2T4+KmTlZzHgg10EEXzT1yxftZ15RwBcPpSYsEiWRmPxzyiqlwIQIGvEgC/HqfTrpaeS31V8MEfQc2peFZcx9ePrCQUC1HpVZc1TwFKPXkcC5aJzhWXdK7kEyKuCIJgYVrZEjl2rkxIXOk+pk5DPWonil3e5oTJJZKIgg3s2tgmUR5PUfI2In14RVyZXHQd3YoDU2eZu6VEXBEE4V1NNJCMo+lvFXFFEAQhF5yg2+NkJefiygCnSlp0G1MzFmyQc8VwjqQ5VJye7MeCJYwjqrK5ABR4ywHw2zS67WqlqcxTBu5COOcLANyy4pa020pzruRjLFgok84VJa6EY9K5kg/IqqMgCINI6LlVxyfUuWKKKwChbiioHP6ygpABwrqaRNk195iu53MXWt9HIn14qc7ouIQBpESvJZ0rUngjCMJJQLBr6O8FQRCE7CHOlUHkXFwZ6EbJg1gwS0wxsB6z1L4aRxYL7Y3xeONGb2/pHAB8ThWB7bfZ6LYpoWCkkvoqXxWzimZh1+yUGCkP+UQmnSsepzpeDUbEuZIPiLgiCIKFzVh7jOdaXEnJXu2L9KHr+ugXQbuPptxQp4grwqQTNf5f7LYxiisuN3ZdJ65phMN9kzE0IQU9tdfGKFJEnCuCIJwMBLuT34e6h7+cIAiCMHmkFadPjYX6XDNQTBnYwTLpDBS5Bjwv/SlOFv/ACLEcYT5mGho6+mBxxeZU6R32LIkrhnPFa95P6WwACgxxJaBpdBnOlXJP+Qlvy2Fz8KcP/QkNzdoMl0/0BJXAVOyZ+FK7WWgvsWD5Qf69WgVBmDSsaudEbpcaUycuMT02th0sqc6VYGcGRyUIQxPR1STKbvOM6Xpupw2n8a8WDnRkeljCAHSSlmqbzYwHE+eKIAgnAWnOFRFXBEEQckKac6V/+MudRAx0g+TeuZL+vExJ54ohZpguEKvQ3jx1etWpw5V+/iRhda6Y4o4hrhQ6VUpDh91OwKaWnkfTo+K2u3HZx9ZlOlXozWShvSmuxERcyQdEXBEEwcJcZownYjkdx8BdIWPqXelKda7IgrUw+URQEx6HfYziisOGL6H+63p7jo5waWGi6CldUjak0F4QhJOIkDhXBEEQcoquD+hcmRoL9bkm57FgA50rA56Xqdy5YgoVg5wrlrhiHJvGJ7fQ3upciRn3UzILAJ9T9Yk2OpSLw6E5KHIWDb6BdxE9kyGuRKVzJR8QcUUQBAtLXNFz+wY+cFLVE+4Z3RXjMehtTP4cEOeKMPlEjKV5h807puu5HXYKYmrS1N5zJNPDEgaQ6lzBlt65IuKKIAjvalLdKuJcEQRByD7xCKRuYJTOFWCIWLBsu0NGiAUb6FxJixnOEeZjZha+W84VU1wxRRUrFmxynStm54onoYOvQhXWAwUOFQvW5FIulFJP6ZRNDYgndH728kE2HJnY+lFmnStG54rEguUFIq4IgmBhftQlErkTV+KJeHI3hmF1HbVzpbcBUvtiJBZMyAIxs3NljDtx3A4b7pia9Lb3N2V8XEI6uj6EcyUZhpiDEQmCIGQJKbQXBEHILQMX8WNBSMiiqXnc77Q5037OGpaYYhwTDIgFS3WupPWb5BBzDGZ/iTWm2EDniimuZMe54tUTViQYJDtXzI2II5XZ55K/bGvi/z2/j39+Yse4byOe0GnpVY9FReHEY81M50pYxJW8QMQVQRAsNGN9MZHDQvvUEruaghpgDOJKat8KiHNFmHwScYKa+n9JuGvGdFW304Ytriad7YG2jA9NGEDKTjObTWLBBEE4iZBYMEEQhNxiiSspO/enSIdHLjGFgQpvRdrPWcN8XnwVxs/DO1cgfa0iV5hiRpnHcK7EBzhXBoor8ckttLc6V3Q9XVxxFaRdzhzvVOS5nc0AHGrrH3eB/IHWPvyROAUuO/MqCyc8Jq/EguUVIq4IgmAxFZwr5gTGoTmsSVZveLziinSuCJOL3tdCu119lLp888Z0XbfDTjym3C5tYdlJPNmkOldMUcWypk9Nh7ogCEJmkFgwQRCE3GIKKZ4Ski6J7EeD7enYw8N7HyaR4xhwk2FdGNnCfF4KpqX/bNB/goL7XGHFghlixaDOFcdA50qOxBVHuriSa+eKruu094cJRtLFk2Akzrr9aqNjQlcCy2jo8kc42Jq87Oajan61alYpdtvEDy7NWLDxij1CdnHkegCCIEwdLHElh5MtczeIz+mj2FUMQF+kb3RXNsvsbU5IRCX9eq5vAAAgAElEQVT6Qph0+rsOEjRcEGWe6jFd1+2wEYmpSWZHdHSTOGH8pIrGmnSuCIJwMpE6HxLniiAIQvYxF+ldhSoOLNKXE3HlB2//gB3tO1hQuoAzas7I+v0PJOfiiulUKaiENkZ2ruTYbaTruuVUGRwLZjhYnAM7VyZXXEnrXCmdY51vxoKZmOPNFf/29B5+/XodoISLj585m3+9ZjmvHmhL6zXZ39LH8uklAPSGorx1qIPXD7QTSyT49lWn4HM5SCR0brznbQ629vP07RewpKaIzcfUXOu02Zlx6LhN50pMxJV8QMQVQRAszP6BnMaCGROWAmeBJa6MORas+hQ4vk1iwYRJp619LwAFcShwjbXQ3oY/VglAR2JyJ70CJEjtXFHvdRoSCyYIwklASJwrgiAIOcVctHcVqE2AORJXjvuPp53mmoHiStZjt0zRq7Aq+bOug6YRS8Qs4aDMXUZXuCvnzpVIImJthB1caG88dk6fOs2UcyUahBf/FZZ/BGafPejXyc4VfcjOFZNcOldi8QSPbmqwfg5FE/zuzSO8b1kVz+9SkWCapp76fc3qNXGwtZ9r7nqdQIrTZWaZjy9dvJC/7W1lb7PaAPzU9iaW1CxhiymuzMnM3+lxKHFloNNGmJpILJggCIMJj9IpkikaNkHDRiC5O8Tn8I1DXDGcK7Wr1akU2guTTEv3YQAKYg5rd8lo0TQNf0L1tHRoiUnfVXSyk4iniCsDY8EEQRDezUihvSAIQm4xhRSXTwkskPXOlYSeoCukPgPM01xjda54ctS5YsWCGeKKHoe4KoBPFVKqfOr3ue5csYQUoNSjFvGTsWDG7xyGcyVTnSvbH4H1v4AXvp02jru33s3BroPWmAbGgnkdXmvzLuS2c2XT0S56glFKfU62fff9/N05ymHznSd38bc9rQBcvXI6oJwrAM/vaiYQiTOtyM37lqrn/57XDtMfjvHr1w5bt/3czma6AxEOtanXy+pZmfk7vS7pXMknRFwRBMEiigsAV9e+7N1psBt+dyXcdw2E+9OcKyVuw445VufK9DXqVDpXhEmmra8RAHfMg9sx9o/UqKYmce12O/S3ZHRsQjqpzhWJBRME4aQi1a0S6oEcdusJgiCclJgL9a5CMHf0R7IbC9wX6SNuJFR0TZG+xykVC2adp54rU1xx290Uu4vTzssV5uPjsDkocqruTktwiQ0otLe7jPNDTIjW3eq0ZZc1f3hk3yP8fNvPue1vt9EZUH0lnkQCSmZZV9M0Lc29YjptcsHf9ioB5eIlVZR4ndxx+RKmFbmpa/fTE4xSUeDixrOUMLTPcKS8dUitJX354oX86uYzmF9ZQHcgyrce2876uk4cNg2HTeNAaz9PbFZrAvMqCygvcGVkzGbnSlhiwfICEVcEQbAIo3Y3uDr3Zu9Oj76hJgJRP7Ttwx8znCspnSujKrSPRaC3SX1viivBLuXtFIRJojWgBBEtVohnjM4VgEqvKk8M2GwEOusyOraTiqYt0LT1hBfRE4ML7XVEXJlUoiF5DxaEqUCom8cLC/hFaTGgw2jmVYIgCELmMJ0rzhTnSpZjwTpCyY2HU8654jWcK9FsO1eM58BdnOwoMZ6XfqMTs8BZYJWz57pzxXy8vA4vXqO43owuswrtTXHFdLDEIhO709Y96jTSDz1qM+sbTW8A0OxvZk/3fgA8zkJwF6Zd1WdGlJF02uSCF/eoY/b3LVMOlGKPk/975TLr9+9fXs0ptWrtqbE7SKc/wsajKgXl3AUV2G0aX3nfQgCe3qEi9a5eNZ1zF6jX7V0vHwRgzezM/Y1mLJg4V/IDEVcEQbAIoz6AXb1HsjfZq3st+X3b3jTnSpFL7cYYlXOlpx7QweGFysXqvERMFhCESaUtrHYDx2MleMbhXKktLsFlzJc6ug5lcmgnD9Eg/O4q5YA7wQFZguSuH5vhXDHjwYRJoLMOfjwPnv5GrkciCCc3iQTxYDf/VlnOz8pKaXTYpdReEAQh21ixYAUqGgwGladPNqmCSmco9/HZuq5PHeeKy5d8Xoz1CNOlUugsxGsIFlPFueK1e/EY4kkyFsw4zXQsWFvKxtuW3YRiITa1bBp0Ma8ZrZbCVHCuHG7r53CbH6dd48LF06zzr1k1nfcunoamwUdOm0mJz0lNsXrsHt1YTyiaoKLAxaIqJRhdvXI68yuTf89nzp/H+5eriO9OvxKw1mSozB6wNm4Go+JcyQdkVUEQBIs4DuM0AY2DPzAnhbpXk9+37Rl/54oZCVY6W02MjJ0cUmovTCatMbWjKRitHHPnCkBVsZvCuLpee8+RTA7t5KGnQe2kivRDT+OwF0ukzEttRhxYMhZM3BUZp369Ojg99FKuRyIIJzfhXjrsNqLG+12L3SGl9oIgCNlmqM6VLMeCpQoqU8G5klrOnjtxJUX0cqY7ivojKc4V43dmykausMrjneniiq7rKc6VDBbaBzrTo6tbd7GpZRPheJgqXxVXzb/K+pW3qHbQ1QudSSdLrjpXzE6Vs+dVUOxxWudrmsY9N5/Bq3dczJlz1etvcY3a3Hv/26rL95z5FdbxosNu42uXqU28Fy6exooZJbz/lOq0+zotg84Vr7G2EE/oROPiXpnqiLgiCIKFPaGyRve7nHBs/eTfob8dWnclf27bZ5XE+Zw+K9t0VLFgZpl9mSonw6csmiKuCJNGLEKrHgOgN1ZNodsx5puoLvbgjqlc1o7+4YUB4QT0NKR8Xz/sxfS0zhU1WdXEuTJ5mM9Lb5P0OwhCLgl102JPiv+tDruU2guCIGSbyBCdK1mOmEoVVCbUuRLqhdd/ojo4JkBqBJi58G4JBdnCdKI4CwbFtVnOFVehFQuW9diyAZjik8fuwedIRm6F4qFkt4rTcK7YMyCumJFgJi27rUiw86afxz+e+Y+Uay7suk5VydxBV0+LBXPnJhZsYCRYKi6HjVnlyTEuqVZiUEOXepzPMWK/TK5ZNZ0nv3Qed31CxdBXF3ssQcXnsrOkuihj4y70OKzelfrO3MbRCSMjqwqCIFi4YipHcrPbDfVvT/4dHjEiwcyytba91iSmwFlgOVf6In0j31aqcwXAZ+yMCIq4IkwSfU20GVmoPdFqZpR6x3wT1UVu7DE1oWsPtGZ0eCcNvSmiVKrQMoDUzhWbMf3RjM4VYRIwn4t4BALtuR2LIJzMBLuUoGLQZpdYMEEQhKxjCilTpHNlQrFgWx+EF78Lv7oI3v75uPv1TKHAaXNaceA6erJDJBucIBYsrXPFdK7kOBbMcq44vLhN8cQ834oFMztXMiCutBniiikItuzizcY3AXjPjqcoe/oOHo6V8UBTC1UVSwZd3RSlvI6k0yYb/PGdYyz/znOc+q/Ps75OvdYvXVY9wrVg8QBx5Nz55YMus2pWaZoD5vIVKhpszexSHPbMLbHbbRrLjB6YnU0SdT/VEXFFEAQLtymueNwk6t9Jz9GZDMy+lVOuVafdxwiEeoB0cSWSiFgTiWExy8BNccVrfBCKc0WYJBLd9WqRCrDrpVQVuUe4xmCqiz3oMTWJa58C9vy8JM25Mry4YsYOQLJzxYoFE40l84xS9BIEYZIJdtM8UFyRWDBBEITsYkaAuQY7JLJFqnOlL9JHNBEd3w11Hlan8Qg893/g0U+NS2BJLWf32D2Dzs8KqaKXcxjnirPQcmDkOhbMTPnwODzYbXZcNrVJNRQLgbGOYpXKZ6JzxXSuLL0SgObuwxzqOYQNOLe1DnY8Ss2xDayIRJLrMCmYolS2+1Ye3ViPPxKnL6RSJk6fU5bmUBmOJTVJcWVakZsF0wpPcGnFzefO5RuXLea7Vy8f/4CHYcX0EgB2NfZk/LaFzCLiiiAIFu7ELPSEi167nYOJ4GAbaKYx+1aWXwsFqlzM71e2TZ/DR4GzALumFgRG7F1p2qJOq1eoU58hrohz5aRB13Xag9nbId/VeZCYpqHpUFNQhc029hX6qmIPkbiaNLVHR+HQEgYzWnEl1bmiDRBXJmdkJzepz0WvRN6dTASiAba1bcturIcwPMEu1bNi0CqF9oIgCNnHckjkTlwZ6FbpHu9ngTnHm38R2Byw+0lo3z/mm0kVV+w2uyWwZFVcSe1ccaXHtaU6VyxxJdfOlXjSuQKqewWMx8yMSTdFjkw4V1qNMvsFl4CnhLc8SsxZEYlTkkhAzanJy1YuGnR1U1wp9WQvEkzXdfa3qOfut7ecybNfvYA/fPbsUV13UVURxuFhWt/KifA47dz+vkWDXC+ZYMUMtdl4h4grUx4RVwRBsJhXUUw8oD6MN3kmORqs9zh0HAA0mPMemLYUgIARH1PgLEDTNMsifMLeFX87dBnOlRmnq1Orc6Vj6OsI7zru3XkvFz9yMS8cfSEr99fWdQAAX9zGjNKCcd1GdbGbQFS9VtvjoXHb6sfKU4efYmPzxqzc16STJq4cG/ZiibTOFTX9sY1iwiyMkx5xrpyMHO8/zsee+hg3PXMTt/71Vur7kj1I8UScFn8LO9p2sLllM1tbt7KtbRvb27azq33XlCjXfVcS6qYlxbnSLs4VQRDyiT1PQfOOXI9i4gy1iJ9D5wpMIBrM7Dg854vWMbwV0T0GTBeGJRQYp1ntNUmLazOcDQMK7QudU6hzxbh/M2LLEqSifugyO2jnqtPxdq5Eg8m+RDMWrGoZVC3nDa+6v/f4+1VSyK2vwC3PwY0PQcWCQTdlOVeyWGbf1BOiPxzDadc4b0Ely2qL8TjtI18R8LrszDEcLufOrxjh0pPPihlqE+bOxh7ZtDTFGXv7riAI71pOn1PGS+/Mw1F4kM0eNzceehnO/Ozk3JnZt1K7CrxlamJ25DX8YXXAb+4OKXYV0x3uPrFzpcFYJK5cAl5jV4TEgp10mGLB5pbNXDbnskm/v9ZedWDhibmZUTayzXgophW56Y1VYQc6bDqE+8BTnMFRDqaup45/eu2fKHQWsu5j63CZnUf5ymjjp1JiwTRrb4maaMtUNcOEeiHcQ1gDlw6aiCvvKg52HeTl+pfxOX1cOvtSqgtUhnVdTx2fe+FzNPubAVjfvJ7r1l7H0vKlNPubaQu0EdNjJ7zt2oJa5pXMw21347K7KPeUU+2rpsRdQiwRI67HWV6xnJXTVloONGEEgt20phbaS+eKIAj5Qts+ePiTUDYPvro116OZGKmL+PFo+nlZYqCYMu5Se3NeVzJTuSRadiZdE2Mg1blinnaFu7LnXIlHVbQZKMFruFgwV+HU6VwxnCtmmb0lSPXUQyIKNicUz1AXHk8sWOte+OUFKrb9A/9ubFTVoHIxwaolvNGmRLTzgkFY8QmwO2DOucPeXLFbHddWeLInVOxvVmkQ8ysLcTnGPlf82qWLeW5nM1evqs300MbMoqoiXHYbvaEY9Z1BZleMb81BmHxEXBEEweK0OWXEX5kLKOeKvvcptJ2Pw4rrMn9nZiTYvAvUaZXhXDEmM+aEwXKunFBc2aBOZ56ZPC/fY8F0HYJdyb9DGJEjvUcA0nZKTyZtARVhZ48VMKNs7GX2AG6HHZezmjjQYbdD3/FJF1cOdh8ElNV9U8smzp0+/IR4yqPrAxwSjWqnlW3wRDq9c0U5VkzjiogrGaa3kXqHg+tm1HBlv5/vSixY3hKMBXl478Mc7D6IP+rnSO8R6z0E4D/f+U8Wli4kEA3QGmwllogxt3gu3zn3O9y99W42tmxkS+sW6/J2zU6ltxKPw0NCT1j/l9F4lNZgK8f9xznuPz7iuKq8VVw+73I+e+pns7obMi8JdqU5V9ocdjW/EARBmOq07FSnXXVqA5I787E7WcPqXClM9pqa52UJU1wpchXRF+kbn2M04k8eX5viCkD32I+/hhJXUs+fdFKdQ66CQYX2ppCSFguW486V4R6zkClulc0Bm/GZP55YsP3PKsFpxyNWbDtlc8Hl4yWPk36bjRnRGCvDEVj+kRFv7op5V3C4+zCfXPbJ0Y9hguxrUeLK4prxvV9cu2YG166ZkckhjRuXw8bS2iK2N/Sws6lHxJUpjIgrgiBYrJhRjD0yF1230+aABoeDWWu/CrWrh7R5TghLXHmvOjUsxf54COxJC6lZan9CcaXRcK7MPD15Xr47V7bcD2u/Ah+6G9ZkbzKSr0TjUWtBrqEvO7vkW4Od4IJErJiZpeMTVwAqPZW0oKJa9J5GtGlLMjfIITjam9xZ9mrDq/ktrgS7wNpBpqmdWYF2KKwadNH0zhW7cTq1dr4HY0HcdveUG9eY6WngHY+boM3Gaz5vugAm5A2vNrzKv6//dxr7058/h83BedPPozfSy5bWLWliy8rKldz5vjsp95Rz7wfu5fXG1wnGgtQU1FDtq2aadxp229DRDH2RPvZ27qWxv5FoIko4FqYj1EGLv4W+aB9Om5NoIsqG5g20Blv5/e7f86eDf+K2VbcxzTuNI71HKPeU8+GFH8Zpd07qY5NP6AM6V/ptNgLBTuTwXBCEKU/H4ZTvD8L0Nbkby0SxOld8ymGQel4WSOgJuo2EiIWlC9nSumV8sWCma8VdDJ4SKJmlfh5PLJghYpi9IVkXV0znkGYHu2tQXNuQ4kqunSsx5VyxYsGM01Cv8byUzUteODUWTNeTu8pOROOm5Pdv/0ydVi0D4M8BdQx5Tb8fW8E0mHPeiDdXU1DDD8//4cj3m0FM58qS6pHL6POB5dNL2N7Qw47GHq44NfduGmFoRFwRBMHC7bCzYnoFe4MzsfuOsmnGCmYd3QqPfkplaboz9AHVdVRZhzU7zD5HnTdNfWgH9DhgT4orxiSrb7hdlok4NBiTgHeTc2X7I+p064PvDnGl8zD8+Ytw3tdgyeUZv/n6/nprB3RDfwO6ro+qgG4itEb7wOUiHK0Yt3MFoLZoGi1AVNPo7T5CSeaGOCRHeo5Y37/e8Crfqr5Q/R+O5vFKJGD3n6Bm5ZClhVnHdET4KtVBUV+TyoEeQlwhkfSnmM4VDBFjKjhXtrZu5eZnb+aLq7/IF1Z9IdfDmRg9DdS51OJ2i8NBoKNRFnKnCBubN/KzrT/j1GmncsW8K1hStsR6r6zvq+fNxjctt0mL4c6r9lVzw5IbKHYVU+op5dzacylxq3eqFn8Lezv3UuIuYZpvGtMLplu3Z9NsXDjzwlGPrchVxJk1Z3ImZ57wcuF4mDca3+DurXezr2sfP97w47TfP7r/UX543g+JJqK8Uv8KdT119EX6iCaiXDX/Kj686MP5L2COge5gBxHjPc9jcxJKRGkLdzEnx+MSBEEYkY6keE/7gTwXV1I6VxKx9POyQE+4xzpWml8yny2tW8bnXDH7VkpmqlPLuTJ2ccUUUayIK2e2nSum4FWgjoMGxIKlFtpPmc6V4dw+/U3qAmbfCiSdK+gqAs0xiijoxs3q1O5OxolVLeN4/3HWd6ly+2v6+2HNLSoSbApiOVcmoWA+F5il9jul1H5KMzX/GwRByBmnzylj59652H1H2TD3dK5ta1Algn/4KHzy0cwILGbfyozTk/buggrwVeI3FgB8Th/42yk7/Bo4oXXfWljxqcG31b4fIn1qMmQINOoG8ti5EglA/Xr1ff36/LfBA6z/FRx7S01WJ0FcOdabnNCH42Hag+1M803L+P3QdVQ5peZdRJumLP19sWpmTMC5UltcyN5eGyF7go6eukkXV1KdK0f6jnHs/quYffXdsOpjI195wz3w7D9C9alw2+uTOMpRYmU+z1AHAX1N6rwZpw+6aIK49b0pI5mF9lNBXHml/hV0dJ4/8vy7Qlw54kw6B46F21kaj03Zg7CThbqeOm5/6Xb6on1sbNnIb3f+liJXESWuEnT0IR0qNy27idtW3Wbt2BxIdUG11bmSLdx2N5fMvoT3znwvjx94nIf2PYTP4WNO8RxebXiVvZ17uf4v1w953Y0tG3ni4BN8+5xvs7R8aVbHnStaQh2gQbnDR7GriCOBFlojvSKuCIIw9ek8lPy+/UDuxpEJTMeDswDisfTzsoDpUil2FVvHSOMTV1L6ViAj4oopEJgii1l0P+lYz4kxxxkmFqzQmdK5EvNnZRPfcJiPmVlkbxXa96sNMZSnOFcscQUllIwkrvQ1q41rmg2u+h948ovq/GnLWHtoLTo6Z8ZszIzF4dSPZuTvyTTxhM6BViWKLRlnLNhU41Sj1H5XU29OX3vCiZGjXEEQ0jhtdhm/2bQIKtfxQtPrfOP6X1Px8Kfg2Jvwh+tVtmbDBvXh/MH/l5yEjIU6Q1wx+1YMElVLCWpqYubrb4c/f5lFgRaoLGdv+y4I9w8Wd8y+lelr0hfu8jkWrH59slwvEYUjb0yKIJFVDr6oTpu3q0ze0lkZvflUwQDUDuyMiyu6Dn/8OLTuBm85rWVqghqIVVJb6hn3zVYXe/B0OQnZw7T3HGV+psY7DOZjVeGpoCPUwas+Lzdte3BkcaW7Hl78nvq+ZQf0NkHx9BHvb0/HHup66rhi/hUTHfpgrAO8Wcq50vDOsKX2CT0poZiTUm0K7V43o5UO9xwmEA0Mu5idF/Q2UudMvh8fcdhZ2t+cPBAXsk5PuIevvPQV+qJ9rKhYQW1hLevq19EX6aMvonb4OTQHq6tWc3bt2aypWsOpladO6deh3WbnhiU3cMOSG6zz2oPtfO+t7/FK/St4HV7On3E+p1WdRom7hJZAC/dsv4ftbdv5xNOf4McX/phL51yaw78gO7RGesAN1e4yCt2lHAm00JathStBEISJ0JEqruzP3TgyQY6dK6a4Uu4pp8ytusrGVWifOveGpLjib4VoEJyj33A2ZTpXzDgwc84zwLlS6Cy05kMJPUEoHrLGmm2sx8yMUjPdPoF2dYGhYsFARYONtFnTdK1MWwqrPwGHXoK6dehzL+DJF/8egGtP+xK8d34yfWSKcbTDTySWwOO0Mats6s5hx8Li6iIcNo1Of4SmntCENnUKk4eIK4IgpHHanDLigQXEgzMJehv4bccm/uHmP8P91yrnwbG3Ui6twYfuGtsd6Hqyb2VuurgSqFwMHUpcKfjVxaDrLC+tAWC304a+5QG0c76gook6D0HFQmgw+1bOSL8f07kSC455opdz6tal/3zob/ktrnQfg46U3Wb7n4Ozbs3oXQwUVxr6Gzit+rSM3geNm5WwAhDspLVSFd2VuSpwO4buEBgNVcUeErFicLXRfuRVtWuoqCYTIx5ET7jHOpD62Mz3cffBR3jN6+GmutfA36EcZEOh6/D0N9J32B1eB6tvPOH96brO7S/fTrO/memF01ldtTpTf4rCPMArnpHcnTWCuKLpuuVc0TBiwabABiBTXEnoCfZ17WNNVf5GX0R76ml0pIgrTod6XkRcyTjheJhwPGz1kwVjQX657Zdsbt1MX6SPQDSApmkEY0E6Q53UFtRy1/vuosJbQSAaoNnfTG+kl0g8wikVp1Doyu986kpvJT+9+Ke0Blop9ZTiTl1YAK6efzXff/v7vNrwKt9c902+dea3qC2oZVPLJordxdyw+AZKPaU5Gv3k0Bzzg1uj2jsNn7cCOnfRlgirWNVh+m8EQRByTqAzPd45NSIs34hHkxvnpoC4Uu4pTztvTAx0rnjLwFUIkX71uzHEBudeXEnpwQH1d0CycyWS7FxJFVP8UX/OxBWrc2WAcyVkupBSY8FsNrA51WbNWJgNzRuYUTiD6YXDbI4z+1ZmnKZi0q77NQCbWjZR31ePz+Hj0hU3JUWoKcj+lEgwKwY6z/E47SyuLmL38V52NvaIuDJFmTpbNgVBmBJUF3uYWeYj3HYZAA/te4i2sllw85Mw/TRYeBmc8yVlF91yP2x7aGx30HlYRffYXTDr7LRfBU6/GQC7Dm5dh8JqFn38cRzY6Lbbadpwt4rIeuAjcNcZcM8lcPBv6sozB2S0u4vBZizuBTqhbT+07k3asMeDroO/HVr3wLG3J6+E0BSfll6lTg+9NDn3ky3M58hk79MZvwszFsy0k09Kqf22B9XpsmuIXvJ/6bSrj9DawolF4lQXuemIqnK6DmLw0uSV/pkiVJW3ig8klPNmg9dDgATs/cvwV9z5OBz4q/q/PeVD6rzDL494f/u79tPsbwZUHE/GMTtXSmYmd9CZWdADSahYsNRptumqznUsmD/qT4tk2tm+M4ejmTj1fQ3EUyzrR5zOYUUvYXwk9ARPHnyS9z/2fi56+CK+++Z3eenYS9zwlxu4d+e9VtF8k7+Jxv5GOkOdFDoLufOSO6nwKhHV5/Qxv3Q+q6tWc1btWXkvrJhomkZ1QfUgYQVUjNlPL/4p1y++noSe4D/e+Q9uf/l27tt9H3duuZMPPP4BfrLpJ9ZnSiwR49WGV7lzy52DYtPyhZa4Woip9tVQZSyotDnsEJLsbkEQpjCdRpm9zYgZ7TioNtjlI6kiiqsg6ZSIBrL2N5kRYGWeMso8ZWnnjYmBzhVNS4kGOzr0dYZhOHHFLLqfdFKj2iAtFkzX9aRzxVWITbNZx5m57F0Z1FNjPGYhsx8lVVwBMArvN7du4e+f/3u++OIX0fVhjnxMcWW6sUFR00DTeGSf6oL94LwPTmlHM8C+ZvWcvVv6VkzMaLB7X68jFI2PcGkhF4hzRRCEQZw2u4y12xZT5VpCa2Qfv9n5G7511rfgcymLqZ5ieOU/4Kmvq8nVnPeoxcs9T8KuP6sczlOuGXzjpitj5pmDIsX8PrVb1OcuQvuHg+D04HIXsahsIXu69rM72MqMn78nmenatDl55YHOFU1T0WD+Vnjtv2Hjvep8hwdqV8F7vqLEC3MB0N8Be9bCvmfVRNfuhKLpcOE3oXw+9DTCE7fC0TeS9zHnPLh5bXocma7DWz9TTo1zvgTTFo/2YVcEu6Fpi/r+kv+rxtNxUHV9lOVpQroZCbbyY7D9YTjyulrU8WSuXeRon5rMn1V7Fq/Uv5J5cSUWVgIDwOmfpqN2OXrd79F1G7NLJhY/Vl3sQY+rCWC73QZbHoCzPjv+iPAAACAASURBVAe1Kyc66kGY4sqckjnMa9rFjGiMRqeDt70eLtn9JJz+6cFXSsThb99X3194B8w+F3Y/CYdfUa/3E+S+vtb4mvX9trZtGfxLDHpMcWUGmDvIRnKukByyNkUK7Q91H0r7eVfHrhyNJAMkEtSFO4Hk7v+jTkdSCBPGTCAawOvwWnF2G5s38r+b/5etbVutyzxx4AmeOPAEANO80/jKmq9QU1BjZYTH9TjzS+ZbRfQnM3abne+c8x2meafxy+2/ZHbRbM6oOYOd7TvZ27mXe3fey70772VR2SJ6Qj20BlsBeGD3A/zDmf/A9Yuuz5+863iUFqMfrLpoJi6v+r9stdsh1J10+QqCIEw1zEiwmWeqvsNYSG2gycfjIVMs0Oxqo5Iprpi/y0Sn6QikxYJNSFwZUGgPSlxp3T3m3pUp51yxYsECBGNBdOMIwZxL+Zw+ArEA/lj2HEcDCRkbJjyGaGI9ZpoNCmsGR7Y7XBCBp+vVZs1DPYfY3bmb5RXL0y+XSCTXVlK6K9sCbbxw9AUAPr7045n+c07Imwfb+e7aXfz4+pWsmV02quuYzpUl7zJx5Zbz5/L0juO8U9fJF/+wmV/+3ek47eKVmEqIuCIIwiBOn1PG2m1NaF0fgIJ9PLLvEa5deC1LypckL3ThHUpoqHsVfndFcpdE1xF1umctnH4LnP152L1WldhXnQItxo7seRcOul9zl4rP4YPC5IL1KZWnKnHF7eKyrmPKlfKRX6nF3Y2/gRlnDB2j5DPElVRhJRZSnSYPr1eT9YqFajLYsitp0U5l52Pq79j+cNKa7i1TO5COvgEv/xAu/Vd1vq7Dc/8E63+uft78ezj1BjVhbt+vxITzvg4zjQlLsEuJJuFetYA9+1w4+iboCTWuqmVqjPVvK5fAUAvfk0ksokSmiSwixaNJJ87Zn1fRWh0HlOCy4rqMDDMUC1nuiPOnn6/Elf4Miyv7n1fPV1EtzL+Itg4VD6bHiphZVXDi645AdbGHRFRF+mwtn4He1YP29Dfhw7+AigUTHXkaR3qPADCnaA7att/zXk+cB0uKeMXn5ZLD65TLy1eeLprse0btRPOWwblfVjEyTh/0t6j/nerlw97f643J0vvtbdszX8KXunvOOMgYXlxJ7gxMdq5MjQVSMxLMY/cQiofY1Z7H4kqgnTojaWhp2RL2du3jiNOJ3t3A1Hi0c0tCT+CP+ilyjXzQp+s6v931W366+aeUuEs4u+Zs2oJtlgvM6/By26rbWDltJfftuo9X6l/hsjmX8e1zvp29aCtdV59hGRTLLSIBFelpWcx0aNunziuZpeIuhqJho3LWLrkCFn9gyItomsYXV3+RW1feitPYFa3rOq/Uv8KDex9kQ/MGDnSpOMtSdynVvmr2de3j+299nwd2P8CyimUsKVvC5XMvp7awNuN/ekZIJCDUQ6sRW1lVPAuXEZHaZrerzRx5QmuglWO9xzij5oyRLywIwrsDMwascpGag7ftUaX2+SiuWN0eheozLTVSKsviSpmnzIoF6w53E0/EsY82IjKRSNnYNEBcAdXPOAZyLq4MKrQ3Y8H6LdeKXbNb0VsFzgLag+1W0X0usB6zRBz2/xWP4dIN2bT0MnsTu5s48GLLeuus5+ueHyyudB5Wmx/t7rRju8f2P0ZMj7Gmag1Ly5dm/O85EQ+sP8qB1n7uf+voqMWVfWYs2LukzN5kaU0xv/n0mdz8m/W8tLeVf3h0Gz/52OopcywriLgiCMIQXL6ihh8/t5eDx2pZcdpqjga38pm/foZfv//XyQ9Vmx2u/60SE/b8JSmqeMth/nuVe2XTb9WXyZHkLvaBfSuANVExd4eYnFJxCo8feJzdHh947fB3T6gC+yUfVMLGcKXU3pQdmed/Ay75NnTVwdYH4e27oWGD+jKpWQkrPgKlc1Qu7rY/KgHHFEtqVsIN9ykny64/waOfhtf/R42lfAG88yvYfJ+67OxzVT/N9gGxaXv+Agvep4Sapq2k7ZmvXJwUqea9V50ufJ8SV7Y/oiLJuo4okWrW2crZYHcO/bcP5OCLcOhltThePIqFoLrXVHl78XT12J16ffK+uuuVu6LzkHpMZpwOvgp1sOCrTO/taNioFt685VC7GpZeAW/8L+x9ZrC4EovAW3epqLmyOeo1svTKEQWG+j41kS9yFbGickXaeRlj2x/V6cob0DUbjx9QLpZEtJQZZRPLPa0sdBHvW4U+7QU2088bhcWc3/AO3Hmaegwu/0+oUX8XOx6Dl34AZ94K535peOErGlTukvr16nVWsRAu+74VdTPX7oNAOxdrxTwIrCssIt7eif2lH6jFy5Zd8NHfwYKL4W3j9X/G3yd3Q815j3pNHX5FTcBb90JhVdou6L5IH1tb1c56m2ajM9RJQ18Ds4pnTejxskjEVcQgqM4Vs1fJ3zZkz5LrwDNAeiwYDvNgVlfC5pz3ZGZsY8RcxL10zqU8dfgpjvQeoS/SN6oFeEA53P72fbjs+7Doskkc6SjoabDK7C+YeSH7uvbRb7PR0XuUytyOLCvEEjH+fPDPLCtfxvLK9APXIz1HuOPVOzjQdYBPLPsEX1z1RULxEI/uf5RD3YeoLahlZuFMZhbNpLawlnt33MvaQ2sBtSjy7JFnAXDYHHx44Yf53MrPUVOgNhacXn06kXgEl92VvT82GoRHb4EDz8NF/wwX/sPQ70nxmIod7DgEy66GaUvSf6/ran5QPEO930dDsO5H8OZP1fvLZd9Xv3vmjmQcoatQfV66i5WwUzZXOUXrXoNdysHDpt/Bog/AaTerz87Ow8lNFMXTYckHcdYkHYKapnHx7Iu5ePbF9IR7eOPYy7gdXi6YfTF2zc4f9vyBn275KYd7DnO45zBP8zQ/2fwTLphxAcsrlxOMBdHQWDltJWdUn5E7l1CwGx76JPQdh2t+Sovhrq0umo5DU9+rWLD8EFfiiTi3/vVWDvcc5leX/Ypzp5+b6yEJgpANOg3nSsUCddzUtkdt0Fp0aW7HNR4sccWYR9tsKooq6lddJVRN+hBSnSvm55OOTk+kxxJbAHXsVrlYpVQYhGIh3HY3Wn+L6u/QbGrDmYkZEZa3zhXjeCAlFswUVwqcBdYCthnFlbXYsiEwHxvP27+EXU/hOf16NSZNGxwJBuBws8njpjPSa5313JHn+NrpX8OWuoZiRoLVrrKO+aPxKI/sV5FgNy49cc/mZLCrSY1507HROazCsTh17ep/7d3mXAE4a145v7jpdG79/Uae3NrEJUur+NDqGbkelmAg4oogCIOoLvbwrQ8u5TtP7qJu90dYtibKvu5dfOb5z3DDkhvQ0JhVNItrFlyD/bp7INyv+hjiEbVw4iqA016CJz4PgXaYfzEsvhyat6vLlcwc3JECBGJqojKUuAKwu7gC/aa1aKmL9ycqqp9xGhx7U8VrXXiHOq9iAbzv26pQfdN9aiGoapkSCQbuhFr5MbWY/dp/KbHjsu+D09gdv/zDcPQteOeX8MjNKVfS4EN3wZqb1OR064Nq4adioXK6bPujKqg3KawGT6laEG7fr74g6exZcAm8/G/quqmRZACuIiVkzXsvFFWrRaaKhVCasngd7Ibn/wW2PqB+3vVn+OQjyR0pgU545x61CDV9DVzzU3Wdh29Sk/32/fDnL8Bf/0U9b3a3suabLoAdj6aPSbMr0eS8rypBwIwEW3CJEuSWXKnElQMvqN1nlYvUwtqBF+D5f04W37fvU6+Vl34I1/8Glhn9M2371YJ68Qz15fIlo66K5jCzSO2iag+2E4wFRy4bjMfUuFIXBBNxFV+34zElTNjsSmwAWPUJ7t99vxJXdI1I+8UTLpVz2G1UeKrp7ToHV8Xr/GTeCt4T8GE79De14Hjf1XDLs+rA8k9fUAc1f/0X1f1z1f+XLHI3CXbBA9clJ8mgbN77n+fofBVTN6dfHWCdXrWaImcHndE+drhdrN74m+R1Hv00XP2/6nVnc8CZn03+bv5F6rk9+KLawfb2z9RrY9nVSoSZex7rj68nrseZWzyXYlcx29u3s7Vt6/jFlWCX+l8xn6v+FrVQqtmVc01LOVDtbUoX5Y5vw7vp5zCzmrie3J2nF6qD2YimEX3s73F+/jX12t54L9Scqv6eLGA6V86sOZMtrVto7G9kT8cezqo9a+QrH3kdHvkUxMPwl6/ClzcOjgTIJj0NqmMFWFK+hOnuchrDnRzpazgpxJUfvfMjHtr3EB67h99d/jtLYHnm8DN8763vWZ9z9+++n6cOPUVftI/YUK5JA7tm544z72Bx2WLeaX4HXde5fvH1lqiSyriFFX+HcoF21akF+drVcNH/Gfzekkq4Hx66MelMfPmH6r156VXKtXl8qzrIL5sLB16EXsNR9tIP1Ofb+V9XnwuJODz9DfUZBCrnO9yX/Cw4vg1+/yH1/60nktn7kf6kE3YQmhKG615Tws+B54e+2Cv/oRaEll6pvuwu9Z529C1KOg9xRd9xdX/TlkL5PG7ubeTK7g52EOag08lbPi/vuJ2sa1jHuoZ16SPQ4XJnBd+76gG8JTMhGqRr1+N0ON3otaso85ZT6R3hP2LXn9Xje85toy8IjgTgwY+pTRkAT32DlgL1nlftq8auqe9b7Xb0QGdeuMmeP/I8h3tU98Kj+x8VcUUQThbMWLCKhcmOKPM4yeTgi2oz0ft/ODkOykxhiSspx7gunyGuZGeh3owAq/BU4LQ5KXYV0xvppSvUlRRXNt8Pa7+sjtduVF2TG3b8gc9u+g8+Vb6ab6z5qrpc0fT0WGzLuTIxccXs8zDnSqOh2d/Mqw2v8pFFH8FhG+Py5kDRKyUWzCyzL3QmXUXmGkUuY8Gsx+ywmnd4616FEg8hTYOyIZwrDjd/LVB/1xXTzmBd1y6O+4+zvW07q6tWJy9nldknI8FePPYi7cF2Kr2VXDo7u6JmbyjK0Q71OjjaEaCtL8y0ohPMS4Hnd7UQT+iU+ZxUF5/4svnKRUuquP2SRfz3C/v517W7OG9hJZWF786/Nd8QcUUQhCG56ew5rN3axMajXXg7v8DKqnvY3r6dX+/4tXWZpw4/xY8u/JFaIFjxkfQbWHAJfHWr6qoYZaa36VwZWJS2qGwRDs1Bd6SX43qY6aP9Iy77gVrkLxxiN1BRDVz0rRNfX9Ng5UfVVwp7OvbwtZe/xkcWXMPnTYeKt1xZcc//enJBduYZ6V0waz6pxrPrT2rBad6FavcsKJHj6W+qHbc2Z9LZM32NijZp3692kpTNUwtK9evVYvPep9RXKmXzlKulp1G5ECJ9gKaEnN4GuPcDsPxaNQFu2JDMAd7XBD/fpASkULeKW1t6peqQCbRDoCN5H3MvUF/N29XiVzSgFslC3bDjEfVlLoaBcuCYj0nZXLWL+O5z1Y7i+vXJRbKCKrj4n9Xtmc6LR/5OOZQaN8PuPyfHYHfBJd/maLGa6M4unk2Ju4QiVxF9kT4a+xpZWLZQLQLuekI97sUz1O0X1Srh6/l/Um6b825Xr9mtD8LG30J/8+DXw6yzeSXczH9t/C/18ui6mrh/6YSdKwDVxW7ami+muGoz+/obePaC/+TKq3+i/vamLXD/tep/KRFVr4PmHUow2/sX9XqxO1X8zSnXwl+/DS07VIzXmpugegWs/yV602aOBI6DzcacJvV4O+dewPlaO8/WPctLRSWs1oMqfu7om0qQefRTaoDLP5x8rYISTAEOvaS+QC3u73xMfZ31eV43JrXnlyyCaJDtqN6VqxeMQ7B47b+VM6N4pnKsrbwBy4NSPF0JYKAEwPZ96rVtiivBLnjic/yhSD1P8XjyIKnKV4seKyDo8PMkXVz/uytVlnQ0oESbv38OZo1C4JggpriysHQhp1ScQmN/IztbNo8srhzfDn+8UT32oHpN3rxz5Pe2TKDrylmwe616jOZfBPMuRO9poM4QV+aVzGNu4Uwaw50cDXdwwkCfRFy5pNr3w0X/NNhhd/gVePnfleh95mdGHl9fM+x9WonOp14/sXhDk2hI/a8Zrzdd19nVvAm708vSilN4cO+DPLRPuRVD8RBffunL/OLSX3Dvznt5tk65Ts6oPoMbltzAXVvu4lifWoRYNW0Vl8y+hLZAGw29R2nwN9HQ10ixu5gfnPcD3jNdOarOrBm8KWEQET88/ln1fn3FfyW7m4Jd6jkb+HkcDar3l+btyfMOvaTeez96H+x/TgnimgYrrlfPc9Nm2PoH9T7kKoTTPqXcoBt/o75MTEcrqPfZ2pXqeax7VX0tuQLQYN/T6lSzJfO+C6rgA/+mNilsvFcJqQsvhQ/+WC3idB5WEYDhXvW3dRyCtr3gLoILvqnE0fYD6n2j87BanKtYqD7fdKB5Gxz8m/p/X/8L9TUUiah6P23ZAUAFcJHx9dnubuqcDv5SWECX04O3sJYgCTaF26hzOXk21kHjI+/n32ddwR/rnuEhr424GUkI3F57MZ8pW02ocQP/0/o6221x/vn0b7JyzWfUhoPHblGfoZvvgzM+A+/9Ryg4gSATDanNHvVvq9d9pJ/+jv34i5SgXe2rti4atNnw+1spTCQAPfkeOhH87crNXDZHOZmGi20bAwk9wT077rF+frn+ZTpDnem7rEdL9zH1GX/qR5OfD7qu4i0rl6QvFE4WTVvVXGw0DmJhctn4G7VJ5bLvn3ijlknzDrVZ6aL/M3ku1+565UQ99fqTow8pFjY6SIb439P1pLhSvgBCxq779gPJyyTisPZ2NfcprIFL/mXyxzxezGOt1GNcV4HaXBfJzkJ9aiwYKAdLb6SXzlAnC1igjpde+oG68L5n1Gdn+Xwe3HwXCU3jvs6tXHn0FZZA+kY+SBdXEgl1/BLqgU8+esL/L0so6DgEL16Gt1S97oOR/lH/XXesu4OtbVuJJqJ8ctknR309YIhYsALr/P6IipdKXZewxJ8cOldCMdW54jVEOU+4H/AMGwsWd7h40XDcXL3jGezFJfzF5+bZumeZVTSLPx38E95Egvfsf4pym42XPXbWvfx19nTuobFfRcB9dPFHcY42LSND7G7qTft509EuLl8xRAy8QSAS4z+e2QPAp98z710dl/WFixbwzM5m9hzv5V/X7uKuT5yW6yEJiLgiCMIw2Gwa/3ndSq7439d4bZ+fjxR+hS+v3kFXuINYIsbaQ2t5p/kdrl97PT+68EecXXv24BtxFaTv0BkBS1xxpIsrbrubhWUL2du5l10du5heOEp5xWYbWlhBHbAf7D5IkbOImoKaUX8AxxIxvvPmd2jyN3HX9l+w+gO/4uzKFWpBZzRMW6IOzAbiK4eP/lYJMDYHCV8Zezp2saRsCY4b/zjEH5BQi0MHXlROkmC3EjbaD6jdx111ycuWz4cP3a3u++GblBNhy/3J39esVAvq63+pFqZB7ea98Y/q8TvnNmjZrRbrQt1K8BluF23TFnjjp0oEMYUVb7mKZgG1gHPzkyre5cBfk304zgI44xa1eGTuPDvr82on/tYH4IXvGHegqUWR/la1qPbCtzm2XAlRc4pmQ6iXWYWz2N25m4Zjr7PwjbtVpJoxQQaUyFK7KukECvWo+0nFW64EqEUfUGOOR9lbVM4/vnI7OjofXnAdv9+jloon6lwBqC7ysLOxgLPLr2Nd2/3cueVO3nv1YxTe9AT89goVhQDqsf/0M0rQe/SW5E4+UDu/zd3fBVXqca5Wri9WXE/baz8iePQh7LrOzEPGbvO553NJopdn657l5emL+catD/Nm+w5e8ET5XF8DtX2qyJlzbksfcNUpUDBNHRQ6vKofpmyuej43/x79nV/y2ty5oMH5G/5An83GA1WVbD/0HHgWqAVOza7cbtGgWoTtOKjcOZpNuWBOuQZWfhw2/04tkIISBzfco75qTlXnFafYoUtnqdewKcZ0HIJwD08UFvD7acrxFm1NijtOm4tw+8V4ap7il6WlXFO/DxcoYSrYBY9/Br7w+ol3Q3bWqQXoQAesunH4GDtdV9GBjZtg9SeU40zT6Ap10R5sB2BB8TyWR2K8AOx667+htUH1NDnchgCpqR1lNrta3H7+n9X/wZzzYM3fKZfZGz9RoujG3yhn2ZIr4IJvJKOYdF0JoodeUgLlgovV//vOx9T/is2hFrGXfDAtvslft44DB59h1cKr0Gacpv5nTOda40a1uF46m86y2fTZbWjA7KLZzC1bxBsd2zmSCKnFqS0PqNtPjS/rb4Mnbk1GPu1+Eq78b7XABCoq8MkvqQX2+vXqgP+yHwy9eHvsbXjxe+p/xIxd3Pc0XHMnuIsIRfz42/dS0dusFuM7DkPnYRrtOj93w4ZEH6fNOI9rF1/Hmqo12OIxInuepH7XoxxteofC4hn8/+ydd3hVZdb2f/u0nJJeTkgllRpq6EUEAUERCxZkRMeCgzKWsaCOOqNiG3XGMhbUsYFYsNCbgFKkhN4CCem9l5PT297fH09yQgQUHed7fd/hvq78kbPbs5/91HWvda+eV35Es0bN37Y+RI5FGHqig8IDkgtz+93O5tL1FFjLuXqVeAcVEnO6jWGuqQeaohwmGPvxjRRJatoksga0Rz/u/xB2vQSh8ShZV0PWDCRzb3HMYxe5vyr3i2/u94g6HDS7M8LE5xZjfAfh+e4EQRw3FghDiaKI7zrkZkGQSipY/SdBrBijYMSdwsCw5TkxPv6jtyAXOrDlWfHXAX0Y3PC1IM2Th8PXt4uy9L9OPMdSJfp1TE/oe5Xo960VQv5x779EmUC0wxn/guRRYu7w2ARhY4wUROrIeYIsSxrWSZLF9DxdXuyHiM6E6xaf/bjXKeQy89bAyXVizkobL4h2cx9hpPDYRLttKRXkbWS6qCuAtmpSj37B3ce+hJY6qK8Tv0tq9ve/nLst+ziiUzOtbgMYBXkR5peRUGhVq3m15jtOFqymQKelMEgHqLn58Ms8WXOAaYdWiPKEd4fWMux730F/YBHqwbNh+Fwxr5+6bqnYK/pIY74Yk3/3BeQup+6AICZCkAJGoRDUWPFTf3ItwbveEka/EXOF3KThlFw9sr/duJb+00RJU5GImOxYe9jqYdorXa879rWI3L3gwTNLl0DXfF/A5vLNnWu14G4UtBSwqmgVN/W96cfL88N77v9AOB54bIJgmfu9kLzZ8KiIvEweBbM+6zrWK4qY44JCzs34/mOQ/bDpCUFIGyLg1o1nX0f5vaKuQuOEE8u5rE89DhF1FpH680ktr1P8/drGfFeb+N7pE37diIKWUmFQTx8vHJp+CepPCIcmRRYk7bWLf5xcUxTxzOoDgpCdt+fcZXnPFV4nLL5SRO1tfR4mPwMDZv57jgHHvhZz5kV//fcjWj12ERXnahXR1Oe67/khOmQgDywSzhmxfeC2zWJd43PjXPYHNOHd0Y6c1+kcFpHSSUCcSq4UfSuIFRB9/IIHfjzi8peiZLt4Tr9rfjkR3UEW6DodfOhQavgZRMIZ4WoTeQc1Px692hG50kFOR+gjKG0r7Uxqv+sNERUOgAL73seSdRVbFStIErIk8be8RbwHSKfmWwExV4FwTju+rNPxb/ebwuHhLOggV4x73oe6kxiaDRAbg7Nqv4hi/Yl2lluwmkMNQoJ4bcHyn0+utBMUdSqJBZv/yKSEC7i8/ZCjvV66RK5o2iNX/odyrvhkH972dZlBUSAqA6NT9AGnpDrj3HpAI9GkURPq9zPc6UIGVhnNrDz5BSuKVnS+S4QaIhKhfGWX69PC0riu53X/ydc6I3JPI1eaf5RcefO7ImosLhIjDPxhXNp/unj/o9CqVbx4dX8uf2MHq4/UkBSZx10TMjDqzpv3/ydxvvbP4zzO46zIMAfz7FX9mP/lYb7e38RF9oG8PmswBp2aWb1ncf+W+ylsLeT2jbdzx4A7uCXrFvbV7SO3MZfRCaMDcl4/BYvbglf2BrxAfigLBtA3qi95zXkcbzrOhUkXUmevC0hA/RBuvxutShvQEfXJPtaVrKPaVo0kSdTaa9lSsYUGZwMAZqOZrKgsEkISiDPF0SuyF1nRWRg0BryylyZnE9GGaDQqDZ+c+IS85rzAsx7b9Re+mv4VoWcsydkhKzInmk7g8rvIis4iqD0ZHRkTURSFh7bNZ33peoZ2G8rLF758una7SiUM7fGDAj/V2etwOhpIbq5A1VggvIiiM7t6ZM5eBnvfE4bjyFRhnIofLDZvA2YKEqNijzCWdxBTWgMkZnNOiB8kSCL3a2IjJPvFhv1Uw0RECsxaKhbee9+D1LFCSsrwg0R1ao2QWDNFC4NEjylC4q1D0uz7V2DTXylrygeDnu7fvQgr/kyiOZrjJiMVmx+DtnZSJTINBswShE7lHmE4VOuEh7xGL4x9bVUil82w26H39C6blHpHPfPWXI/T52Rk3EiuT7+HRewkVK8hRP/vb7DNoUJurrtmCmbjBqpsVdy75V7evOhNdDcuhyXXCGPq9Z+JDXLGRXBfrjAySGqxGTr8qTBKm8ziO0dndKnLsl6ToewzEmQJLQgDXEI2Y2QvGpWGUmsFn5as5oW9L+CTfexIiOfdMifdE0Z0CREHRPsb9xAc+5rCsX9kQeFSRnhHMPey15B6TOXI6jupl2T0sswQj0xLsNjInfS24lhxB0ZF4WzwAQf1QWQVfoNh6986k2OOvR8Shwly7MjnwuAJXRNqdmg+t+d3UoCNRgMLosXz3Q0TkW2n5FhAwts6HH30Nmo1bXydPpyZQ+4SUWULxwgPvJV3C/LR3SbkgToMugUbBYFzqsf/9r8L7/5hczpJEBAe5avu6czBdORzca+0CynUi2+foDZi+vBSslryIC6WXK1GRKHkvCO+fQdRYIgQfbvmsPg/cSjMbJcf3P+h8FpfOLqzTEc+63weiiCB7A1dK/3UKLOO+tv0V0HaDJtDed4q7mjZSblWy4y8pfylxYpK9goiZsx9YK8X3rat5ZS46iAulnhtRalOPAAAIABJREFUCHqNnu6Ror5KtRpYOFaUIedtEYEwbI4wpq9/RBgGNQYxLtUfF8TWuvni+9YcRgZOJvQntuYYEbteh8p9WKJSyVUrRJr7kZw+Ce2RpdTuepVqtYrqYCM1EQlEW2qZfnw5+uqDrDEaeFJjxalSke7xMNglIn5a1Gq2GA343MKIVV26jtXt+U26ICYCcMDazmhGnaygRqHRLfJXXKmO4s71z3Ol7GRWXDeaNGrSPR6ebmgmq2RJ4Log4DKAwyuhbK/4rjteFQdbSpG2vyQkKcO7C1KhYOPpOTJOrodtf4fBs0XbP7leGJu0RpH3q2izaJOnoiPa0RQjxv6CDeL7X/2BkJkEYbT85FrR/g0Rou+ZYgTJVX1QjPPp4wVh0uG92udyEdWi0f+4cSs8Cab+TYz53zwmiPsr3+qUwhw25/RrIrr/ZxIYaw0iD1ivS85+jjGy0yP3hwiNE3Pjxc+KcaBkqyCBBt9Itrk3i5vymLvuJmr8DjKCopg/egEjI3vDnnf5rGw9z0vNrAsW650obQg9/BK75DYeadjGF1EGEoMSkNIv4nBNDqXOeoyyTJ/y5SQVf4lda8BpCGWgKpjLvWpiy3IARYz/M/4FySPA3Ie6ghUAxEqd3yRabcDqt9FYvYe09j7At0/D968KMmvg76C1DLY8L8ia5JGCKDGEi3n3+HIxv/s9wvAVkdJOjrcI73F7vYi2UWkEuRcUCuseEhGtAPnrhfNGR1SgzyMkVr9/RbSdlDGQdiFKnyt558g7AMzqPQuz0cyC3QtYVrCMG3tej7TxcRHROm7+6bmmmktEO68+KP6ahawYklq829oHBMm7+w3xe/lOIcF5yUviOxZ+K8YhV6so/+SnRaRt1X7Y+oKYe3VGEZE19r4fj2SwNcCKO8X6A9qlO68SBEvhZkFmhsaLfhbeXZDk1QfFuVGZoq8MvP70NVIHnC3w/lThhGGIFGUZcSekjD7z+aeiYo/Iz+OxiXkkfXzX4642QXprTaK9R6adTjTJ/k7jcAeJ4vOId6xsH9vG/EmQd+di4PfYxfs7W8Va59TnuW3w6SyozxXfyRgtxr8zwdUm5r74QV2jyEEQXR1zXv5aWPMnUWe1R0WfT7+oK6lxfEVnVF1zsZhrzzRW/RzYG8V43fMSkcz826c75RAdTaIdHF0KV7wlou1/Lir2CKcF2ScM+hc93vW41yX6csqYruuoM0GWhSxtR+7MnLcFkfFzIcuw6u6uDl7VBwXB3Wc6+btf4RbrHpJadrLYVi/WquFJgpjvWNPaasW31YcKgqYD9gaxPhww89zKoiiifTSXiPbZIfv8w3N2vtbp4HVgEVz59ulRGz8ghc+IQG4PI06fE42kQRuIkvg3oiDKdom+FjcAblp9VpLQL/tpbV+nROgjQFGICBJjSourBax1nWuQAdeLPcXBj9nQkotXkkj0yTSoYK9WxWajgYk/bDPGSLH28Dpgw2Odv29/GQbdCMExZyyX09seudJSArpgDD2nQOsenLJbOMpc+tKZ37upCL66lU88ZRAiyI8jLXlUtFWcXX744BLR35OGCeI6biB4HSjAX1v2scNZRU5NDsPVarr5/XxbLhxVzGqDIBZt9Rh7innrnCJXFEWMF1X7xdyWeXG7OkSbIPklCbJv/klS7FR0RK0A6BUZLn8T/ao5gBKQBfP6vawuXs0neZ9Q76jHqRbf/SKHE+3UFxhZl0to4ybaAGQvvRUNoS4bB/RBeCWJzIhMJiVPYki3IWSGZxKuDz9jWf7TyK0WDoSp0SZKGu3sLzt73pWyJjvvbBPz/OPT+qDX/grRuL9xZCWEMW98Bq9tLuCtLUUsP1jFw1N7MX1A/P/pqJ3fMiTlRwwc53Ee/w2QJKkvEBDuPnbsGH379v2RK/778E1uLXd9ehC3TyYh3MBdEzKYkZ2IT3HzXM5zLCtcBoBOpcMjewCRwHp279nM6DGDQ/WHONlykqzoLMYnjQ94T9baa/nX0X/xVcFX+GQfYUFhWNwWrut5HY+NeKxLGZbmL2XB7gXEmeLwy37qnfXM7jObB4c82GUC2Vy2mcd3PE5YUBj3D7mfvlF9eXj7wxyoP3Daexk0Brx+Lz7ldL17jUqD2WCmzlGHX/ETZ4pjZq+ZLDy8EKfPyfyh8/ks7zPKreVcmHQhV6RfgUlnotJaycmWkyiKwuiE0QwyD2J71XaWFy4PEEIRQRHk1ORQ7xRRAUHqIAabBzOr9yzGJY5j4eGFvHn4zUBZUkJTuDf7XqqsVVTZqgjSBBGiDSElLIWRcUJ7/PVDr/Np3qfIioxJayIrKosb+tzAuMRxv7kJ1uqxYvfaz5gzoAOKorC1cisev4dJ3Sch+b2g0eGVvUhInZq6+z9kwqEXaNCo+bSqliyPh5cjwng/PIxZbXYe6XaBWLimjBWEgCwLY3PxVpSRf6RIb8CkNRFniBZRIKdIrjQ5mzjWeIwSSwkri1dS0FJAWlgaiy9ZzKqDLTy67Bi940JZd8/Yf7tOXtl0klc2FTCxt5k/TTNyy/pbcPgcTEmZwuSUyeQ25uL2uUkKTSIhOAGtWouEIArzmvNodbdyfa/rGRjRUxhKz2Dc/OLkFzy16ynGxo3kTVU8mPsGJO/+sPEP7KzeGTi3oy9H6SN5Y/xr9DUPAKDKVsUX+V+QFp7GJamXUG4t55b1t9DkEpJxV2VexRUZV3DXpnlYvFYmGZP5x9QPwRjJRZ+Po95j4X0pgaF+ldjwq3WirGFJEJWBzxTD/NIv2diaR1+vn/eqqjEpijDKXPJi5+a1Yi/K6nuoaMpHHnU3+uF/EBrSjSdh8wIIT6LS3IPn63ewtUFoCF8QP5E1my9Cq1ZR8Iwwpp6sszL55W2EmfcgR32N2WBm2RXLCNWFCsPE+1NA8dOgVvFUVCRRfpmbgxLoro8S8kYgjHXdR4n3KNyEB+G5ojJGQ/eR4h0b8kXkiaQWsoGFm1A8NiTgs5BgnomOZJzDyet1DbQFhTA6Xmx433CbuKD6BA5JYklMPG34uampnmi/LIzY4/8MI+Z1bqar9otoBRCe96PvhRMr8eetZq8+iLXBJvbo9XhUKvxqLd3RMq25gYusFqxRqVT2mAgqLRHVhwip2Isk+6nQaHjYHEWLunOjMqPNxp8cMvsnPMAxtUJZWxk11kqGOeyYKw/yXHQko8N6svCKL9lVvYvbN95OisfLSw2NPN0tgVinlcl2B5mmeI46azmh0xIfFMWwi54lLmEYRVufpiz3C7p53fT2eMjVBfFyUiZ5PgsS0MvtJUiRORKkQz5lfJMUBeUM4120rDDA6WSz6ccNeyN0MVzTUM1uycW6YBO2UzzAw1U6ko1xtFnKKFOJ50y0O7g/Ihuzx82+mt00aNRcYrMLg5DWRGVsTw6aQpjsVRHksohIzpA4Efmg0QljRgfh1oEL5gsC78hSYdT0ezqPRaQK47cpRhgg97zT6bXbAZVW5NVKGy8MWLvfEiTZkJtF+9v/gSBJTiVqJj8No+7qeh9HszD8ZUzsGs1wHj8LFreFY43HGB43/DQt+B1VO3h8x+P0ierDE6OeIFIXxj+/msG/nCVnuduZoVIUhrlcDA/vRfaoB4mL6olJa6LCWsGHu55nXdNBRgensHDGKgBu+2IKOY4qnmuyMi17niCuvn9ZkAmnoFmlYqvRgFGW6SZDqh9C2w1hXmCPQU+0309PT3t0U0I2XP8Ztvy1LNv6GEeDdMxttZDmbV9jSSpBVLWUiujEAdehSBrKy7fS1FZJq1pFT4+HBJ8fL/B8t0SWGlQYJQ3fuEJQudqYEC7hUnwsVndnYOH2zsL2mCKkTN0WMXZX5CADgR6sMcBFf8Ed2xfd4iuQFBlUGg5rVaxNGcSU2hIGWeq7vL9DkvjGZESjKFxsd6CNTO9MsH0qJLUwXI+6h2PNx9lYtpGru08lqfqIiO4r+lbMdxq9IOJ2vS4MbhoDnCFps1WSeCvaTKzfzxWtTYTJijg3a4bIJajWiTGggwj5eEan0fvUMk1eIKKc8tfRfOxzIvTRSN36ikgkQ7ggEtbc3znGqIMEwZI5UXiM73tfEF7O5s776oLFGNTncpHv69hXncQVkiCCLn4WNj4uxiegTq3muagIYmV4IKQv2oTBgnCyVAjZ0gseEIbZ8hxhxK7cC4pf3DK4myCv+l0jcq59cSOcWCXqwO8R493MT6ClhNoTy4gKTUabdbVwhtjwaKfEa/cxMOZeMZ6V7YAPLxV1NPEJ4UhwqnMBiNxR0/8pyuX3whvDxbc39xXEjjFaSB8HhYDfh+J1sLNqB5LOyMjEC7quuxVFRMc4mkTErUoNbTXwwVQR6RWWDMP/IMhmFDzXfERbw3Hsu98g3mVDa4wS5XQ0i/x/qRcIyVdJosRSwkPbHiLWGMs1Pa9hdPxo1Cq1INwWjhV1DKK+7tzdGVlrbxI5sypyhEzd79ecHknVQZqptCIiduvfOo/pw+CeI51zg6KIaNGS7ZA2DrmdOO2SLFtROiPFJJWITvS54fAnkDScxusWM+uLidS0X/JwUzO/a7OJuezGdkngl3oIZ6I53woi8u+9RHRl1gzRFuMHwZzvOteKbiuO3W9iSLkAqbvYL/llP1sLVpCy90PSCttzZfW/TpAmp343Z6toGx0R4WoddtnLwZBIBlz8EiF92+WwDy4R5w2dI4heScLitnC44TCJ2hBSjq1BpdWL+X/9w5T0upibpXq0ai3/smvpXrIDLntNRPs15rNHtrNMbuX2MU+QmtCuClG2S5Adcf1FW47pKcraUgbvju+Ube6Yy70u2P8BiqOFNZKNg7KdK/rfxqy1s5CQOGDMRnN8BU/ExPCVScedbg132NxiPZGQDbd8A68NAks5N8WZOaDXc3/36diOf8XbJi0JXh8f951L9MgfRP2/MVxEBEPAWcbdcJy9/S5n8GULT5P9Bhj1ySisXisrK6tJHTKXQ4OuYfa62SR6vayrrIGb14scnke/EP00fYKYQ774Pc0eK5OSE/BIEnE+PzUaNfeYR3Hb1LeFA1LVAeH0Ed5dfKOdr3V9ePpFoNLwVc33PBHTmc/1MruLmZZWfhcv9qmf1jSQ5RJj9YtpA1iktHBz1s3cl31f1/u52sQ6vHKfGMcq93YdP41R4pknN4i5CoTj0+RnwNGEu2gzflcrxuBuoAvG05DH2rZ8jqoVKvRGGtQaQsKSONiSh0pRONQiId17hP3fP8fviz8lxi9z1aA7hM3BUdelaJKisCj9egaOfRQUhaXf3MOyis3MbG3hMpsdlaTGMfNjbElDMBvPrPrx/xtTXtlGXq2Vx6f1YcHq4+jUKo48MbkLcaIoCquP1PDkquM02tyMzYxm0S3DfnO2j/8UFEVhQ24tT685QWWLE7VK4tv7x9E96tyVY/63Izc3l6ysrFN/ylIUJfd/oiznyZXz+K/HeXLl3LC3tJk/fnKAujbh5ZgWbeKdG7PJMIewonAFT+9+GpffRaQ+kvTwdPbW7j3jfQwaA2lhabS4Wqh31J+R2JjTbw53D767y2/HGo9x/ZrrTzt3Zs+ZPDL8EXyyj7ePvB3wcuyARqXBJ/swaU1M7j4ZlaTCoDEwKn4Uw+OG41f85Dbmkt+ST629lkprJUcaj1DvqD/tWR0YZB7Eh1M+5GjjUW5adxP+jk3gz4RJa8KgMQQkgQD6RPXheNPxQD2sLFp52gLph+9n0pqwtC/SgtRBuDvyLwADYwYyLG4Y9Y56PH4PE5InMD5pPFaPlTXFazjZcpL08HT6RvWlf0x/9BrhubWzeifP5TyH2WjmsvTLmNR9UiCiyOF1sL9ufyBfgISESlIhIeFX/Dh9Ttx+N2pJjV6jJ1IfyZDYIUQaIlmUu4h3j76L0+ckIzyDi5Ivok9UH5JDkkkMSUSv0WNxW3h699OsL10PwIi4ETww5AG2Vm5l0fFFaCQNdw68k2lp0/gs/zNe3v8yADsmf0xoVAZfnPiUpw69ythuI7hryH3kNuVi0poICwpDURRsXhtFrUWsLVlLWVsZAOlh6WTHZqNTCwLnSMMRTjSf6FLXEUERLLl0CS5HONNf34HT6+fBi3syb3wG/y6OVVmY/vr3yAosvGEwoZElzNs074z942zQqDQ8MuwRJiRP4IuTX7C3di9JIUn0ieyDy+9iTfEaTjSf4IbeN/DQsK45OT7L+4xncp4BRH0vGL2AeZvncbJFJA4dbB5MYkgia4vXBsqUHJKM0+ekwdlAQnACNfYa5FMMFP2i+/HGRW8EtJ3v23IfG8s2MiFpAmnhadTaaym1lFLnqGNItyH8vu/vWXR8EWuK1wTuMdyQwHPmC1gSbOC7yi30jerLtT2vxeqx8uahNzjW1Ll2igiK4NZ+t3Jp2qUsOr6IJceX4JE9aFQabupzE1ek3MyFL36PTq3i5DNTASioszLp5W2EGSXMfV6m1l6LVqVldPxopmdMZ0JNEc05b3BLqESpSqyXVIrChQ4nvb1+krqPI2nwbSSZs6hz1PGvPS+xsS6HOJ/MLa2tXG6zEdSxzNKH0Xj5P9mAjU0l6znUcIQBugiCvG52KjZuNaRxb+pl0Osy7sh5gu+rvgdgSreR7G89SUM7gWVQ6bgxYgCT+v6O1OSxNDgbWFu8lv11+0kNS2WoT0WILFMQmUCBpYjClkIKW05i+xnJQc+EPiHdmd77el7Y+0KX7/xDaCQ1PsXPDb2u56Hhf6bGVsPkryajBgxqPTa/66zX/hROJfA7kKgyYPe7aJFERQdJGuJCEokPjqebqRu7q3dTba8GxFg1J/NqfjfwDvY3HOJ403F0ah0mjYm+0X3Jjs0WBo5lc/EVbcYpSch9pqOatICQDsmLtmociy7H1lKEOes6YYCTJGGczl8rNvK9LoW4Qecmz1P6Paz4ozBqTHtFSEN2wGMXuUkq9wqDR48pXSVJfG5hcKnYI8rtd8PIu6DH5B9/ps8DpduEt3BIvDBu/pdsRH9rUBTlNENsUf4K8iUfVe4W3H43/WP6kxWdRaOzkdzGXOqtVQS7LEhtNXxjLWS/o+rsD2jHzX1v5r4hwhD0yNYHWV26nqmJFxIfno5apeaC+LH0szWjOvwZyvGVbDAZeTY6kha5cz2hUhT6oSPNPIitlnyaPRbUkoo74ydwq3kkVQkD+KRoGcsKlgWSEQfLMi/VNzJAH8vqYbMoxcvU4v0MKPiOYq2GR2OiOBbU6QygQmK8IZ62tkr2aiUkReHxpmausQrZkkejI1kZEkyGx8Nsm4thyRNoLVhHi6TQx+0hSpaRgQ/DQnkrMoIeQdFclTiBUHNflpauZXfNbhI0wYxvqqZKo+G7dsJVQuIGl8INTfUUJg1mV4SZ5ZYT2NrJjySvjzmtFhwqFfndemHuNpDZsaMIy1sHR5fiBz6IT+ONIB8+wCArPNjczCini60GAycj4ohMn0xs7ADSVHr6rvgTRnsT6EJE/3M0wd73aJSd3JGcTh6i3g2ShukeiVl1ZZ0kVQeM0SKSpHKPuM9NK4VBfM87nVFCxig+0nj4e2Q4A9we/l7fiNn/gzVrr2nCaJm/VhjhDZFd886FdxekSlslisvCVoOBLSYDl9rsDHW5OQ0defWAg5c+y59OLqapPfnzJLuDv9U30iXe1xAhHGBOrKRVJSQlw4LjRJmsNZ3ntZNRe40mXs0cRjdbE9OrTxIuy7wTHsZWo4FEr5fHmloY7XThlCTywuMIcbSQ7HYKyc/YfsIY35AHQ25FufTvSAcWwep7hdd9TC+8NYcp1kBliJlBPa8k0u+HnLfYEW5mSe8LGVy6h+n1FZjTJ4O7jabKHJ6JCmdje1u6kGAeTJhIvqWIjW0FqFxtjLdaGOt0YYzNgnEPo2x+ki2OCrYZ9Myw2snyeLBKEs9mZrPG24DSHqlqViQer6tnnNPJXn0Qn4WGkOnxcEv6lVgufJjZa2ZS7e705k5Awx9D+nCJ1YJUsp3j0Sk0B0czvHQfusyL4XdLKSxcz4FND1HrbqFZpaaf280UKQTjdZ9wvOEwu8o2EWKpJrmxlEy7hWhZzPdVGjXv9J+Co+EEd9SWkzbyTyK30vHlwmhdfRCLSuLj0FCWhIeDSsNsKYzftbYRGpYo2lCHVNQVbwl5VGstvNIPh+zlD5n9OeRtwSgrOFQSoX4/ayprCM++RciEAnw4TRCJaeMhaRiObS/wWmIme6Li+X3xQaa1WVDdugmShkJzMUu/uIbng9z0c3v5x4i/ENbvOh5dcxNrm0XE8Winm9kWK6OcDqTxj+EdNodlOS9SVZXDtWXHSPA4UZDYd8EfWa5Y2VjxHU5Jwezz81iPWYwP74X16zmc1GlpVauwZExgZ2Q831V8F1irhPhlxjid3GeX0bsszErJoEIR66A4tHxUXkqc2gAeGweDdMzpZsatUpHgV/h04jtEWKpF1JDs5ZhOx7NREVi0OlKMcSTbmoi21hOpNpLd1kQyWrj1G9jwZ6xl37MgOjIQHalBwodCOCq2l4j++VpEGO+Gh3G9xcqfm1uQkTh05Wvsk1z0ry0gcc97TE1KQFJg4zUbCcl5j8tLPqZWo6GbLpxXJ79Nnb2OD3M/pMpWRYrTSlprHddYbWQOvhVHj8nM2ziXfQY9vVQm3qIb0YpCk07PQY2KflmzmLLncXyKn42VtXT740Hy/XauXnU1UZKWLcVF+ELi+Vrr432jBq8EI5wuRjldjHC6WJbYi1fVNvpG9eUaTQxP1G2hh8fHV1FjOZS/nO+Mega73AwNMmNsFXtWBt8ItgZcJd9h93toUqu5MT4Wu0rF9PTprCwSkljJXi/lWi3TrTaeaWwWxGzJdt4I0bMwIozL0qaR5YPyhqMkut0k2ZpJai4j0evFqVKxTx9EbpCOYEVFbEgCNlcrhxUnBTotRkUmWm0kw+1iaksjcX4fi0NDeSc8FK8kMdbhpJ/bw9LQYGo1Z45EMvt8bE68Ci5+huP1R7huXVc5tBhDDDf1vYlR8aNQq9SESzoiQ38QbeT3QeEmkb8zY6LIr/kbgcvrp+9fN+CXFXY9MoHL/vk9jTYPX84dyZAUoUbg9cv88ZMDbMgVdpK0GBMf/n4YyVH/pgTi/0K4vH7e3VaM0+tn/pRe/9PF+f+K8+TKeZzHbwjnyZVzh8vrZ0lOOW9tKaTR5iFUr+HdG4cwPC2KKlsVDY4G+kX3Q61Ss61yG8/sfoY6Rx1Z0Vn0jOjJzuqdVNoqu9wzOzabeQPn0T20OxvLNlLUWsScfnOIC+6a7NMn+3ho20NY3BZm9JiB1WPl6d1Po6AQpY+ixd0SMPjd0PsGjFojH+V+hNvvJisqixcueOHsYcI/gKIo4n2cDcSb4gkNCmVF4Qo+OPYBVq+Vj6Z8RGaE8PDaXL6ZZQXLaHW30uZpI84UR4+IHrh8LrZWbqXGXkOcKY4rM69kQMwAqm3V1DvqyYrOYkTcCLQqLcWWYlYUrQgYgwFm95nN/KHzqXfU89SupyhrKyMzIpOkkCS8spc2dxuHGw5T2lYKCEP3oyMeZVi3YZRYSlhTvIYlJ5bgOoMhM1QXisPrOM1wHx4UzsxeM1EUhXeOvBPY3IEwPEQZoojUR1JiKQnovf4cGDSGgLbu2WA2mvHJPppdzWgkDWqVugtZdCpONbRO6j6Jf1z4D4CAp/y5IEgdhFf2ntVYnBGeQUZ4BilhKUxPm05kUByXv7GDwnobozOiWHTLcNSqX8co+cL6PN7cUkSUSceGP13A3oZveSbnGeJMcfSN6kuwNpgKawU19hr8ih9ZkYnQR9ArshdV1iq+rRDh62pJ/aOE3/Njn+fStEu7/NbobOSqFVeRGpbKmxPfDBB2T+16is3lm7vcb7B5MMWW4oC8QGZEJu9Nfo99dfuYv20+PtnH6ITR/GPcP7p4qS3KXcSL+178yXrQSBrmDZrHO0fewelzopJUZ/0+GpUGvVqPy+c6IxE1vNtw/jz8z6SFp/HPzQX8feNJYkKC2PvoRAAK661M/Mc2QoI0vD83kqd2PxXoUyCixmRFptxaTpwpjsyQ7myr3f2T79CBSLWB8cGpjAzuznaVl7VVW8/ad54b+xzT0qYBIuz/1QOv8vGJjwPHE4MTidBHcLTxaOC3n/rWpyJUF8rklMlM7j6ZSH0kCgo5NTmsKFpBQUsBBo2BhOAENCoNLa4WrB4rkiShQsWYhDE8MeoJjFojq4tX8+j3jyIrMimhKWTHZpMWloZeo+efB/8ZaBePDX+M63pdh6zIDF8yPDAWZcdm0z+6PxsKllHvsdA3shd9zYMos5ZxoO4ATp8Ts9FMSmgK1bZqKm2VaFQaZvacye39b8ev+Nldsxuv38vwuOGBHFwWWw1eVESZzF2M1V6/l5VFK/mu4juu73U9oxPOQSpHlkUOGmOk2HD+EB67kLNKyP5Vknbj9wkP4fMRIufxC1DWVsb2yu3sq9vHkYYjtLhb8Mk+DBoDYxLGcFHyRUxOmczRShttTi8HbB/zwbEPTrtPpD6SiKAI/IqP0nbHg5TQFMKDwqmxlFLn6SpLF6wNxuYVclDJIclUWCsC64a0sDRMWhNHG4+iQoVeow8QLgCDTYkcs1fjQUYnqelmikOvNQYIfQCjSsvfnDouNMQJqU7FT973L3JjuAbnGfqdFomp+kTqVbDbUXFOdadCxQDzAA7WHzzj8e6h3bF5bIHozFMRFhTG7N6zsVbsJqdmF3k6QRnE+XzUnMUgdupz4zUmPJognH43ZqOZ/hE92Ve3jwpnPZH6SKIN0V3qY7Q2iiGKFoMMeksluCx4JYmjej17IuNxSgpTU6ZyXc9rycjfDBv+zNLgTllMgCjU3OZWk6+4OKoBe1AwPp2RIJWOOIeFGGs9dRo15RotGpWawZF9GJg5HbVai81jZW3+F+TbO8m8qRFZjEybyp6mYxQ2HCG1sZSBditeSeJwYj++c9fik32khKbUz3LKAAAgAElEQVRQZa3Eq/gYp42mrymBRkkhri6PSXWlmBSZN8LD+Do0BBnR7gbF9Oda2UjWoS+huZg2lcQ/I8L5LPSnc31keH2UanX4kNvrG1K9PibZ7Ix1OtljCuHr+EzqnI1kRmSSGZpCm89Bpa2KUksJnvZ52ijL/N7SRpNazeenPFelKGR4vKgRpEObWo2m3abiOwtRrVMURjmcjHM6+dZoZLuxU+5sqs3OYYORanXntVqVNrBeSJIlKlSda/JUjxe1pKZQqyLZ62Wcw8mKYBNt7RGmvd0enCqVkOMEIv1+ptnsHDOFcuAMTdMgy0T4Zaq1px/s5faQ7vXxTXAw3vb61CgKM+xuDLoQinxtNKrVOFUq6rRanHS1LZlkmVSvlxifn3BZxpQ8Cl3CEFrdrTQ6Gymr3kuF34EsSYT4ZT5OuoIHbEcpaCvhKquN5LRJfOYowe1zk6ALJbHuJJkuJ7F+P2+Hh1Kh7aTq+rncXO9VkxHZmxWtuSwxdcotJXh9pGtD2YYDtaIgI6FInfV5qd3O6uDgQJ2pFYUL/RryTWFUujujD/SocLXXw4/19QSvjya1Clf7WGWSZeJ9Pgp0OuJN8ejUOkrbSunu9TK3xUKk2sADMRFYZQ8qBWQJBru9vFtdgwb4NHUgL9HM2VyuJGC83cFEh4sjQVq+NZmoV6tQA2keLwXt41Oax8uK+ja4dhGLW4/ywvH3yTDG0cuUwJ62IupPIevMPj/1GjUjglN4d8YqsDdS+s/+3BUVSqnu7JLIGkXh9t6zyWk5wf66/YHfE71eJtmdfBYajFOlQq0o+Nv7y/fBwwib8R4VbRVcsuwSVJKKgW4fTZKfMu2Zn9XRR54Z8wzj4i/gws/H4pPgnuZW3owIw9t+b52sMMrl5tI+s4jvM4PP8z9nXfFavKfsGwaYkvjoqlU8vuNxVhWLKE+jLLParifm4r+JiL5db/Dhruf4e9RZJBoBSREf4+dYWENkGetZ1pIxujAuixtNKlpiyvbQXH+URo2abJeb/rPXQeIQ7F47l359KQ6fg9Hxo5mQPIHJKZM7Jcf/F+JwRSuXv7GDSJOO/Y9NZO7H+9mQW8fDU3sxd5yIwPvX9mKeXnMCnVrFnePTuePCdII0//flwM6jK86TK+dxHr8hnCdXfj6a7R5u+2gvB8pb0alVzB2XxjVDkkiK7OopoCgKXtmLTq0L/J/blEuDo4FIQyRmg/lnJZP/IVYUruDxHY8HNvMRQRHMHzY/YKCssdVwrOkYFyZeiPZXSDwpKzI+2Rd4n5+Coig0uZqICIoQYfo/gRpbDe8de48gdRD3Zd93TteUtZVRaa1kSLchpy2i6h31fHLiE6weK7GmWOxeO6uLVgfkyLKishgZP5LStlIO1R8K5KDpwFWZV5EQnMCqolVdDM4AcaY4sqKzUEkqFEVBQUFW5EBkkF6tx6/4cfvdlLWVcbzpOH7Fj9lo5k/Zf2Jswli2VGxhQ/FWmtxVVFgrsHo7k84nhyTz/NjnCQ0K5a87/8r+uv2khaVxe//baXW3svDwQlrdrZgNZu7JvodpadMC8gP1jnou/vJifIoPvVrPIPMgfIqPVncrKlQE64KJ1EcyPmk8E5In4JN97KreRX5LPiCIpNSwVEbGjyTa0CkTdqqHTGxoEGvuHkt08K+3cHX7/Fz++g7yaq1M7hPLwhuyUZ0jcaMoCu8fe59XD7yKgsLAmIFcmnYp9Y568prz0Kl19Inqw8CYgQztNvSMfc4ri816FxkHRH0uL1xOta2a6enTGRw7GLvXzqd5n1LWVsa9g+/F7zURFRzEieZcjjcd58rMK9GquvY5i9vC83uexyf7iNRHEmOMISU0hVBdKF+e/JINZRsAeOGCF7g45WJ2Ve/izs134pN99IjowQ29b+BA/QHWl4iIppm9ZvL7vr8nyhCFT/axung1Cw8vpMpWRWpYKvdn388F7fIcu4ubmPXubmQFXry6P9cMEUSrxell2DObcPtkHpjcg3njMyhsLWRtyVo+z/8cq0e0yThTHO9d/B5JIUnkN+ezpWILFdYKKqwVVNoqqXfUo5JUXJxyMbN7z+Zo41E+yP2AWnstP0T/6P5MSZ3CIPMgPs37lFVFq1BQWHnFSlLDUrucu7N6Jx8e+5DRCaO5vtf1aFVaNpVv4pMTn5DfnI/Va0VCYljcMMYljqPUUsq+un14/B4yIjLIDM8kIzyDzIhMUsJSTvsmHW3H7rVj0prOeSyuslWhVWlPkw6otdfyyPZHyG3KZem0paSEpQDwuzW/40jjESYkTeCFcS8ExqqOMaMDXtmL2+cm+JSErxa3BZWkIkT3C5Pnnsd5/JdBURQRPapSB/p8jcXJhS9uwe2TefGGcN7LX0BEUAS9onph89j4vur7AFECguSe038Oc/rNCayfamw17KzeSZGliBFxIxgZP5K1xWt5JueZgOPE2ISx3NDnBkbGjcQre3lq11OsKBJ5X1LDUukV0Ytvyr4JkMKjE0bz5MgniTXFAlDUWsSSE0sobytn/rD59Ijo0fXl3DZqD3/MGqysqt5BaVspUYYoDBpDIBIVhDPHfdn34fQ5WV64HIfPwbS0aVyWfhkllhK2VGxBLam5sc+NpIWnsa1yGwt2L6DOXkdqWCp9ovpwSeoljE4Yjcvn4qPjH7GpbFPAgea7iu8obC3sUjSDSsefzWOZHhTHYp2P14q+xqf4GBgzkOzYbKweKzX2GvKa8340IjkxOJG3J71NUkgSe2v3svjEYrZWbO3i8PJT6GbqRkpQFDnNuSjAdT2v42D9wS5kzS+FUWNkaLehbKvcdk5lmtx9MgtGL2Bf3T7u/e7eMzoYdHjVnwnZsdmgyBxuOIKvvd3MyJyBQWNgTfFqLO42Lk27hNl9bmR18WqWnFgSaF/RhmicPufPTj4dog0mFBVV3q4JlaenT6fSWsGBH5BxPcIzeGb002haK3hy/0scctURqzZwSfQgMEazqeEAFT9wLtNIGrK7ZZNTkxP4LTE4kWfHPsuAmAG4/W7eOvQWHx3/CFmR0al0TEmdwo7yb2lq76tRfpnFcVNISp+M0+vg44qN/Kt+J47299er9QTrgrtEyKsVheGqEJJSJxBsjGFz6TeU2gQZaVBglDYKnz6UMsVNmb2myzce3m04Bo2eLZVbz1p3GSHdmauOQXHbWeivo8jTfNZzT0Wsz8dzLQ6GzjtETutJbvvmtnO6rpvRzNS0S/n8xKc4zuBQdnPm1WwqWk2FLI5pFYV/RI8lffSDfFLwBcsKl3VpH5EypOuj2OvpJFSNGiNTUqdwRcYV9ArvwcLlM/nIURIgBuJN8UQrEqGNhaR4vUy32ekVlo5v2Bxykwby4s4nOWItBcAkaVh82VJCdCHctOxyqv1do4oHxgzk4QHzuG3j7dgkhUi/H6tag7f9O0xMGs+1hmTKizZS6WygufswqmU3++r2nfbuCcEJ/O2Cv5Hl9rJ47R94Q+viKoeXRy5bDMnDWVu8loe2d41kD9YGM9A8kJyanEBffXrkE1zeY4Y4oXgLbc2FzG/Zx47qHZi0Jq7reR3jEsdRkbuUjflfsvUU4jBYY+IvIX14zXqCSl/nHGOWgqhXhPOcSlHYN/ljtPEDcflcTP5yMi2nkDzhagNzB91FWkQGuyq2sqtqB3nt9RltiGb9jPUEqYO4a/2tbKnbE7iuf3R/Gh11VP/IeKtSFMx+P+8Of5KUrGuptddy2ZcX40Lmnqih3DZlYWdOFFlm+aIJPC6JtpHikxkbkk6tRkOF7KDc3YyjfS5MC0tjkHkQbr87EBU/wDyA3pG98fg9NDgb2FW9i53VO8X+2GDm3ux76RnZk9XFqznedJzxSeO5usfVnft7WYZ978E3j4v8o7dtCkQd+2U/fsV/zjaK3zo+ySnnz8uOMjYzmsW3DuedbUU8uzaPSX1ieffGIdS1ubjo71uxuX08f1U/Zg47S2688/g/j/Pkynmcx28I58mVXwaX18+9nx1ifW6n8TDDHIxaklCrJKYNiOPWMak/6UHQ5vLy4vp8vH6ZOy/M+NmhnFW2KursdSSHJhOlj/rVNDYL660cLG/lykEJaNS/gmfybwQ+2cfhhsNEBEWQFp7W5ffN5ZtZlLuIEksJDw9/mOnp0wFhqGl2NVPnqKPR2UhSSBIpoSk/q65tHhulbaWkh6dj0BhQFIUnVuby0a4yxmZG8+6N2bj8NiqsFVg8FgabBweiHmRFpqytjOSQ5ADh1OZpY3/tfobHDT+jhu/e2r1YPVZGxo/EoDGcdvznwuuXufvTg6w7VotWLfHJnBEMTYn86Qt/JnKrLVz++g58ssJlA+J56Zr+P9mHFEXB5ZUx6NTkNwuCqGd7EvFfAkVRcHj8mIJ+3PO2A+uP1TLvkwNkmoP56JZhxIaeISnoOaDGVoPb7w4Y5AGONx2n2dXMqPhRASO8y+dCkqQzemR5/V7yW/LpFdkrkN+gutXJlW/uoK7NzVWDE/jHtQO7XPP53nIe+uookgQf3jyMcT1E0k27187S/KWcaD7B3YPuJjHk7AlfXT4XPtnXhRTwyl721uxlc/lm9tXtIzMikxv73Ej/mP5dri1oKaDF1cKwuGE/Wj82tw+3109UO6GnKAp1jjp0ah2R+l+/Lf478Pq9XQjtYksxuY25TE2delreifM4j/P4z+PRZUdZkiNkUTqMFafC6/eS15yHy+/C4/eQEpZCQnDCOd271FLK5vLNTEiecBpBrCgKWyq2EKwLZkjsECRJotJayef5n5Mens7l6Zf/W+u2U2XVDjcc5pMTn2BxW5g/bD5pYWk/cTXsLGxkwZoTzBmbypWDEnD73QF51B+DT/axrHAZm8s3kxicSFZ0FqPiR3UhnB1eB17ZS1hQ2GnX1zvqKW8rx6A1YFAbKLeWc7jhMK3uVu4ccCcxxq7JnyvaKlhetJwGRwMOnwO3zw2ScAZJC0sT84cCXxZ8ybfl33aJaJzVaxYPD3sYl9/Fawde40TzCfrH9GdI7BCi9FFoVBqcPifVtmoanA1EG6LpHtodh9fBvrp9HG86jkalwaAxkB6ezjU9riEsKIwTTSd4/dDrWNwWhnUbRu+o3hS1FnGk4QhqlZoBMQPIjs1mYMzAwDfaW7uXpflLMWlNROojyW3KJacmB7/ip190Px4Y8gBpYWkcaTzChtINXaRIQUQTzx86n5HxIn+GV/YGorQ6UNxaTH5LPlnRWSQGi3m7ydXE7prdrC9Zz57aPWRGZHJNj2sYEDOAky0nKW4tJiwoLLC+TQxJREHhm7JvePPQm3j8Hv468q+B55a3lVNuLUdRFILUQQwyDwrMebIi0+xqJlIfGVi3KIpCQWsBm8s2s738W2JNsdw95H5Sw1I52nCUtw6/RXxwPPcOvrfLOgIgrzmPPTV7mJo6lRhjDBa3hVe+/ytHGw6xYMxz9E4c2eX8Rmcjq4tWE2WIYkLyBILUQXxbsoFNh94hNTiRq4bcQ2xUJ2mpKApH6w7QYq9laPL4LmvqZlczO6p2kNecx6j4UYyKH4UkSew8sojl+14jIiyJ9B6X0y0iDaPGSIguhMyIzMB7y4osyER7HQ3OBixuC3avHbffTYQ+gih9FPHB8WRuepao4m1Io+4SeUOAB7c+yPrS9aSFpXFL1i30jOxJla2KsrYy8usPU1KVQ//wDO65+C1CdCE0Ohv56OBbHK3bT6GtEo2k5rFRf2Vi2iW0OJp4cOV1nHA18MLAexg98JbAO9o8NpYXLGNLwTL6RWdx69AHCQ4KIbcxl2/KviE9PJ2JyRO77jUUhfIdL1FpraT3BY8RYWrvrxV7oa1S5DkL7hwL/LKfpfteYX3hCu4c+iDDMy8DoLa5gI/2/J0jPgt57TLN705+l7CgML4v/44/fncP/nZSxaAxcM/ge5jVa9YZx8xiSzGLdjxNXlMuWUkXMDJtCqPiR3X2DZ8b79Ev0CQOQ4oR39/utfPkrieRkEgPT6d3ZG+Gxw1Hp9ZRZavi3SPv4vA5eGrUU6eNi37Zz4H6A/SI6NE5xsl+lKoDrHPX8ty+F1BQWDhxYUDW8v4t9+P0OflD/z8wIXkCBVW7+TrnJeKC47jp4tcD97a4LRS0FNDobMQjexifNP40B5tGZyMH6w+SGZ4Z2DesKV7Dw9sfBuDqHlfz2PDHUEkqClsLWVeyjrUla6mz1zEpZRI39L6BftH9kAq+EfKsF/0F2vvwd+XfcrThKHMH3hEgK9w+PxaHF5O3ikUb76ZXdF/GjXkMlT60S19qcjUF1B7OBU3OJk62nGRAzIAz7mfPCJ9HyCZqf9l+6z8JRVHYVdREbZsLr18mwxxCdvezR/qcDR1rlrnj0nl4ai/2l7Uw462dmHRqnr4yi+/yGlh5uJoBSeEsu2PUOTsjnsf/PZwnV87jPH5DOE+u/HLIssLqozV8sa+C7wsb+eFwkhJl5NqhSTRaPTTb3YxMj2Ja//iA0fZAeQv3fHaQimbh5aFVS8wcmkx29wiig4MwBalRqyT0WjUZMcG/eOL0+mW2nWwgNdpEWkzwT55fY3Ey9dXttDq8XNKvG6/OHIT2fznBUtfmIqekmTEZ0USaftyrpWNeOFDeQvco068andGBjlDeDkzrH8erMwf9WxJbFoeXk/VW+iWEodeq8fll3t5WzLpjNfx+VCozBiectiE5UdNGpEl3VkJAURRyq9t4ZVMBm07UoVOreOuGwVzUO/YXl/OnsPJwNfcvPYTXrzAyLYoXru5PUqQRm9vHRztL2XyijkxzCON6xlDX5uLTPeWcrBMyZfdN6vmzFrGF9TYOlLUwuHs4GeYQ9pe18OSqXI5VWbh+WDIPTO5JxI+0l4pmB5e8th2rSxg/kiINLL5lOCnRQuNZURQOVbRS1+ZmdEYUIfp/P4LsXKAoCltONrBkdxnf5TfglxXSY0ys/OOYM5JGD391hM/2VhCi1zAgMRwFhfE9zdw6JvU3kRTxWJWFm97fg83t49WZA5mSFfeT1yiKQo3FRVyY/jfxDudxHv/X4PHJ6DT/ubWBoih4/coZn6EoCnm1VlKjTV2Su54J5U0OJvx9Cz5ZQSWBrMAXc0f+RxwE/jeh3upi6ivbabJ7UKskFt86jFHp0aedd1penJ/Azz3/TKhrcxEcpDltvlIUha8OVHG4opX7J/cg3Nh1fm6xe3hr2zHSEqygq0Gr0nJl5pWnRaT+lmBxW6hz1JEZnnlavdXaa1ldvBqT1sSYhDEkhZybvO+vjV/jm/43QlEUGqxuzD/ldGOthROrYNDsgMHYK3spbi3uQtb8nOcCp30zn+z7zTp4+GW/yF95SpmLWotodbcSZ4ojxhhzxujj/2lYXV7+tj4Pi9PHM1dmEdq+znf73fhl/7kTBr8CPH4PC3YvICM8gxv73Hja9+9QWnB6ZBbtKmNISkRgHvTLClvy6+kVF0pCeFenvAarmxlv7aS2zcWnc4aT3f23MXcW1Fk5WNHK9AHxp60D8mrbeHz5MbISwvjLtD6BunB5/QRpVP+R8UxRFB5bfizgyNGBv0zrwy1jUsXeLL+BaouT0enRgb0iCAeyFYeq2FnYRM9uIaw6XE1BvY1/Xj+IywbE4/XLzHhrJ0cqLYFrJAlWzhtDv8TTHRjO478H58mV8ziP3xDOkyu/DmosTorq7agkKG928I+NJ6m3np4rw6RT0zsulHqrm8oWB7ICiREGUqNNbC9oPMOdBaKDg5jcN5aBSeGE6jWEGrRkmIOJCQ6i1eFly8l6qltdXDEoIbAosrt9fL63gve+L6Gq1YlOo+LxaX24YXgybp/M7uIm9vw/9u47Tq6zvvf455m+M9t710qrYvVqucgd29g4xgUXMBAwAUwSbiCEXEjCvZCEXAI3EHIhgQSIIQQwtrEBY2zcMMa2bFlW73W10mp7bzM75bl/nN3R7uyutKO6sr7v12tf0jl72s7M75lznt9TDnbw5qFOYgnLp2+cx+qZ+bzvu6+z9sCx7uA3LijhG/ctT/YgGIolONw5QIbXTWGm/6QrV3rCUVpTXiNrYX1dB49vbGBbQzfXzS/hk9c787v86wv7eGF3C9X5QZZU5rB6ZgHXzisi5PPwzI4mvvfyQfJDPj594zzmlBxr4fPcjmY+/ehmugaieFyGa+YVU50fpHNgCGst18wr5m3zi5MV3+FonL95fBs/23CEnAwvX7lrCTfML+GXm4/yX2vrCPk9LKvKZfXMfC6vLcTtMiQSlud3tXCovZ9LZhawsDwbl8vQG46SsJCT4Rw7Gk/w+IYGPvPYFqyFd62o5JebG4jGLbcsKeMPFpdRUxhib0sfm+q78Htd3LK4jIXl2URiCbYf7aGtLzL84GQoyvKRH/LzxOajfOf3B+gNxyjM9HP/mhpe2NXCm4eOdSu/vLaAz92ygPllWURiCf7hyZ388LVD+Nwu3r26ij+8rIaW3jB7mno51DHAkc5BtjV009jtDCXgc7v49vtXcN1FZy6xMuLlvW088MP19A85rU/nlWTR3Buma+DEc91cOaeQD185i6vmFGKMoT8S43DnAPXtA3T0D1GY6Scv5OWhdYf52YYjJIZvAypyM2joGjsnTm7Qy61LyinPzSAnw0vX4BDdA1GqC4JcMbuQT/50Exvru1hSmUP3YJRD7QNkBTysqS1kbkkmz+1sYUejM6yGz+PiqjlFGONU9vm9Lt53yQxuW14+pneOtZaewRjZGZ7kzX8snmDzkS5e2tPG2v3thPxuPn7dHFbOyCORsGxp6GZgKMb80mz6h2J84ZfbeW5nS/KYK2fk8ZW7llA7SXI1HI1z77+vZfOom3aA96yu4ou3L8ZlYH9rPwlrKckKjLm2EYmEnXICeHdTLw+9UY/P46KmIMTAUJzf7mph29FurruomC+8c2HyAfW1A+18+Afr6Ys4CSxj4O/euZDbl1fQF4nRF47RG4kRjSVYWpVLwOumJxzlUz/dzHM7m1lalctnbprH5bWF9ISjdPVHKc8NTNgjz1rL0e4wu5t66OyPcu1FxWOSsdG4U24+v7OFWCJBaXaAkuwApTkB5/85AbL8Hlr7Ivz3a/U8ueUoNQUh/vS62ayodt6rpp4wLmPIDHgI+dyTPuCdqDIrGk/Q2huhJxxldlHmhH9PIuEMaDKStLXWsq2hh7r2fsLROAlrmV+Wzfyy7NOWQO8JR9l5tAeP20VpToCcDC/9kRh9kRiVeRnH7YlmrWVvSx8Ja8nJ8JId8BI8zmsEToKzo3+IqvwguRledjb18NqBDgxwy5KyKfUks9YSiSVOWEkPzvffpsNdvFHXQWVeBrcsLhvz2rf3Rdjd1EtvJMaVcwoJ+sZXZO042kN5biBZMdwfifHklkayAh6unFtE5hR7zaVjKJZga0M31flBirJOrcFAe1+Ev358K8/tbOH+y2v49NvnTem1m0xrb4SfvlHP0e4w962uZlFFDvtaevmLR7awt7mXv3rHfN53SXXyc7CnuZfP/2I7aw+0U5GbwT/csYhr5hVPevxPPbyJxzY0cNXcIipyM/jJunoum1XAD/9oNRvqu0hYy6oZeXjcLqLxBK/sa+NgWz8DQ3ESCcuiyhwurskf875sqO/k3367n+yAh09eP5fqgiCv7m/jn5/dQ3FWgL+5ZT7loyqoovEE//zsHp7d0czc0iwunVXAgrIsynIyKM7yT9pDOLVcTSQsb9R1YIHiLD/F2YHkdXUPRtlwqJN4wnL1vKJkTFtr6RyIcqRzgLa+CIsqcigM+bn/+2/wuz2teN2GaNySG/Tyiz9dw4yCEOFonEfWO/ePXreLr92zjMWVOWw+3MVfPrqZoViCd62o5K5VlZTlOH9n18AQX3xyJ09sPspVc4u4e2Ul115UnHbZ8tA6ZzgUn8fFDQtKuW1pOZfWFuBzu/j8L7fzk3VOxdXSqlx+9OFLkn9/R/8Q7/3u6+xs7CHkc/Pwxy5jYXkO1lr2NPeRF/SeuJL7DNhY38mnHt5MdoaXL9y6gOXV6bdinu6GYgl+vqmB5u4wVflBZhaGWFyR85ZrTX24Y4DecIwF5dkn3HZbQzdf+OV21h/q5F0rKvnSnYvHPC9Za3lhVwvZGd4xid6GrkG8bkNx1tQ+q/GEZSjm9N4+VfGE5Sfr6mnoGuSPr6lN3oeNXO/rBzt4cksj111UzDXzis5IBXVn/xBrD7Rz7bziKf1NhzsGeOiNemYWZnLH8opTaqQWiyfoj8SJxOIUZfnH/H3tfRGyM7xjyrNtDd18/McbqGt3hjZbVpXLD/9odfJ5cvR93KH2fl7c3Up9xwDhaBxj4O6VVSytmtpcc32RGHVt/TR2hxkYirGqJp+K3AzC0TjP7mimvmOAW5eUJ0fA6AlHOdDaT1lOgOJRf0t9+wAf/eF6djX14nEZvnrPUm5YUMInHtrEszuaCfrcfO6WBbxndRXGGAaGYrz7P15LVurPLAzx6z+78oTvzVNbG/nKb3Zz18pK/uSa2hN+VuIJy882HAHLuOei0YZiCdYeaOf7rxzkt7ud4byvmVfEd/5wVfK9+fXWRj79yGYGhp8hP3n9HD55/VyeGl4/uySLb79vRfK7a0RLb5iO/iHmlWQlrzcaT7C3uY9D7f009YRZPTOfheXHkhlN3WHyQl78HjffenE/X356F8Y4z9zRuGXdwY7kNWw+3JW8ZoDq/CCFmT68bhdbG7qT1zvaC39xdbJhbDga53svH+SbL+xjMBrnfZdW88XbFx/3dZW3PiVXRKYRJVfOjL5IjO+8dID9rX2U52YQ8Lh4YksjB9vGjnt869LyZEuXV/e18cibR2jqDtPWF2Ew6jzYdw1GJ/zCBcgLeukejCYriANeF3989WziiQQ/WHuI7kGnMtrvcRGJORMQLqrI5kBr/7hjGgOXzSrg1f3tBH1uPnvzRXzxyZ0MxRJ43YbSnABel4tDHQPEE8fKztygl40CTakAACAASURBVOIsP/khH32RGG29Q8QSNnlD1xeJ0dYXweNyMbs4k/LcABvru9h4uGvMcSYzcp880aY+t4uiLP+YSnGXgXcuLac4O0BTd5hfbj6avM7JKud9Hhcrq/NYUpXD2v3tY1qGgNMjYaSH0WjV+UFuX1bOsztb2Nl4bGzq3KCXeNzSO1whXFMQZHZxJusPdSav4X2XVvP3ty3iya2N/I+fbBzX82m04iw/7f1DJ3y9Rr/PAFl+D7cvr+CRNw8TjjrrZxWFMDiV5VOR4XUnExarZ5691krbGrr54pM7WHewI/nezyoM8YHLa6jvGODlvW0EvC7etbKS1TPzefDlOh7dcCT5Go08dLT3Dx33PAvLs9nT3Es0bjEG7llZxfULSvin3+xmd3PvcfcFyA54+PUnrsTncXH/g2+w/ejYMcr9HhdlOYHkw1eq4iw/1flBEtbSPRjlSOcgkViC/JCPFdV5GAOv7W9PfpZGu7y2gAOtzg3/CLfLEE9YvG7D+y+t4b5LqphdfOL5OgaH4rywq4VoPEF9xwBff24PCQvLq3Np6YmMibGgz01tUSazizNp7x9ix3DSLy/opSDTT1VeBrOKMqnIzcDrceFxGTwuZ8jE3+1xurIf7/NekZvB/Wtq2Hi4i2d3NDMUS3DJzHxmFYX4ybrJJ2rOC3p514pKnt/VMq6szfR7kgmaDK+bheXZlOQEiMctg9E4R7sGOdI5yGD0WLno87i4bWk5ZTkBth/t4c36zhMm+II+N9F4gmh87B84qzBEY3d4zPGz/B6unFvItfOKmVkYIuT3cLCtn8c2NPC7PS3kZPiYU5xJaU6ASCzO4FCc1r4ITd0R2vsjyddwVmGIv3z7PN6+sJTm3jA7jvbw1LYmnt3RTDTuvHZzSrJ4bkczB9rGx32G183FM/O5aWEpSypzeHF3C7/e2uQMaxBL4HIZllXlclltAZfNcpLHsYTlR6/X852XDtAbjlKQ6ccYODTJ5xyccvGuFZXcvryCgkwfGV43veEYrX0RXj/QwSPrD4+7Pq/bJCsqorEEfq+bWUUhKnIz2HS4a8z7PFJJPMJl4NJZBQS8broGhsjwuZlfms3ckiy8HkMsbtna0M3zO1to6BrkxgUlfO6WBRgD//zcHl7c3Up1fpCllTnErWVXYy87GnvGfHfOKgrxnour2dnUw6v72sfEYlbAw7tWVHLbsnIWV+TQ1jfEF365nae3N5Hp9/DAVbOYW5rF3z2xIxlfPreLS2blc/38EtbMLmB9XSc/23CEHUd7SFiwWCrzgswryWJWUYji7ABFmT7C0QTdg9Hkz8BQjPll2VxeW8jOxh7+6Zndyfdmflk2c4ozicYTxBOW4mw/5bkZZAe8WGtxu1xcMbuQ6oIg1lo2Hu5i7f52/B4XLmP4txf309Z3rGHEnOJM7l8zk4R1ytDynAwq8jLoDTuVQV2DUWqLQswrzaJrIMrOxp7k+qbuMC/ubmUofux76+q5Rbx2oH3Md9n184tZUpnLliPd/HZ3y7jvwlUz8ojGndegKMvPjIIQ2QEvXQND/HxTAwkLv/z4Ggoy/Vz7f19kKJ4gy+9Jlqv5IR8X1+Sx7mAHnRPEuNtlmF2USU1hkHA0we/2HKsg8bqd+Hij7lhjhpDPzZ/fMJc1swsJ+tz85SNbWFc38dwLIZ+b919WwwNXzeJo9yDfeekAr+xvpy8cYzAaZ0FZNvdeXEVeyMc3X9jLnua+MfsHfW7ygj6Odg8my4TKvAw+eHkNR7vCPLOjiSOdY++R5pZksaupF7/HxaMfu5zP/Xwrm490J4/VG47SEz72neN1G25ZXMavtjQSG/XaG+N8h66akc+TWxvHNZgJ+tysnOG0jl5Ukc2CshxKso9V9L2yr43P/XwbBSEff3h5DUc6B/jK07snfP2LMv009YQxBkI+pzxfPTOf/3vXEsLRBJ/86aYx92Gl2QG+es9SvvHCXl474Lz2FbkZXDqrgPesrmLljDy6B6M8s72ZQx39+NxuAl4XZbkZzMgPkj2cGA5H4xRnBSjLDSQr73rDUZ7e1sSvtjQyGI2zuCKHJZU5LK3MZUZBEGOcRjc/WlfP3z2xPVkujdxj3LiwhHmlWexp7uVXWxo53DHAHcsruXuVM4zX8zubefNQJ26XC7/HRXG2n5qCEFkBD/ta+tjf2kd+yM/SyhwWlGePSeJGYnFe3dfOYxsb+P3eVuaVZPHhK2fxtouKiSacGCkI+SethLbWsrOxl1f3t9HUHaa1L0JJdoCPXjWLwkx/skxo6BwkL+ijvT/C157dM67sry0K8cBVteMqSgeGYvxqcyM/WlfP3uZe7lhewadumEt+yMfu5l5+t7uV1w60s76uEwuUZPvJyfDSE47RMxhlXmkW772kmrfNLxmTQNzf2k9LT5jl1Xlk+NzJnte7mnpJJCxxa0lY65Sj1iYbH2QHvBQMV3C29Ibp7I86n+ma/DGv0cPrD/O/fr6NyPD9yB9fU8tltQX4Pc65DrT1s6m+i7r2fvY09/LsjuYxzy2XzSrg2+9fSU6Gl7q2fv768a28ut9pyPbOpeXcv6aG7718kF9tacTtMty4oIQ7V1QyFEvQ2D3IjqM9bDzcRVN3mMUVOayYkUdD1yC/39tKz2CUdywu40+vnc38MifxE084yZsnNh8lw+tmXmkWRVl+mrrDNPWECfrclIw0EMkOMBRP8HdPbE82sqnMy+Bf3r2M4qwAaw+08+PX69l0uCv591w5p5Cr5xbx/M4WtjV0c8WcQv7sbXO4qDSLpp4w24cbctR3DOBzu1hWncuyqlxKsgOTJlz3t/bxgf9cx5HOQS4qzeLf3ruCvKCPb7ywjxd3t1CU5WdmYSh5/7C/tZ9fbj6a/D5YUJbNn71tDm6XobU3wo7GbjYd7qKzP8rKGXmsmV1AfyTOjsYeesNRllblsrgih031XTy5tZFdTcfu+ecUZ/Kxq2upyMvgX3+7j9/vbSPT7+GK2YWU5gTY2tDNliNdROOW8pwAA9E4XQPOMecUZ/Ly3jY6+ofICzkJmdFl8Ahj4N5VVdxzcRXdg1F6wzEy/W5yMnzkZHjJyfDSOTDEg6/U8diGI2O+E8EZjry5O5z8HvO6DfesqiISS/DkcNkETt1AdX6Q6vwQ6w910DUQxed2Jb93q/OD1HeMjd/VNfksq85lx9EeXt7XRl7Qi8/jorknwv1ranjvJdV8/bm97GjsISvgJS/o5e0LS7lzRQVPbW3iUw9vSn7+37m0nI9fN5tH3zzC8zubycnwOvcxpVlcVltAyOfhrx7bwoZ65/NVnhPgA5fXMBiNs7elj0g0TtDnIRyN8+r+9jGNrbwu5++4bVk5f3LNbP79pf08tqEBgLklmcnvyzuWV/DzTQ3J78jCTD//793LKMj009A1wM/ebOA325uIJSxLK3P4k2tns7e5l/9ae2hcY9kbF5SwemY+j21oYEdjDwGvi6WVubw+nEj5/K0LuH+N01Plq8/s4Zu/PTY/mc/tSjZUiKXcx9QWhbhlcRl7mvt4ZV8bc0uzeOSBy8YlqZu6w7xR18HbF5ae0d7Dcn5QckVkGlFy5eyx1rL+UCdNw0PVVORljGs1MZGRVhrPDj8g94WdZEV9x0DyxuWi0iwyfG421neN2bemIMhHrprFncsr+dHrh/jy07uSD3ml2QGumFPIqhl5vHmok0fePDbZ5FfuWsI9q6p4aU8rn3ho47jKhskqENOVFfDgSmnNUpYT4J3LyllWmct/vnIw2QL/+vklfGhNDR0DQ2yq7+KF3S0cGE4QZPk9vP+yGRxo7R8zD86ID62ZyWdunkd9+wC/2tJIOBanIOSjZzDGr7c2jqvQywt6+dq9y1i7v53/eOkAQLIyLC/kY2N9F8/uaBpT+ZDp97BiRh5v1nUke1xMpCDk465VlfzljfOSrVVf2tPKk1sa2Xa0m0PtA8wqCrG8Kpe2/iGe29GcvKEuyvJTmZeB2xji1tLWF6G5J0JNQZCPXzeHty8s4RebjvK93x+kONvPl+5cTGVekPr2Ab701E6e39mSvJkuzPTz1XuW4nUZvvbsHt6s76QyL4N5JdnUFoWoGO5RdXFN/im1Sj5VXQNDvLS3jQyvm+suKj5uq7T69gEefPUgD79xeMx7kBv0Up0fpCDko71/iKbuMPNKs/jzG+ayojqPnnCU1w90UJ3v3OyD04Ltya2N7G7qpak7TPdglNygj6yAh20N3WyodyrS/u29K7lpUSngtHDaWN/FxvpOdjX1sqAsm7tXVZKT4WVnYy8v7mkh0++hOj/InuZevvfyQZp7xvdwm0hu0Mua2kLWzC5k8+EuHnnzcDL+M/0e8kLeZAJwdU0+/3DHojE9uNL19LZG/uwnm5KfF7/HRcDrTiZsT9VNC0spzQlQ195PwsJVcwqZURDi7361fVwi84YFJXzjPcvxe1x884V9fOOFfQzFnaRvpt9DZsDD4FBiTIVvRW4G/+fOxbyws5kfr6tPllWjHygn4nEZaosyMYYxD9ojCkI+blxYSmGmL1lJ0dwTpqk7PKY8WFGdy3tWV7PuYAePbWxIPvx7XAYLU0osn4jHZfC4TTJxmppcmEiG183iyhyCPjexuGXLka4x1z0VWX4PAZ97XEXqiIrcDIxxhvaJxi1ul8Hndo1JLE0m4HUR8nnoHoyOe/CciMdlyA/5kg+/IZ+TKOoLx1g/qufeVPk8ruRwVJMpCPlYNUlFvDFORUU8YcdUpmT6PVhrJ/1uKM8J4PO4Jk3Cng4hn/u4302pVlTn0huOsbelb9zv5pZk8oeX1fD15/aOibuTtawql4rcDJ7c2phcd9XcIi6dlc/Xn907LmZvWljKn98wl4fXH+bBVw5O2PhitJsXlfKt960E4PO/2MYP1jqTv+eHfMmeHSMKM/2snplHyOchnrC8Wd85ruLYZZyep0094WSvY5eBd6+uZndT75heoyMy/R4+c/NFdPYPse5gB3Xt/TR1h5Of89TGEZPJ8nsozPLT0hMe937OLAzRG47S1je+UUFxlp+sgGdMw4q/v20h77+shuaeMHd9+9UxZW9FbgYfvnIm6w528NS2Y/dVtywu45p5RTzy5pFkq9wRtUVOovfNQ508vrFhwuuYURDkD5aUEY1bvvP7AxMm2v/4mlpuWljK4xsbeH5Xc/K6svwe/t97llOY6ee+77w2rtFBYaaff3//Sj77sy1jPrdet9PoYPTnpDo/yNGuwSmVM+C8vyGfB4vTgniy/bIDznBmrb2R5DY3LSwl5Pc4LbOPozLPaRQy0et2PBW5GcwoCNLSG+FgW/+E3y+jP19ZAQ8rZ+SRH/Kxq7GX/a19ZAW8lOUEaOuLJHssj5bp93DfJdW8ur+NbQ09435fmOnnqrmFHO0aZFtDT7ICtDDTxz2rqrhqbhFPbW3ksQ0N4963rICHnAzvhBXQk8kNeplVGKIkO8C2o93Jz4jf4+LimnwOtPZxdIK/Y6ryQz4um1VAZX4GTd1hfrHp6LhtXAYq84IMDMUmfM9uXVrOdRcV8bnHt9E/5PRWyPJ7GIzGk0MexuKJE5Zf6ajMy6Aw0ykfTubvzwp4yA54x/XkBue1vXJOIS/taZv0PmrkPvtE5yjJDlBT4FT4zygIkun38MUnd4wpizP9HowhOfTuZFbPzGdnY88JtzsTrp9fwj/dvYQjnYO897uvT3qP7HYZLq7JY2llLhk+JzH0xObxn6njKQj5KM/NwOUybD3SNabnfUVuxrgEfn7IR9fA0LjP19LKHL71vpX8x0sH+P6rdclj//v7V7LpcBdf+c1uhkZ9F/k8Ln784Uvoi8T44INvACSH2ExVlOUfHmEBLp2Vz/q6zimXsZl+D0Gfe8KRP0YrzPTxjsVlfGjNTA629fOR/1o/7hwfvmImn735Iv7xqV189+WDyfX3rqpi85GuCe/vYeL76KyAh1lFmWQHPBMOA5963s/9wYLksrWWrz27h2+8sI9VM/L4x3ctZnZxFr3hKBvruxgYijMUT1CRGxhuUHesp7mGYpSpUHJFZBpRcuX8FY7G2dfSR17IR0WuM0n6E1sa+eozu8kP+fjolbO4cWHpmMrobQ3d/H5vG2tmF7C4ImfMF/fPNzbwxSd3ctOiEv7+tkVjhiRq6Y1wtMtpUV9blElJth9rnWEoWvsitPZGaOuLkBXwUJjpx2UMjd1hWnsjZAY8FGb6iMQS7G3u5XDHIPPLsrlqbiGVeScei/ZAax8uY8aMTTpiX0sve5v7uHx2YXLorfV1HTy7oxkAj9uwpraQy2ePH0d8xMhQNBvrO9l8pJtEwvKn186mKt+5tlf3tbHxcBfvvrgqOZk2OC39f76pgWd3NLOgLJs/umImeSEfQ7GEMyyF3015bgZDsQSbj3Szt7mXBeXZrK7Jn3QIkIn0RWJsPdJNTWGQ0uzx80ekcwPWG47ywq4W9rf284eXzRgzn0w8YU+pO/100jN801qY6aMqPzhmaIPTpXsgSk84mvycnIyhWIJX97cRjsZxGUPI76EqL0hhlo9dTb1sGB6y7/LaAhaW54x5f/Y09/LM9ibml2WzZnYhAa+b3nCU9r4hqvODp2U4jjcPdfDrrU1cOquAK2YXkuFzE47GOdI5yL6WPg609ZGb4WN+WRYVuRl0DjhD/R3q6Gd/Sz/NvWHicUssYYklnFby+SEfH7lyFosqJh4juDcc5avP7GFvSy8X1+RzxexCVs7IG/MZHxlSYXRr2JFWmg+tqyfgc/P3ty1KDunV1hehs3+I8twMMrxuDrT1s7Whi+6BqFPx73FRnptBZV6QityMZAX7hvpOHll/hIS1LCzPYVFFNksrcyeN34GhWDJZNnNUeXWkc4A9zb3UFISozg/idhkisQS7mnp5YVcLL+9tpaN/iL5IjJDfwzsWl/EHS8qIxS17mnvpHBgi4HUT8LgpzPIlW5vmB330Dzm9JL/78kEGhuJ4XIaq/CBXzinkHYvLyAp4eHVfO3uae7lkVgE3LSodM7xRImHZ19rH8ztbeHpbIzsbe7lkVj63Li1nWVUuPreLvkiM1w92sHZ/O68fbE9WYJTlBPjE2+ZwyawC2vsiDMUSXFSWnXzdE4mR4bZcJCz8bk8LP3qtnvWHOumPxIglnMqlokw/MwqC3L6sgncsKUsmIgaG4nQPOnHmMgav20VvOMr+1j4OdwwyrzSLy2uduYzC0TjNPWHKczOSrWLr2vr5/d5WfB6X0/J5MMaOxh72t/ZhLbhchorcDN52UTEl2QG+/PQuXt7nVJRfOaeQB66qpb0/wtYj3bjdhgXDQ6iNzIHWG47y/VfqWFfXwaKKHK6YXcjy6lyCPg+JhOXlfW089EY9r+xrT1a4LKvK5f/csZi9Lb380zO7aegc5I+umMmf3zA32RL3+Z3NPL+zhfWHOphZGOLuVVVcP78Yv8dNwlrq2gfY3dTDofYBWnojtPdFCHjd5GR4yQ16yc7w4nO72FDfyRt1nfjcLh64ahYfumImg8MtP1t6wslxx5t7wjR0DtI/FMPtMrT3DfFGXceYHrHXXVSMx+WiJxxlSYXTqjPgddPeF+Ffnt/Lkc7BZAV2Q1eYhs4BQn4PNQUhcjK87Gvt42BbP0GvMzTq7JJM8oNO69zVM/OTQ6Nsa+jmwVfquLgmj3svdoYl2dnYwzd/uw+/28XCihwursljSeWxoVR2NfWw5Ug3eUEf2QEPLb0R6tr66RuKkR/0UTA8rGr2qKE/f76xgTklmSyrysNay2sHOthQ38mK6jwunTX+O7qxe5BdTb3UtfXTPRjl1qXlyWEWf7enlRd3t3DvxVVcVJpNImH58bp6Hl5/mPqOAboGoiwoy+ab9y0fN+9dPGH57a4WvvbsHnY09uAycMuSct53STXluRm4XYZntjfx8PojtPVFeM/qaj50xczk/U5fJEZLjzOUSXVBkOKsAOFonJ++cZgnNh+luiDI2xeWjhmirr59gCe3NuL3uLh/TU2ybI3E4hxo7ScSS2CtZVFFDl63Uxb+9I3D/GRdPe+9ZAZ3r6pM7tPSE+bV/e2sq+ugKi/I/Wtqko0xEgnL7uZe3qjrYMOhTnY29rKvtW9cxf97VldRkh3gR6/X09YX4a9uvoiPXlU7ZpvDHQNsP9rD0qqcZKOk9XUdfOrhzbT0hvG6XMwoDPL1e5cxuzjL6Qnyb6/S1hfh+vnFfP7WheSFfGyq7+KJzUf5xeaGZFJ6flk2F9fkEUtYBofiHOkc4FD7AANDcUJ+d7K19lBK4qu2KMQdyysoyR5pxd7NjsaeMdsFvC4+dcNcPnLlLIwxrDvYwU/W1bPjaA/7WvsoCDmVhCXZAb738sFkorIw08/Ni5xWyeFonMbuMHVt/fSEY9QWhagtzqSlJ8KWI10TVkQWZvr5gyVl3LighJf2tvHj1w+llUQPeF2sqS2ktjiT/JCPX29tHNOjO+B1sbgih57BGJFYnHcuq+CBq2Yl58jpDUf5ybr6SRuQVOcHue+SauaVZPFPz+xO9vj1e1xcXlvAmtmFXDqrgKDPTVNPmJ7BGDkZXgJeF8/uaObh9YfHJTN8bhf5Id+Y3oMZXjcrZuQS8DjDS7oMuIzB5To2H0nPoJOMjMUTFGf7Cfo8rDvYMa6S3Bj4ixvmcseKSr73+4M8+ubhMa+pz+NiWWUuc0oymVEQ5OKa/OQQcDuO9vCx/35zTO+AK2YX8g93LKJnMMbf/HwrW450c+WcQv7q5vm4XYYfrK1j3cEOZzi7rAC1xZmsqM6lLCeDTYc72VjfRUGmj2vmFZPhdfPt3+3nya2NYyp+84Je7lpZSYbXza6mXjr6hyjLzaAsJ0B/xLlfael1God0DUa5YX4Jn791ARk+N//7F9t5fGMDHpdhSWUOV88t5r2XVlOY6ae+fYB/eX4vLb1hrp5bxKKKHP77tUPJ87tdhjnFmdQWZzIjP0hvOMaG4UZHJ2pYsrQyhy/duYQvPLE9mbydX5bNx6+dzVA8Tl3bAD3hKINDcbxuF3evqmRJZS7tfRG+/txeXt7XRnaGl4KQj9qiEMuq8sgNelk7XE7lZHhZUJZNpt/DhvpOtjZ0M7MwxK1LyrlmXhG5QR/hWJwfveZ8frsHh7h7VRUfu6qWzoEhfrenla6BKIsrnfvB0WX6toZuvv7cHmqLMrlyThEzCpwhqPsiMRaW5yTL7RFv1HXw5ad2cbhzgIKQn+wMD/0R576na2CI3kgMg9PA6ENrZrJ6Zn7yc9vZP8TrB9vJD/lZNSMPl8uwdn87/7W2jky/h3evrmJFtVOuNXQOJnsReVwu7lxRQcDr9Lh68JU63qjr4K/fMT/5PHOwrZ8XdrXQ0DlIc2+Yu1ZWcu3w0JufeXQLP13v9CC/cUEJ7710BkOxBPtb+/j+K3XJ+Lvvkmq+eNsiXjvQzsf++016IzGunlvEPauceaPqOwbYVN/F2gPO/dHVc4v40p2LyQ/5eGhdPc/vaqEkO8DckkyyA176IjES1rJ6ZgFLUoYc/MWmBj7x0CaMca7pY1fXJmMvnrB8/McbeGZHM//z7fP46FWzGBiK81ePbeWpbY1k+j0UZPqdYdEvmUFxtp9//91+Hn3zCFX5QT60ZibvWFyW7CGyr6WXf/vtfhq6BrlpUSm3LaugpTfMy3vbcBnDBy+vmfD5q6N/iLygVwkTOe2UXBGZRpRckdHUUkJE5PzTG47SMZxAOl3zp0wknrDsONpDc0+YK+YUnlKvtpEhJ6fLd461llf3txPwuk7rhK3xhE22ql0989hQM7F4gr5IbNyk3KP3c5nxkxKnIxKL4zYmrYQ+OJXmv9nRjN/t4qbFpaclQR2NJ/C4ps/7fbYMDsUJeI8/gW4i4QxRV5jlHzeZ8FvJwFCM53c6QxXta+3j0zfO4x2LywCnPOgaHJryXBMnMlJpPDoRN6J7IMraA23MKcmadC6y0RIJp6dwbySG2zgJ+bKc8Y1dhmKJ4WFGE5TmBCjM9E9aHsfiCdyj4mFgKMbT25whA9OZq6ajf4gDrX0cah+gINPHRaXZY4ZeA+cz2Ng9SEHIT9DvZneTk/TqGYxxUVkWc0uy6I/EaOx2kq6rZ47tsZxIWB7f2MBT25pYXp3LfauryQtNXG6NFo0neG5HMz8aHlLqitmFvPfSatbUFiYrIEcm0k5YWDO7YMJ5qlINxRLsauqhoXOQo91hqvODrJldQIbXzd6WPtbud+ZjOtnvqFg8wRt1nWw/2k1D1yDdg1HuWlnJ5bXHGmpZa2nti3CwtR+P28WiiuzjzikWT1g6+ofoCUex1knOjbxHI/OxlZ9i7Lf0hjncMUBr7xBul+HKNP7+iZ7/mnvCZAU8U3pPwEnctvVHmF+aPeGcHPGEM/xtR3+Eo11hDnUMUN/ez6H2Aeo7BlhWlcv/vnUBQZ+HWDzBj9fVk5Ph5Q+WlJ+Txl9Obzd7Ru+pTnT+WCJx3M/V2TY4FOehN+pZWpXLipT5oyKxOE9sbmQolkjO2QJOIigSc8rEVCOfiVNNPOxs7CHoczOjYHxDTGstfZFYcojZ0esvtPsReetRckVkGlFyRURERERERERERGT6m07JFc0AJCIiIiIiIiIiIiIikgYlV0RERERERERERERERNKg5IqIiIiIiIiIiIiIiEgalFwRERERERERERERERFJg5IrIiIiIiIiIiIiIiIiaVByRUREREREREREREREJA1KroiIiIiIiIiIiIiIiKRByRUREREREREREREREZE0KLkiIiIiIiIiIiIiIiKSBiVXRERERERERERERERE0qDkioiIiIiIiIiIiIiISBqUXBEREREREREREREREUmDkisiIiIiIiIiIiIiIiJpUHJFREREREREREREREQkDUquiIiIiIiIiIiIiIiIpEHJFRERERERERERERERkTQouSIiIiIiIiIiIiIiIpIGJVdEIjbQhwAAIABJREFURERERERERERERETSoOSKiIiIiIiIiIiIiIhIGpRcERERERERERERERERSYOSKyIiIiIiIiIiIiIiImlQckVERERERERERERERCQNSq6IiIiIiIiIiIiIiIikQckVERERERERERERERGRNCi5IiIiIiIiIiIiIiIikgYlV0RERERERERERERERNKg5IqIiIiIiIiIiIiIiEgalFwRERERERERERERERFJg5IrIiIiIiIiIiIiIiIiaVByRUREREREREREREREJA1KroiIiIiIiIiIiIiIiKRByRUREREREREREREREZE0KLkiIiIiIiIiIiIiIiKSBiVXRERERERERERERERE0qDkioiIiIiIiIiIiIiISBqUXBEREREREREREREREUmDkisiIiIiIiIiIiIiIiJp8JzrCxCZBnyjF/bt23eurkNEREREREREREREJjFB3a1vou3OBmOtPVfnFpkWjDHvBH5xrq9DRERERERERERERNJym7X2l+fixBoWTEREREREREREREREJA1KroiIiIiIiIiIiIiIiKRBw4LJBc8YkwNcPWrVYWDoHF3OuVDL2GHRbgP2n6NrEZGzQ3EvcuFR3ItceBT3Ihcexb3IhedCjHsfUDVq+XfW2u5zcSGa0F4ueMPBd07G5ZsOjDGpq/Zba7efi2sRkbNDcS9y4VHci1x4FPciFx7FvciF5wKO+43n+gJAw4KJiIiIiIiIiIiIiIikRckVERERERERERERERGRNCi5IiIiIiIiIiIiIiIikgYlV0RERERERERERERERNKg5IqIiIiIiIiIiIiIiEgalFwRERERERERERERERFJg5IrIiIiIiIiIiIiIiIiaVByRUREREREREREREREJA1KroiIiIiIiIiIiIiIiKRByRUREREREREREREREZE0KLkiIiIiIiIiIiIiIiKSBs+5vgAROedagb9NWRaRtzbFvciFR3EvcuFR3ItceBT3Ihcexf05ZKy15/oaREREREREREREREREzhsaFkxERERERERERERERCQNSq6IiIiIiIiIiIiIiIikQckVERERERERERERERGRNCi5IiIiIiIiIiIiIiIikgYlV0RERERERERERERERNKg5IqIiIiIiIiIiIiIiEgalFwRERERERERERERERFJg5IrIiIiIiIiIiIiIiIiaVByRUREREREREREREREJA1KroiIiIiIiIiIiIiIiKRByRUREREREREREREREZE0KLkiIiIiIiIiIiIiIiKSBs+5vgAROXeMMTOBZUA5kAk0AoeAV6210XN5bSIynjHGDcwGFuDEbQ4QATqB/cB6a23/aT6nF1gDVANlQB9wFNhora07necSkelBcS8yfRljLgKWApVABhAGWoB9wOZTuQ9Q7ItMH8aYDJxn9flAHhAAenDifQOwz1prT8N5FPci56mzGb+qP5ycOQ1lsYicZ4wxdwGfAi6bZJMO4KfA/7bWtp21CxORcYwx1cCdwPXAlUD2cTaPA88C37TWPnmK5y0C/ha4F8ifZLNXga9Za392KucSkZNnjHkIJ05HO2StrTmJYynuRaYhY0wu8AngQzgVKJOJA5uAR621/5jG8RX7ItOEMeYy4JPA7YDvOJs2AN8D/sVa23ES51Hci5xmxphZwMXAquF/VwBZozY5qXv0Cc5z1uJX9YcnpuSKyAXEGJMJfAd49xR3aQY+YK39zZm7KhGZjDHmx8B7TnL3XwEfttY2n8R5bwa+DxRPcZcfAQ+c7l4zInJ8xph3Ar+Y4FdpP7gp7kWmJ2PM3cC3gII0dmu21pZO8fiKfZFpwBjjAb4O/Alg0ti1GfigtfbpNM6luBc5TYwx1wB/hZNQmSzRMeKUkytnK35Vfzh1Sq6IXCCGhxP6JfCOlF+1AhuBbqAWWM7Ym7kIcL219uWzcZ0icowxZj2wcoJfNQB7cW5gPMAsnCFCUudS2wNcba1tSuOc1wC/YWxLOYsz/MABIBennChM2fUJ4HZrbWKq5xKRkzfckn07Ttf8VGk9uCnuRaYnY8zngS9M8Kt6nO/4VpyhgsqAxUBo+PdTSq4o9kWmB2OMAR4G7prg17uAncAgUIRTgZuXss0QcNtUEiyKe5HTyxjzSeCfp7j5KSVXzlb8qv4wPZrQXuTC8Y+MLRijwP8AKq21b7fW3mOtXQksAtaO2s4P/NwYU3b2LlVEJrARJ2ZnW2srrbXXWmvfba29y1q7AmeYkP9I2Wcu8MjwA9sJGWMqgccYe7P2CrDQWrtquJy4EWec90/glCMjbgW+eFJ/mYicjK9yLLHSe7IHUdyLTE/GmL9gfGLlJ8ASa+0Ma+0N1tr7rLV3Wmsvwxk29AqcCp72KRxfsS8yfXyY8YmVl4DF1tr5w3H+3uGYLMYZIrB71LY+4AfGmJzjnURxL3JWRXDmRT0tznL8qv4wDeq5InIBGB73cRfgHbX6dmvtREOJjEye9zxjx1T8d2vtx87cVYpIKmPMGzi9U75grV0/xX3+BPjXlNXvsdY+NIV9v4fzsDbiVeBt1trwJNvfDjw+alUEmGetPTSVaxWRk2OMuR5nfiWAGPCXjG0xN+VWcYp7kenHGLMUWI/TOxWcSo37rLWPTnF/j7U2doJtFPsi04Qx5iBQM2rVSzitvyedJNoYswp4Gacyc8RnrbVfPs4+inuR02y458pXcHqUrwfeGP53K85k878dtflJ91w5W/Gr+sP0KbkicgEwxvwA+MNRq75vrb3/BPvMxfkyGMmKx3AK4gNn5ipFJJUxpsZaW3cS+z0KvGvUql9ba285wT5zcIYccA+vGgIWWWv3nmC/7wMfGLXqQWvthybZXEROkTEmBGzjWCXMV4CnOIkHN8W9yPQzPO/C6ziT4I74kLX2wdN4DsW+yDRhjFkMbElZvcxau3kK+34D+PioVa9Ya6+YZFvFvcgZYIzJAwYnSnIMD+N1ysmVsxm/qj9Mn4YFE3mLG84ip3YxnrQ1ywhr7R7g56NWeYD7TuOlicgJnExiZVhqz5Vrp7DPfRy7WQN47EQ3a8NSy5N7jDGBKewnIifnSxxLrBxg4vkYpkpxLzL93M3YxMrzpzOxMkyxLzJ9zEpZPjyVxMqw1Jbkc46zreJe5Ayw1nZO1nvkNDor8av6w5Oj5IrIW9/bgeCo5bXW2l1T3Df1Qe7O03NJInKGbUxZzhie/Pp47khZnlJFjrV2J04L2xEh4Map7Csi6THGXA786ahVD1hrB0/hkIp7kenngZTl/3MGzqHYF5k+QinLR9LY93DKcupE96Mp7kXOX2crflV/eBKUXBF567spZfnFNPb9PU53vhHLjTElp3xFInKmTTTOum+CdQAYY0qBpSn7v5LG+V5MWb45jX1FZAqMMX7gPzl2//4Da+1zp3A8xb3INGOMmQ1cPWpVHWOHEzkd51Dsi0wvTSnL6fQKSd22Y6KNFPci56+zHL+qPzwJSq6IvPUtSlleO9UdrbX9OOMmjrbwlK9IRM602SnLMaDtONunlhNbhuN/ql5NWVY5IXL6fQGYN/z/VuAvTvF4inuR6Sd1GM/n7emfJFWxLzK9vIEz0fSI+cND80zFygmONRHFvcj562zGr+oPT4KSKyJvffNTlveluf/+lOUFp3AtInJ2pI6Tut5amzjO9qlxrXJCZBoxxqwAPj1q1Sette2neFjFvcj0szpleS2AcVxvjHnQGLPDGNNtjOk3xhwyxjxnjPmsMaZmiudQ7ItMI9baXuC/Rq0KAH90ov2MMW7GTmYP8INJNlfci5y/zmb8qv7wJCi5IvIWZozJB/JTVteneZjU7Y83SZ6InGPGmEzGP5A9foLdUnu6pFtOHEpZLjDGHG/MZxGZImOMB2c4MM/wqqettT8+DYdW3ItMP6tSlncOJ02eA54FPohT8ZGNMyZ6NfA24EvAHmPMvxpjghyfYl9k+vkszjCAI75ijLl+so2NMV7gP4Dlo1a/APxskl0U9yLnr7MSv6o/PHlKroi8taVOYD2QZvdBgJaU5ZxTuB4ROfO+BJSOWu4CvnuCfVLLitS4Py5rbR8QTlmtskLk9Pgsx8ZZ7gf++DQdV3EvMv2UpSwHcYb5uW4K+3qBPwFeNsakHmc0xb7INGOt7cAZFnDj8KoM4DfGmJ8aY+42xiw2xsw2xlxqjPlznKF3PjTqEOuAu44zjKDiXuT8dbbiV/WHJ8lz4k1E5DyWmbI8eBLHSN0n6ySvRUTOMGPMHYwfHuBvhh/Yjud0lRWjJ9VUWSFyiowxC4DPjVr1v6y1dafp8Ip7kekntWLjQaBw+P/9wLeBp4AjQAgn8foh4IpR+ywHfmaMudpaG53gHIp9kWnIWltnjLkEp4faR3HmU7ln+Gcy7cDXgP87SbyPUNyLnL/OVvyq/vAkqeeKyFtbauGYmq2eitTCMfWYIjINGGOWMna8ZoBngG9NYXeVFSLTjDHGBXwP8A+vehP4f6fxFIp7kWnEGOPnWLyPqBz+dwcw31r7aWvt89ba3dbaDdbaB621VzJ2TiaAy4DPTHIqxb7I9OUe/okAk/VCGXEYJ/a/doLECijuRc5nZyt+VU6cJCVXRC4sJ7pBO137iMhZZIypBp5k7M3LIeB9xxke4HhUVoice58ALh3+fwz4sLU2fgbPp7gXObfck6zvBm6y1h6ebEdr7VeBf05Z/efD87CdiGJfZBowxqwBduI0jFrDievrqnB6t9UbYz6c5ukU9yLnr+n8fH9BlhNKroi8tfWlLGecxDFS90k9poicQ8aYYpxJbitGrW4CbrDWtk7xMCorRKYRY8ws4IujVn3NWrvpNJ9GcS8yjVhrB4DEBL/62vESK6P8L5xEzIh84OYJtlPsi0wzxpi3Ac8BNaNWN+DMu7YcZ8hAH868ijcBP8BpeAFQBHzHGPMfxhgzySkU9yLnr7MVvyonTpKSKyJvbSocRd7CjDH5OA9ic0etbgOut9buTeNQKitEponhipHv4ExkDXAA+MIZOJXiXmT6mWji2NQhPyc0POnsYymrr5lgU8W+yDRijCkCfsLY+RCeABZYa79srd1kre221kattc3W2t9Yaz8IXIkz58qIjwD/c5LTKO5Fzl9KrkxzSq6IvLV1pywHjTGhNI9RnLLcdQrXIyKniTEmB2dOlcWjVnfi9FjZnubhUsuKojSvJZPxN1IqK0ROzkeA60YtP2CtPZkJJU9EcS8y/aTGULO1ti6N/V9LWZ4/wTaKfZHp5VOMjcNdwD3W2p7j7WStfQ24N2X154d7tadS3Iucv85W/Kr+8CQpuSLyFmatbcepbB2tOs3DzEhZTqc1vIicAcaYLOBpYOWo1T04Y7KfzNBBqXGdGvcnkrp9h7U2tewRkan521H//zWwzxhTc7wfnGFCRvNMsJ0vZRvFvcj0sydluTHN/Y+mLBdMsI1iX2R6uTtl+cvW2ilNJG2tfR74/ahVGcC7J9hUcS9y/jor8av6w5PnOdcXICJn3E7g8lHLs4fXTdWsCY4nIufIcOuRX3NsomtwutvebK1dd5KHTY3r2Wnun1pO7DjJ6xCRsS3L3gEcPIljVEyw33JgdPJVcS8y/WwH3jZqOZLm/qnbBybYRrEvMk0M39fXpqx+Ps3DPIczRNiISybYRnEvcv46m/Gr+sOToJ4rIm9921KWL5vqjsM3e0tOcDwROUuMMRnAr4ArRq0eAG6x1r56CodOjeslxpjghFtObM0Jjici04/iXmT62ZKynJvm/qnbt0+wjWJfZPqYKMab0jxG6vaFE2yjuBc5f53N+FX94UlQckXkre/plOVr0tj3Ssb2cNtorW0+5SsSkbQZYwLALxkbw2Hgndbal07l2NbaRsZW6HgYm8A5kWtSlp86lesRkTNPcS8yLT0F2FHLs4a//6dqUcrykdQNFPsi08pE8xGkO8dBZsryuAmkFfci56+zHL+qPzwJSq6IvPX9Bhg9Ee5lxpiLprjvB1OWHz8tVyQiaRmeK+Ex4PpRqyPA7cNjLZ8OqfF9/xSv7SLGDj/QDzxzmq5J5IJjrc211pp0foBrUw5zaILtJpqPSXEvMo1Ya48Ca0et8jJ2mLATuSll+fcTbqXYF5kWrLX9OPMmjrY8zcOsTFmerOeL4l7k/HW24lf1hydByRWRtzhr7QDwaMrqz5xoP2PMXOCOUatiwI9P46WJyBQYYzzAw8DNo1ZHgbustb85jaf6ERAftXynMWbOFPZLLU8enuoknCJyzinuRaafB1OWPzWVnYwxVwKrR61K4MzRNhHFvsj08WLK8kenuqMxphR4Z8rqyZKqinuR89dZiV/VH54cJVdELgxfwKmMHfFBY0zqTVjS8PADDwK+Uau/Z63df2YuT0QmYoxx49xI3TZqdQy411r7q9N5LmvtXuAHo1b5gO8fbzgSY8xtjG2hMgT87em8LhE5cxT3ItPSg4ydAPY6Y8xxEyzGmGLGJ2UenuzeXbEvMq38NGX5XmPM+060kzHGD/yQscOC9eG0PB9HcS9y/jrL8fsFVH+YFiVXRC4A1toDwL+krH7UGPPx4eGGkowx84HngctHrW5HN1Ei58J/AvekrPtrYKMxpibNn6mM2f55oHPU8uXAc6ldgY0xfmPM/wAeSdn/q9baQ2n+jSJybinuRaYRa20c+AROz5MRXzXG/IsxJi91e2PM9cArQO2o1Z049wvHo9gXmR4eAjaPWjbAfw3HfNlEOxhjrgVeY+yQwQBfttZ2TrDLCMW9yBlgjKmc6BkcKE3Z1HOc5/XCE5zmrMSv6g/TZ6y1J95KRM57wy3gn2Ds0EIALcAGoBeYBazAuaEbMQRcb62drHuxiJwhxpjT+SV9rbX2xSmc8xqcFm+jb5ws8CZwAMjBKSeKUnb9Fc4cMHFE5Kwajtvfjlp1yFpbk+b+inuRacQY83HgGymrozgVqg1ABrAMmJGyzRDwzqkMHarYF5kejDGzcZKkxSm/SuBMZH0AZx6EfJw5WVIrbMEZBvB2a210gt+NPtc1KO5FTitjTB3jv4/T9QNr7QdPcJ5rOAvxq/rD9Ci5InIBMcZkAt8F7p3iLi3AB6y1T5+5qxKRyZyL5Mrwed8BfJ/xN2WT+QnwkeFJOUXkLDvV5MrwMRT3ItOMMeaPgX8CglPcpRm401r7ahrnUOyLTAPDrc9/CKxKc1cLfAf4pLV28EQbD59LcS9yGp2t5Mrwuc5K/Kr+cOo0LJjIBcRa22etfTdwN06rt8l0AN8CFl2IBaPIhc5a+2tgEfBtxnY9TvUacJe19j49bImc3xT3ItOPtfZbwBLgv3FaiU6mCWeM9HnpJFaGz6HYF5kGrLW7gMuADwBrcZImxzOIMzfj5dbaB6aaWBk+l+Je5Dx1tuJX9YdTp54rIhcwY8xMnG585UCI/9/evUdJVtWHHv/+eIwOr0HlGXkjKkhUMNdgDBpNgigQNAgGjaAIyL1yXboUdN1IlAhRozE3IaMCiQ9yERED8roS4o0GHCOggI6ovFFQR0BAHiLDzPzuH/uUfepMVXed6qqunvb7WasXZ+/aZ+99qk7Pos+v9v6VP8x+CCzLzJWTnJuk+aHaV/WFlG/ibAM8QtmO5LrMvH2Sc5M0Hv7eS/NPRCym/F5uR/m9XAncA3w7M78zojH83ZfmiYhYQlnFsjOwOfAESpD1fuC7wPLMXDWCcfy9l9ZRc/n76/PD/gyuSJIkSZIkSZIkteC2YJIkSZIkSZIkSS0YXJEkSZIkSZIkSWrB4IokSZIkSZIkSVILBlckSZIkSZIkSZJaMLgiSZIkSZIkSZLUgsEVSZIkSZIkSZKkFgyuSJIkSZIkSZIktWBwRZIkSZIkSZIkqQWDK5IkSZIkSZIkSS0YXJEkSZIkSZIkSWrB4IokSZIkSZIkSVILBlckSZIkSZIkSZJaMLgiSZIkSZIkSZLUgsEVSZIkSZIkSZKkFgyuSJIkSZIkSZIktWBwRZIkSZIkSZIkqQWDK5IkSZIkSZIkSS0YXJEkSZIkSZIkSWrB4IokSZIkSZIkSVILBlckSZIkSZIkSZJaMLgiSZIkSZIkSZLUgsEVSZIkSZIkSZKkFgyuSJIkSZIkSZIktWBwRZIkSZIkSZIkqQWDK5IkSZKkBSsi3hIRWf38ICI2mPScfpNFxLLa53HKpOcjSZI0LIMrkiRJUgsRcUftweCwP/970tch/SaIiK2A+gP8EzNz1TTtj+/zO3vzLOawQUSs6NPvq2c4tzmfS2Yxj5H1NUvvqB2fEBFPn9A8JEmSZsXgiiRJkiRpofogsHl1vCwzLxqyn6dFxL5DnnsgsPWQ5y44mfkN4IKquAgw2CxJktZJBlckSZIkSQtORDwLOLJWNdstqI6a4/MWsvpn8fKIePHEZiJJkjQk95qVJEmSZudw4Bstz3lwHBOR1OUUpr5QeH1mXjZEH48DG1bHh0bE/8zMhwc9OSK2Bl7ep7/fWJl5bUT8G/CyquoDwO9NcEqSJEmtGVyRJEmSZmdFZt4x6UlImhIRuwMH16qWDtnVJcCrquONgUOBT7U4/0im/u5eCVxO2SZM5TPpBFdeEBEvyswrJjkhSZKkNtwWTJIkSZK00LwDiOr4QeCcIfu5CVhWK7fd4uuNteOLgJ8POY+F6P8Cd9bK75zURCRJkoZhcEWSJEmStGBExGbAa2tVF2TmI7Po8pO149+PiN0GnMfvAc+sVbVZ8bLgZeZq4HO1qgMiYvtJzUeSJKkttwWTJEmS1iER8TxgN2AbYCPgp8CnMzMHOHc34LnAlsDmwAPACmBZZv5sBHPbDPgDYHtgk2pudwBfz8xVs+1/UiJiCSUfxLaU9+5x4G7gBkoujxnf+5bj7Q78NrAd5Qtx9wDXZOb3RtT/RsA+lM9pC+AJwEOUz+q7mXn7KMaZoNcAi2vl82bZ3+eBf6BsCwbwBuAvBjivvsrlJ8C/AYfNci4LzeeBE6rj9YAjgFMnNx1JkqTBGVyRJEmS5omIOBC4uFZ1QmZ+JCI2BE4EjgZ26nHqvwA9gxdVwOPtlAfCvc4FyIj4FnBKZl44xLy3Bz4MvJLyoL7pZxHxKeDUzHw4Io4HTqu9fmhmfqFP3wO37XHuJpSgQcelmTlwvouIOIjy4PcF9P/b6WcRcQbwkcx8cIA+9wSW16qWZubx1WuHAO8GfqfPuTcBfzHo9fc4/wDKdlkvBBZN0+6HwAXAGZn5/Vr9HwJfrjW9JDMPGmIe76YkMO94X2ae3LafaRxeO/4V3XNurbpnz6P8DgEcGREnZeaafudExMaUIE/HWZm5OiL6nTKvRMS9wFNm2c0NmbnndA0y85sR8VNK4BLKiiODK5IkaZ3gtmCSJEnSPBYROwLfAE6hf3Ck37mvBG4D3jfDuUF5oP/FiLi4ejA86BgHAd+jPEjuFVgB2JoSNLg2InYetO9JiYhtI+JKSo6MfZn+S2lbAycBN0XE84ccb1FE/BPwBfoEVipPB86LiA+17H+7iPg6JTn7S5gmsFLZEXgbJWD2a5n5/4Af1KpeERE7tJxLAMfWqlYB/9Smjxn63wz4/VrV1zPzsRF0Xd8a7KnAfjO0P4yyeqvDLcH6+0rteI914d8ISZIkMLgiSZIkzWcbUR7w712VV1ECLV8Azge+BfTckioi3gb8K2t/+/w2ykP2zwKXUrbuqjsQ+GpELGYGEfHyai6bNF66jbIC51zgv4DVVf1ulK2RNp2p70mJiD2Aq+l+QA/wC8pD4HMp7+t1QH3lwtaU9+1FQwx7OvCm6nhN1ff51VhXMfX+dZwYEa8fpONqG7lvUVbf1HXGuYipe+FGuq+pl4/VjtcDjhlkHjUvA+oPzy/OzB+37GM6fwhsWCtfOYpOM/NK4OZa1Rv7ta3UtwT7WmbeNIp5LFBXNMr7T2QWkiRJLbktmCRJkjR/vZMSiFgF/A3w4cx8oN4gInai8fC92l7so5QVKR2fBD6YmfUHxJ32+1FySjyjqvqdqtz3wXlEbAmcRfcqiBuA/5GZVzTabkXZ6udoSoDlBOahKrfKhZRcJx3LgfdQtsBa02i/PeW6OoGOxcA5EfHczLxnwGFfQ8l7ksBSytZpKxrj7Ej5/F5aq/7biDg3M1dOcz1bV9ezVa36Qcq99PHMvK/HOZsDf0IJHvQK3H0G+GumAmpvioiTW+TUOa5R/viA5w1qn0b5+hH2/SnKtQMcHBFP7vMe7kZ3cG5dXLWyF7B+i/YbAGcD9dVbPxnw3OZn9AJGf19IkiSNnMEVSZIkaXa+0jKPwksy86sDtt2UspLg0Mz8Yq8GmXlHvRwRT6YEPTqTWg28LjPP7TdIZl4eEb9LWZmxV1V9dER8PDOv7XPahyhBgY5rKde2Vt6RzLwbOKbK5fF+4En95jJh/wA8rVY+H3htv22lMvNO4IiIuAXo5Az5Lco2YW8dcMzOe/iGzDyrzzg/jIhXUN7jParqLYFXUVa39HMmZQurjh8B+9fzqPQY6wHK/XNWRGzT4/UHI+Js4M1V1baUYMz508wDgIh4KmVlVMctzDIfSg/NbdWW92w1nLMo9+/6lC3wXgv8Y4929VUrj1CSto/K4iqgOownD9qwurcHUm319mm6Ays3A38+YBfLKYG8zr9ZQ22vJ0mSNNfcFkySJEma3/6xX2Clj7fSHbw4ebrASkdm/oKyiqK+AuGdvdpGxBaUB8sdKylBiGkTumfmKXTnV5g3ImJX4HW1qu8Dhw+SryMz/wr4z1rVURHRJoB0Rr/ASm2Mx4C/alS/tFdbgIjYC6gnm18JvGq6wEqPMVf0eWlpo9xcjdLPMXSvhjg9M3tuazcLz6gdJzBwkGAm1fZll9eq1toaLCLWB46oVZ2XmQ+Pag6Uz/z2IX9O7tHfKHyY7mv+CbBfFVSdUWb+Eri3VrVr9T5KkiTNawZXJEmSpPlrNY2k4tOJiPWAt9Sqfk7ZAmog1ZYQq73zAAANOUlEQVRhF9eqDujzkPPP6E5ef3Zm3jjgMCcNOp859ha6H/z/5XRbbvXw0drxxpTcH4NIytZig7iU7q269urXEPjvjfKZ06xCaiUzl9Ody+SPquBUX9V9dHSt6jFGvF1WRCyirKTpuLvlZziIemL7vSPiOY3X96esXurVfsGJiHcB76hVPUBZHXVHy67uqh1vQPeKK0mSpHnJ4IokSZI0O4dTEnQP+vONFn1/MzPvmrnZr+1F91ZdFw6y8qKhvrJkM+DZPdo0k72fM2jnmbkMuKPlnObCH9eOH6U7yDSI5oqcfQc8b3lm/miQhtUKiPr9sFW/tqwd3PnEgPMZVH31SgDHztD+ILofmJ+XmT8f8Zy2oPtv3PtH3D/ARZSgZUdz9Up9S7BbMvNKFqiIOAr4YK3qUeDAKvjWVvOzmu7eliRJmhfMuSJJkiTNzoohvqU9qOtatm8GPe4aIj/D6kZ51x7zaOa1uLrlGFcDO7U8Z2yqJO7PqlXdDmzbMpcOlIfLi6vjaVdy1Hyv5Rj3A9tXx0t6NagS2e9Sq7o3M7/bcpyZnA+sADp5Wd4YESdNs1KkuXXYqIM9ABs1yo+OeoDMXFnlnOnk1HldRJxY1W9J91Zs40hkf2lmHjhzs7VFxPHAaaOYREQcDJxRq1oFHFYFT4fxy0Z54yH7kSRJmjMGVyRJkqT5a6CcBTXbN8p/Wf3MRq8k2FvXju+u8rW0cdMs5jMO2zGVTBtK0vjbZ9nnoMnD266ueLx2vGGfNts2ym0DODPKzMcj4kymtnnbEjiEHquYImJnYL9a1fJZPISfTvPv21U9W83ePzMVXNmCElD5V+D1TH0ma4DPjGn8iYqIFwGfY2obvQTelJmXzKLb5mfV796WJEmaN9wWTJIkSZq/HmrZ/iljmMOm9UJEbABsUquaNol9H22DMeM29vdtGmvGMHbzesaxPRbA6XQ/FH9zn3Zvpjt4NY5VK7D2SpXFPVvNUmZ+B6jnr3lj478Al2fmj8cx/iRVOWYuAp5Yq35nZp41y66bn9Ujs+xPkiRp7AyuSJIkSQvHojH0OdPeWDnD6+uCSbxvc2ksn1EVPLiwVvXiiHhmvU2VZL4edHgY+D/jmA9rB/rGubVUPVH9/tU2WXv2eX1BiIhdgMvo3o7uQ5n50RF03/yshgnaSpIkzSmDK5IkSdLCcW+j/CeZGbP8+Ui9w8xcRXlA3tEz78cMhjlnGOvP3ARY+307fwTv2549R5obzesZdIuyYSxtlJu5Vf6U7uTkn83MsTw4z8z76b43t+nXdgQ+CzxWHa9Pd36V+yirOxaMiNgG+He639NPZua7RzTEbzXKd46oX0mSpLExuCJJkiQtHD9rlJ8+B+NsFRFtgyVt5tXMxdAmb+STBmw3V+/bXPlpo7z7uAbKzK/QndPliIiob/HUDLZ8fFxzqdRz5SyOiHFs+dYJ5HyxVlW/187OzMdYIKrf78uAXWrVFwLHjnCYenDlvnEF4CRJkkbJ4IokSZK0cHy9Ud6vZ6vZ+2aj/Lstz2/TvvmQdfMW5z5rkEaZ+RPgjvp5EdH8Jv06IzPvBm6pVW0ZEQO9F0OqB0yeBBwGUG0R9uLaa1dl5vVjnAfAtxvlZ/ZsNRr9tv76VJ/6dU5EPJGyCuc5teorgD/LzNUjGmNnunO4jPsekSRJGgmDK5IkSdLCsYzubZFeGhG7jmGcrzXKhw96YkS8ENixxVh3N8p7tDj3gBZtL68dB3B0i3Pnoy83yv2SzY/CZ+i+745r/Ldj3KtWAK5plJ/Ts9VofBn4UaPu+sy8boxjzpmIWB/4HPCiWvX1lO0GfzXCoZ7dKF89wr4lSZLGxuCKJEmStEBk5uPAGbWqDYC/j4hR/3//uUzlmwB4bUQMupXW+1uOdW2jfGBEzJgsPiJ2AI5sMc5SuhO/nzCmwNRc+Rjd13NsRIwl0JCZDwH/UqvaJyL2AY6o1d1PuW/G7T8b5eePa6DMXENZHbZv7eeQcY03AWcAB9fKtwL7Z+YvRjxO8zP66oj7lyRJGguDK5IkSdLC8kG6t9I6APhERCxq00lE7BIRf9zrtcy8BzinVrUIOCciNpuhz/cAL2kzj8y8j+5tgnYG3jTDOJsD5wEbtRjnO5Rv6XdsAlwWEU8bfLYQEYsj4oiZW45XZi4HLqhVPQH4YkQ8Y9A+qiTmg2omtj+X7jwknx7xaoeeMvPbwI9rVa3utyHGuzEzv1b7uW2c482ViPgQcFStagWwX2Y28xONQv0zegSDK5IkaR1hcEWSJElaQKrAx+uANbXqY4BrIuLQ6YIsEbFdRBwTEV8Cbqb7W+tN7wLurZX3BpZFxL49+t0qIs5gatXK/YNdza+d2SgvjYhjmytyojgAuIrybfi247wFuLFWfhpwXUS8LyK27XdSRGwUES+LiI8Bd1FWjcwHxwF31so7AVdFxLsj4km9ToiIzSPi9RHxH6z9vveVmTdQcnF07NBocvqgfY1APdH8Di1WVQmIiD8FTqxVraTcS2siYqcWPzPmLYqIJcB/q1VdlpmP9WsvSZI0n2ww6QlIkiRJGq3MvCQijqM85O/8P/+zgc8Dv4qI64GfUr4lvinwZGB3YIsWY9xdrdC4ENiwqt4TuCIibgVuAB4FtqMksO/M4xZKwu9TW1zSmcCxTOXPWER5WP/+iLgKeKi6hucBW1ZtVlK2pbq4xTXdHxEHApcBnS3BNgHeC7w3Im4GbgIeqOawhLKSZle6v7j2SItrG5vMvCciDga+BGxdVS8BPgCcWt0Hd1LypSyhBJOeztS1XNpyyKV05+fo+I/MvLFH/bicRQmUdRxCuWYNphkUWUR3wGpQN1D+TZjOwXQ/l/jMEONIkiRNhMEVSZIkaQHKzDMj4nvA2XQnkH8isM+A3Uy78iMzvxQRrwY+C2xce2lXpoITdbcB+wMvH3D8zjiPR8QhwL9TghkdWwEH9TjlIeA1wJVtxqnGuiUingf8M2vnz9it+plJ2xUzY5OZ10XE8ynbpNVzW6xHWW209wiHu4AStGuu8vnECMeYUWZeHRE3AM+qqg7F4Mp8dVjteAUlEChJkrROcFswSZIkaYHKzGWUYMBRwNXA6hlOWQ1cA/w18NuZedIAY1wE7EHJsbGyT7N7gI8Ae2fmrYPNfq1xbqUEBz4G9Ns26JeUVQvPzsyhH9Jm5i8y89WU7YrOBQZJ4H0n5Vv3rwR2GXbsccjMH1ECaq8GljHzfXAr8DfA21qO8zglCXrdCoZb9TBbf1c73isiRhlE0ghExFMpwdaO0zJz1aTmI0mS1FZk5qTnIEmSJGkOVPkN9qFs+/MUSpLzhym5U24Cvp+ZD8+y/5dQtgLbhPJg/Q7ga/WHphFxPHBa7dRDM/MLLcbZGNiXsjpmCfBzSnDjysx8aNj5TzPe+sBzgWdSth9bQtny7EHgduAHmXnXqMcdl+pzeiFT98F6lGu5A/hOZt7Z/+wZ+3478NFa1amZ+Z7hZzv0PJ5AuZ5tqqozM/PYuZ6H+ouI9wLvq4qPADtk5n2Tm5EkSVI7BlckSZIkzanZBlc0f1Vb0e1eFdcAO1crZyYxl7cCf18VHwV2zMx7JjEXdYuIxZTg11ZV1Qcy839NbkaSJEntuS2YJEmSJGnWIuLFTAVWAC6dVGCl8gnKyiKAxcDbJzgXdTuGqcDKfZRt6CRJktYpBlckSZIkSaNwYqN8Ws9WcyQzVwLvqlUdHxFbTmo+KiJiI7rvlZMz84FJzUeSJGlYBlckSZIkSbMSEQcAr6hVLQe+PKHp/FpmngdcXhU3ZSrHhybnHcBTq+PrgaUTnIskSdLQNpj0BCRJkiRJ646I2BR4SlXcGtiP7hUiAO/J+ZPg8zjgyOr48YjYIDNXTXJCv+F+CZxcHV+QmasnORlJkqRhGVyRJEmSJLVxJNNv+XVhZl40V5OZSWbejitW5o3M/NtJz0GSJGkU3BZMkiRJkjQq1wBvmPQkJEmSpHFz5YokSZIkaVgJPAh8F/gccHpmPj7ZKUmSJEnjF/NnG1xJkiRJkiRJkqT5z23BJEmSJEmSJEmSWjC4IkmSJEmSJEmS1ILBFUmSJEmSJEmSpBYMrkiSJEmSJEmSJLVgcEWSJEmSJEmSJKkFgyuSJEmSJEmSJEktGFyRJEmSJEmSJElqweCKJEmSJEmSJElSCwZXJEmSJEmSJEmSWjC4IkmSJEmSJEmS1ILBFUmSJEmSJEmSpBYMrkiSJEmSJEmSJLVgcEWSJEmSJEmSJKkFgyuSJEmSJEmSJEktGFyRJEmSJEmSJElqweCKJEmSJEmSJElSCwZXJEmSJEmSJEmSWjC4IkmSJEmSJEmS1ILBFUmSJEmSJEmSpBYMrkiSJEmSJEmSJLVgcEWSJEmSJEmSJKkFgyuSJEmSJEmSJEktGFyRJEmSJEmSJElqweCKJEmSJEmSJElSCwZXJEmSJEmSJEmSWjC4IkmSJEmSJEmS1ILBFUmSJEmSJEmSpBYMrkiSJEmSJEmSJLVgcEWSJEmSJEmSJKmF/w94vzuoYgxT8QAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<matplotlib.figure.Figure at 0x7fb3fbf94a58>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "#plot power\n",
+    "FP=np.sum((F*F.conj()).real,axis=1)[:,:Nfft//2]\n",
+    "FP=10*np.log10(FP)\n",
+    "freq=np.arange(0,Nfft//2,1)/(Nfft//2)*100\n",
+    "plt.figure(dpi=300)\n",
+    "plt.plot(freq,FP.T,linewidth=0.5);\n",
+    "plt.xlabel(\"Frequency (MHz)\")\n",
+    "plt.ylabel(\"Power (dB)\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "hide_input": false,
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.12"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/applications/lofar2/model/pfb_pk/PFB.pdf b/applications/lofar2/model/pfb_pk/PFB.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..5deb50c49e06202c2310a2d8839b52430da5d6c6
GIT binary patch
literal 134803
zcmeFYWmFx_)-JjT!5snwhv4q+!9BP;3wL)23GN;sxCM9jKyVB05ZqmYpC<c#KfC+v
zd%iKwIphAgYjm&G-Bn$)YSx_dc}f=f2T^f)W(Ib6^3Btu-|$?-OvH9ZmhgOhjN%s7
z&R|DIace_ouqfEr&IHUT3$`_LHYaB0<mMC*fOm3s1RL7GyDyY!Y1=JwyzyPFKuyBt
zt<gApr|38y?5rJz)xTB-@nEneEO*%R#mFlvfaCEhmmx2Tu5U}sJaw?BoiTW4RK)Yy
zV-BH*=+NO^`>T`VfqVOnwwCXN+aYT)9-Oq%Yj4k(&L3j3so>hu?thrOUKx6OT{QV(
z=8_>w-4-iwNe47~CQ3+M?eAD$#2xAP3BY|qgQGbAxEA(nEKT||C~!rPXnNx*8|$+>
z7it6?!#w0zABlKET-fhP)5GA;kyvqs(ZqS)hu=>_XN}+d{C0nLREt@YaFQL%WZqLo
znBVxOx(f9N*Ku`Ort6}Q!)L|0EKLD{QLNy{d~3Z7*NXaeLv-Tr7Rk(B^|46GQD5wn
z%I$g0euyFdI5P-?v{ulp8fp-0f3mF85l6$4C6G4hdvg=G*p^hSnZ_=VRl`aRm-B?{
zcB_c6+iQzXj4RPwg<w!6ei$$t-NW$Cu&hno^tUGbXcQ0W8vi~2(23r8sYX%>ti%uF
zi&L8>Uw69woumCVLG^=HjpKuziurB**;8T&F}Sjevq#5#i>;`Mcd_$uCrUm#SQjGY
z0xVs1%_J-Yk9As@@hR^~3!c=PZ3PJvp_P}gcYIbq7nI6529zG|(5fh|Xs$Q9QfIOX
z<H9#&QJJ`8x76#p{ZNIc3S$VLKLg(wI*j+j8015gPBYGE3b?|KvA@CWi4=LIbM#sO
z!E#VZt`2%<R0~}X{eu%d#9J!4p!ZY_FxHZ!T3k73N8hV`>OC|HNbk*m`2@bE@I|tZ
zKM1YER~*;JpNSz2!*zpfbk@0-%V(N_t5CH)ny-c;j>u*zXfDr<Kr*;4pA5pz5~277
zWiOa?f8@lYrL)R`Tk@Kv%!cMMnEAWhqAQ1&;060|VWo~ab?<~I!cPAy?~lSJ5OY)Q
zuc&n)c~+ZV85(k7xoU<6ZGnT49U5k=NMRNTvZ~kHQFcY!2X#PhiZJcYCAMpfrS!!Q
zBAcN1Fx7=&n@I^@UOOVxG!&c{B@HiU4gS(nish4~TX+@ymJOdlhAe<Xz;+ZvemuwY
z*rJvEeq=c}&#E?0MdWA@PHS$8S-4gfayvL_ii*Fsa&o?FI*p1VB(7&Fop^XTlX%e{
z8A>zsqlEC+PZI36ud9(_@{wf=l5<QJ5n{3JY`4EQP$z`g+-b*NUUNWwUuvL^88JwE
zWypXhy(MdERBH=qZ$%=hCC+Q@j<kh#Bu?-q=-hrqzt1;i>pHyww?cTZMnPd-gdckm
zd~X_Y`OxSyaFSM}$SOtC;`fN0KJl9Qj447Jk_Dpyx)Nduw=$)X-T$b;BO_`X;~-lu
zO#yVkyR$?A^S!$|iIOuoY_bU2(F(<Z_=ycBX%I~$0G*KimvZYNC$t>v>#=24bOT<_
z0ZGtodfohJVi9bt|7`l%{FZHU2Vq3yP;UJl<>KAyeQCdrSsz<A)jR8udFDKH+}i>{
z^^g6|&fF=y5m5sWtM((bCSd4gD>D~IYn?5Tr9Czs@p_iFYJbw<Iv8z7LTJO}aw(iR
z95OJhm+!FaP~gQGMBXI~uYiB)T-NI6#>HNQ%~+EIC_nE8-TDX-3dc8;qO&k2!oih8
zKb%=yR{Dj+SBbktmaNw+qg8!DuwzK?u-CW4EpW0L3fLJpUAhbsLW5JS>Xr}OWKkP!
zRnZ*IkR~a3KSfLAf2e{R;DG+Ifg}Uby#J<Kv<Z~PW1R-heSQ1Tg-hNahJ>3xx^FU(
ztOok^^rH^NEF$-d!K48GccoqRByOT{?lC$QF;E^)v$_XNxy_;XYtY^(5(On{p=C=&
zIT~W@c_KS$1Qn6^eKDmuH&RqTsF?1Z)lTTo7@3k(5utDFpAy*f0_D;bEFn_tCWLD%
zA<nnpeq>08&|4pQEAf4E*kZ2E{<uX4+o|Ij)mWmH{yDZXBYXr~zhEZ+BkG;g72zjx
zeyHX;z8rCKF6M>pk|mVNq9MbU!CwDylS^0!2GS3hcR`Nd=1vA<!-|;)+AA{4(nXO8
zNvbYPQxe?#OAcRYutUpkMP~D~3AIG?l2R-m1R4_eSY0nd&mxc@W;Wu{;kN9H!+Ur5
zbyP+pI2?tbnx+2$hX}KnZHU2q9yU<SNta4(D;vTWajlCP^U$r93CQCj9?r`DJdSX$
znK>vPb8@)9UqHCKH8dh}W}fBpU6JahaJ2k&KO1iQE=Xww%ccEB^V$rkBs9{x>G|Ck
zHvZjux9i!y&Clc}Z=vuHw(Ym3Kx!+8@)8%$OJDhlWk$Q<wOnm_G)A#hOT$~8*cIKS
z+0DMStL8ZSI(kw<h4>x8)M3`ae@oID891pQnzr<5(6bHOG4xHRNi9@!%%OSprM9({
zxe*doUKa}7^MjB@ppp6PhVdD)qMpYJ9&Bs!7ajsvF9^!a^6yZp;$aVF)KD<81RFau
zD!UjtzuZgN7@C0@)h$c_L}le<XOsk6n3+2hvv9C6ir87(IV#&58iN@{!LAm@U<pS<
z561Tv&Q2e|jv{t8_I9>lTW5GKAoT^8KNvdNI01<LUo#MM{i7r&V&<0%7aLorKaxH;
zf=w)po$VZnSp)?B=Qt0~!o<P#A94O@+3JJJ4o>G8%#2Mo7Af_VeU0oQtYWd87!y5J
znd(6E(Of|&NsuU#QkAuR4+s~Lt*BcZPXbXY_meY81exUs7$hcIlpRaVBv*14m!~S8
z<{tV5Yn-|B`f!l&6f%?{7$fBQ8GCMdgEu(SOm8%b@7;S*;Nv{RZhF6*rv7HcN3e~l
zbSLFDdNg3GfS0?Vq-|nCjkiwOWLwxP_)*$rF#icf-{;2Xdak<idQ5lHcL%1^7s6{|
zC9C+nbYbE<VWr|?6#c>T>G$ZGtzYEKukQWl!OObadajy0Hw)!xaYP52N&8KfRX4Un
zg)A<Qzm+ZO>Tj=0_HKKJ#*P?~j=2qll_EY13f?~K+Zb7)q+hRy5D|tPRSK#Zhwlln
zwBfD!&WpI7=qwK%-&;N^M=2nU+*h}}JHRSSbt%u|XWk_WZ82*__g!)2(Z(Nl$nWBZ
zp^6qK^xEGF^(r8$dSq#Dnmf(9U}PMdeW!eI2)gM$p1rjYyW3j$R&riJ6#D45EO0W$
zwc-9NgA+30NYC==Jm)jPwS2VXo1z7+rQo(5(ALk^DUDdU=i9b2Rw>zo?({<i1!=Rw
z+Xp%Eq8m$2201)GvD?d!5t4nZ66z`;vs-JF*wkY<nN`<@C)`3F31`8`v1p8iTzV>c
z_SN^BPtqLPXKjkEIP)C&KOO2i&~}>_`UuW^*IUBVgKydvDhRUpq&3)-eSZEZXEXGB
zkJQQ8Z!4*Z=l!#(L4C(r?nzr|yY!--79|+p)49T7AEvNkaWNfewKuX^$2&o5-hHFz
z-?98g0@sH2BJb%tIeS(NPXsb_x4glJy&Cs3ef%}pUaFc}<eo<;&A3Whca=BzYwmCA
z1qLscxBT3y7zfVek)<!}mM;<80b6MhZ4IBPMR=<8gJT!_j?8;l*^SJL1n(7ltMhpy
zSE9YhSeW&Yr%J(!)}cC$u3-1UeC}$&<o!_kVVdR8ru&ja<-w4iZCQM(Y+uKQq+_*g
zkTlVC7+)ZNZfHrm+%}d$X1rzC%G)0eD(Q1W>kp&bZ@0*!1Aa#ZMpj<9!np<z{B_J3
z1{1gfU+D&a9e?g#z9?UgU^p-D_U!Sq4(??&9@ieCXT%nP!ypV+1tMv81(Ru;l&8Lv
zM)($n!<)^~q{KMNYL-p6?CFhW!`Z+`&NHdFx9K$N7p9G4t?+%yh(8ep?jLI~uc^Y<
zpX0YyOENC?%UyjqQ{WG@s~JlmTy^IpzJ77o9v6`ieRAe-lfB48s623jv{*2p(y9^F
zgRg~h*N|!YxOs$r_?q{x<3(+Mbk~K<`;X(#9q=Xpa-g8N&Z0*4*f8mRK?Z8Rk2<p3
zu%X@VgY4=vH=SvxkNahWA{VcPN3^DktBbPZ^~+<D)PR1R6_}l`sHVxz%O=&Wj^Lr=
zBb}q>$`TPaH_YKDt?p03hO;}+6YQd-3Ur4IOPwpDi{x`~u74eWsq}9Z1G@e%TD}9T
zn<bk_KeiH79(0$FGK6N|NuvS1U1AJXeON=iRe8_@JcY7(oKLbkd{J8qPfP7%lP8{f
z%W>Lp2Y*im>8;D0iy=@-LgT_!%SRQnWP_dmj#@|owTwK-TF7`{|D(x7L^f@loVdV^
zSFpLLHwsKwISQbb+}d}117{yeQoGF5f#<$=M#GdkN1k>p82T+YuiaRHI*YIw-|(Mv
zaK<z*3pEFs!=Lbyr^o*Hj0~p5Dx{Zmb*d^0=TB{L<A1zKA483lKinT{uq&pI-*6!6
zDn|h7qx@p>!{UY^;wY{zAqDRg49CpZEzRO@_p5=5I4Q~f#LNAiR6L242b7pg+-_`0
zdf2KP@ISHc7aRYF`2$__(tX#4!@f^bE+~%-=C05S^z3ic_sxn<ez(+V80VSp<S#3U
zIFQpP2M}Cqhw^(|pz2ssmFI0KiHd$ovl3WY4jbNiw|T8Dq98C%LrZkv*(y!3*h)LO
z<gS3F<S22o?M<I_&U1Q&#_Pz&P0h@f!E9AC;ZoAPy|HYgr7iWjw9S0vd<0(~3$xKp
zM_okAXRBA2vqMQps77IO2@01EU`rz!$=6o&^3q8XQ7l&HTe|A2`Yd~T*;{B)DYO0y
zOnp46O_VpmGVhn{mbDKf176uA-HGc;hhot}VOMC{&KwRYAKc4OESq((Y2{5fWVNf*
zAM#i{HuadME^8kMiH2jz;H0)czb~MmtRo#W3)C!OtY{GEFmdcWWW-k)EvY6~;I4?!
zZ>*W(d~P-^6qkwg9Z@Rmk~W>3;KIK5AF~LtW$8UHzDhk(=ROK&*Pv#snzWi4rB1bD
z+4p|%pPThD8foS?{yy`qGnKamS#zbxyZw9{`<$x1QI<_}@VQ22#VaGd{D)L1mHIu8
zjoN;ilYlSCubpo6#Cr5#vA2H7PccJhs>wQ8bfMKvbE&aA%;O+)xq6=fDJfOM`gG~~
zvZ0oXnzBWl7VYKpGkNtH;$ye2>_4GBtp84X{vR|(N#Z@DvYerl74aW-q{R5&AV%;n
z#OR+eoc~n{#QM)E5Ii&czv4i|Tx=X{|A_;oyXhpTw?C&3G9_dq4vz;#Ny2mmg^B+_
zj}(ujNL{|%PO@Hle5`-qNLy-a;q*Frs>X|ViH~GvZb|*}#pDR8%CI|tiphBoyo=~^
zw**N>hX7A1>ycq5a5DSQ#l$qmz3P-PcJY{T4aSM=wE%$(nCF-vKp+}OkpCbE1X6(p
zff6A=LSPVR4dU1L*PX4E8l?^bZL5Q!+0Wmb;lCkfjYP`Xs!#e^WGh9sE`3%{ab_k~
z_<&=;FN+=P^^`x4U<^e9`2j}=F56?g1OMvYp~vcL2mbBP{>;ATzIz{@><-tCW}&rj
zAaOq&LLUBIefcfCe!HL(%MD^<zl>A#n}-EB{sP5h&?(seiflWBl(ax{U@pxyPl5T`
ziV`g#G8f_Ie&PO>-QF;ZrBnJ>++GJhj@6RFhv5T${&DgGF6+-EhCnqxlSMjFt}1&D
zAFxOGg%0=}QK9r-YJt8XRw}u(`+j4$M0HcyWrK5hYnI{VsBg6w%F4vebZ2#f&bklH
zp-Vw=L=o{E9e=MiL%dBx!sO&9A_J&o2n5Pv0o3%DiV%AOSm%wZxTvULDWLt&Ha9mT
zSffpZ6G_mWF1F>^K%fY-heYX+FCb77)L$C@`}Mh?`%&g)yN*MZ>$O*Z3ihv4G5vmY
zOOX)?dkB%JmZ|%*e#ddk%WP1fS;IlPeD`p&lg=O@#9{*RAWD|vlMjx9oc8KH_F(ji
z#i824QyZSF_M2Z<4*@Y#Ow6UP6Pa1N<v%z&vK$T>Oz}KsDkLAZt8^LGsP)~JN5uBt
zg)ap@2-LNgHr;zm4L#x2X$v;jI|tp^&G!Co=KgN<0S83rzi{22e6!t;*G!nU_gu3z
zNnRfCD_Zout78m|$D_H_T*i<p?`T4q=gm5A8U~i!P0(@{OFUdSQ=dujn<?7Nr_CTW
zyWhL_12VZ}H}|YC3_JO?<Co@pv|dgb%T60*S5;}ssG=g^<9yPMuV@H|F|Ey`^eyF~
z_#XHAUop0i_<pUzgr`3>(I;{V2tM<4DCGK4u)pQ_JSa;{g^KG{(Asog6kX8*=b_)m
zr$B@L<+py6_h|VE<@4@^_OnCYcz0+AM;A&`Ep4S9^cQJ~itVCkJNvoAwy_ZoU8A5i
zr+HpNg|7sMXEl&+<tsLyn6p_x5#n}CPwsxUG7X+L$^*hig;L(1{QGWC?*||V->*-x
zxfB^FeM1C2_wuIXV-IQhwQ%qVblOblzjNI5Io%xAt9uI0T%OoRs-#hY_O}}-I-c_=
z_ui0w?lY5fiKBYIejbce#aYa=BIt)56gUWC66z3t2E==dM%k5yvJ7FD%bjYct=%7|
zuy}kz-+sw)6kRAyqwV$F$UG|6$vW%S-bAq=*Z(~KkuMV20Ye3PjuYx?kYAmqgOk!e
zL$iUjiTCXJ;OCc|UWW56CKe!_Q9So7vfI&Z-I*@a_L@;4I*B3lawS$X=#~QT1^xCW
z)lB8(vx~&ocM=)o?a!Q6Iklb}+I`^$mO!$E=Tvip{2R*GjW)994ddjm_|x^I5xCu3
zND7+?po0fNEgKs$iDmrzoHL?T^H_Y}4im+)^%#)-xD+GOX@RJq?|f<L3RcaNkU|F^
zW3|P^j6I&ko#Lqy?8s;txB?PLS32w)BywwdvQ9Jz72sem-#pz67=3~`Mg-~(1E0S?
zNvj%7aVI9JQ)<sm7~JNgDO#0tFR2F^fszPu{j2{g<1Ai81$|`Y0_JSbt$cFh!<IGo
z63#b70|B5~kDQjXl($gsuw}Cd^QAW7B15TOEby4-uYhzeBK_j2T_nc*K&{(ml)k&y
zp73rNE#U)zS`1ipX^sTT)hZ%lgFLylZzpt+?-OgsA3VWonzXpDXdvGXtsL&#*4ZxR
zFs14E_{4QYOIBX!aK9vd36(CP{5A0%w&JZ|tQ>sjPIYD)k#}1)e+M$<dmyf2aHr1B
zE#!JQ2!|jIRZ^38hK}8CvT#_6fI%BfxRIMH$TzO?NEfw+%sNo5eQ}Uco9t}Hxg09c
zOc80*1m{8Jh034A3s$S)6vhxHa3Z{FN`6v(!0DvA)+u+yv?r3Q^(n|Bu9}RK99Xep
zrzs;mdX)%)n4MkooTqcvLzfbx5ZbyoHi}|-GL7FJi39_@`bN^-hz&RMD~4q3`7qL1
zL=4wSOHfuQNyN=zvwqN_Vm2?9)dX(j=;@Eh1#(uhnI$DAfxJ&PDdb)kl7_-<6Ka$D
zow)78RMa@UR9tin97K$-l}T#86_u&ifCod9hKF*co?a2&*Br2$6K_k%_6p0!k_aga
zbm(o+qSHm3=BN~jMzu~mv<EvLcun!tqQ#R^VBnC8bnlbK4;bi&DKD<LRh3>*%5-yE
z5Aw6t4=4E~D!c8vKF-X4G^h4b$9YFf8ff}^XLHkJE_vPCAvdXis9+NWpG42xNw2hj
zK3|86KGNl2>e$29WB@<@Dt+a2Yh*!evdw21pIU=2hfdpUXcI}-V{WF$THo}+3^s$Q
zcH7#)$*JM)ECDo_WN(wRdJ=^h+ej_YiFEWsNZ&Le^ZiOSG!8BEsk!+e5Ia{GkWs`u
zmFqv3zgjsr-}}XjWJxds!8(<UL(3L}**iW_*8XAP{CfZ@L+}JGE9dAXC5=<THxJcP
z6s<^$c0>b?&6#Pu2)wulD!tJurm88`Qx|!HR74s`^Ipz|eWORwUupw^ESOx@Gr3Z}
zJ2Kj-Ee=?(RiMX%(Zw2Cv#t2I2vSHm$Zjzj4n8n&D7*)QBJop}co@>^C{~iO@{ulF
z<zembX$p}c0{~n`3DLJ_Y7n6RE^~M&l+0rHbx(hSZOt$HHjBj{TBmJsW-4DVb5kLg
zr6TlV%V|!3_4`{UK-N2*X4Rc{YYZvB<Z@ZUKezsf)swiuy^?f5NQ8J(s9wgan599m
zL%Qa$t9mZ6{;1VFJxjAN9s&rokjLh@vbqACc(Q!6=hkuE33;_k76@G*(n#HKy+s2y
zh1?brzjEmh<>vQY;8iUGWaL|TwL+Te%=_=;9BE05I<sWIU5lJG^Ck0;5+PK!5_Gbs
z@%E}^P3bPWdkE#dU&{eve%Vu32yc@_<R5t~^C5ewmR>q%=V13a1L}aXI8xMaTCAs7
z37#o@#gBecIDyL&o;scdyv8m6hUyX;H&{l545s-$?6o8;3?O22H$8~SZf7rH^)tV)
zAHkBZOLlF3uKFhqASA<Qe<&_juLINr?j$J|1v^7;?7ja}1@fpZPTa^zwLaEgjZNnI
zvmlhd4X8+SHGqvMH73jo*^Yi-G=rWBY&0%0@?l7Bpt-L#*8~z@*B$vZv8R`8c;hJN
zsxk{`wK3;@_}B}`lD0QuYSbX;`#RaQ@gU}F8$}79#RAkCNq!&=x{u{^MA1)!ak4gz
znVdt3@z;qE^#x5biOS1W@3aOhJ<GxfU{hI`CxPc2l*Xq5I)vS9iBhok7npGJ1_f|5
zkW{D))bD%bf31unmSDrBs`cKPB-XnYp|S~s{f|CeTU4yr$V4Zxu;ktrYZQswacNIQ
z1Ql>Coe^Po3r0&TF^@|4^L(YY1)|VUE_p<$u91Jsl&U>lhl6eo(L!oc`|!8I)&7QV
zK@t6LL=3U_Oe?FADL%;~T4<zg9~LGevqERk;vHh{eO_m0vpnMRH$hJ3lC$ySjJ+X@
zy7;+^Xcmsf_LIX1m&l#%O|WEyw3WdM{<Wm(;8L3oe#lTg2ZS&NhN@}aQpB57!>iZ<
zlgbLDff(AQ&#jtWgtD$b=1akfai5y5Xv#8NoAk3-Fj({Gj42s|Fe$mYajxqywH`Y^
zI_~{cVhH{<83Nc|rfx}-%1kqxbbxDN{$K<v<Y51RVsDJ@&zbxQdNb!nww@(a1#F0$
zJROL{?D8S*_7awJdaD>O-`BiKk?~OQB$+kDI>WzH&zla(V^_?=Qk^{^7t(#(hq)|Y
zfwNhlKQZT4TKsfo<i#l_W?1Z6M4ByG*a-~#dFOl%2Kfw>9hvW`Es8X<i7q%Z!Z7fP
zM5V_A07?(^v^)OHx}+U%QANy{F6wb2iF)Ucph1w8&~dG@BUC7X4iw*g(bc)R)F-7x
z{R&YSfXIg{m+qF^9@J#oTZH7ZlHqfN_tWwK<X(eBN2yX{GHHIkw!8(y&$Y6T8gWDj
z?2pN%nI(ygui<8Ahe>&??cs#tk&Oa8hbpo?AV-UD3zQMbLm{;Pm<3o39U%h}|MXGi
zvB0}NcRxjF6=>jDDT}O(`l<hM#HD<Cwc>nq20)RqvYTXFN(#CKfbbNwAGPHHG>4i6
zJ}six;<}W@aAkBeFdG2sN}a|$SS(&K$*)KAuz(@W(k$|NvhSh*xlP+;)QPJuFt|f#
z3pwAihX1k5CT?w(m~w+a0>Ec`?n1rAUeS$x8U$T9RSS_gxENSAznUZ|*YUg*f<F?7
zL~a8hdARpO^DA^ZCNAABNGLhW^k46#5M&_|Axw>_bh{i|P?Ccr;T+wt&zW9aWt&W-
z9F?1ePxs@VJ@+A?JhQMgcAl?4;eaFqDqV=C3U~b4?T&x~+r(o_F}y$JthG2padkcG
z52Iis+~U8)0t3SSw$1(x0Nw(qgV0X7!VA63`qM6<|CFO_OsxBHDQW`qi@axTUY$g`
z_9TR|5V$j;zwF4mzR($}poVKAt*;9w9VjTuexMx48CBw+j7uRvZui~@@*Cn8K9N26
z?VvERC_W8ix}F~;7ALf7&fRZ5;4n!^r$SF)8k|f#YVe4BH$pmW^QX>YF^G$~??avh
z%1I6vam?ZkGPNFc_o$Z0AYtNYBzSt`P*KK3ZdX0#42ANB?eSPcQBFH^SQ*yp!)P*&
zi|oK}yN_3ZDbQOUem|V}Ov8#4ibO@oj05vAg=(*V&JIvH+$pN~ZDYpg!4DipEI&t@
zRts5D5U=a-DG}aWe=T48xRl~Hn!w>!(yIHq5*pJd<!t$@!xB+IGWJZXc38njXQ=cq
zx-5a1%t{lg3fSwHe7MEKm16<SxCg8WixEqLOg}!0N`C#s7s!<x-;6fNk7+U&j&t`0
zl9K~Ac{A(-W1)R0f~?`-M$Buu7DiQ?`#OzwNqPXOU1J(bg$-EJCV!R;l$!^W8uI`i
zpWfwO-iT9>^_7uT&Aj&+(tv;^92%KT1MLV>`HQ5He_BI$H+7Q{5XDM`N%WyVU^zDY
zZsP9!-SquU!L=g?Ex(pyd!AVSbT=-bZwP)%T{X>vb93sPS(pHgQvH%K8nHip6mmfh
z8Ek6&VOux_V||Zi&FCfOQf!-ie1ABciL;BW%!k@)hk?hocPVKNxXX=1{&Xg-tsWNn
z7IDksr+7m8qr*wP3hQ8?`_|fZ80?OwchMN+qH19oA)+Js0V87)ZrpsgHi~rinVRAw
zX=V-660OLJiO`GiMoONxUzY~1oC4To98w{8-*%O@rfCg<@p~i8EbSuieJ$6%Aq`z<
zg8h6c22>;ylnV6HC*#}5C_Z`I>J~YOSbO5CuCoVmI_=;=f3MFnKsU;my7QjLF55`+
z;qL&PEHnBg7>GNRRkr~|j|bT+xj@=;N@(1f4n-IM_Xl2p9t3)i=Ir$!bEqzTez^U$
zZVa0WSfWa!v$Xtoa=19dG)nWZtD=M5u@aFN@LG-4{kgJILUIEwYgmvaHMmh3!VCH0
z7Y+DBcJ{ci$xJOKgre_P0_-b{J^mDhdbD;pF+ufN#uPbqpZDHw*7f^~3mok)*GB;i
zhy3EbO4@6=J~RN(I)wlP-aYKp4f)}|jg*S-f$-;P!>>4<D#TxL<N*a-nb7$(*g)NT
zN1Jq3iVr0kO^UKY#|(`<2vvGl0M@>{-l>a95=1==_@c!6_{MD{7wjt<<Bo5&ckxhR
zTg*x@4ByGaD=AhA6^oh`11B%CSgr?Ca<&QUY;|8L!D@zq712pDoladLfuK>PjJ#Za
z<LdAQFD(9yE-+?HE;=qIODeZJcH;xiy~unazy3ru#R@h|sCGhKsPCY!ktJC}9q|UZ
zk|0Ihdb2t}@wT^ey%Qau(Ht1Wz$Vj;1Ta+<Vmz-M-8tjGH}?T-KOtho1lFO73dZR`
zr1fh|!OVKJCUP2AM2gsmE)9LDA*8;khV)viMoQ4=lU3r;VzL;qTp4>n!Ru9i^<sG}
zDh_g(PF#);DN;<{#{DKNb8e3K?UPJX_lEGaF{o=;yVQKnErc{8+=)%A#;$XdQu6Xa
zK9mFu<b#s4ZUNM#puGVrjE5Co?Sc=*dG8<)ja=vAZQqJ2VC9JZ)GgiZZLDC|OkR`W
zIgjPl;4((g-_AfrAnVQXPE;NO*VxB2vcsJ@M%`fh#A`o)|BkBB?FkGqph)aAKSjjh
zAu6O|m#v(RE!~l`w(_SF7$8|y8y5H}8mmLFeAAeJA>Q_ebR)NMNi&2a#;nYU7B+;T
zH;>CzITeokMh~KuL5bct1{laorI@_DYa#jv8x)(2(MjkMO8@Zc-id`=0qvz$fr02D
z;g&gnxq+uaUmH_J44~%>=>UbgKyMhcJ{rQOF)^wf?ri_w8sYi!il$pOLVV+6n#&o4
z?Jsm}jcyA2xl$z7N5-T&Hs|Y?XaOCkUqNTFA4F=b9r6gwzv=IErhgn{ie<E&I&XsH
zy)l5tLti8Lins1TT!{R_UB8G&Yq>Es__}<J?vI7BnoE+SequlJna8vNTsBA%HFR%!
z7Z|z0D$jjQWEQY}zp`RA{gT4{HnP`e*3$HMBL#G07cPfH=LR3gq@c*k)Kq=|dlm~K
zNke_jw<@axYn*zk51-3wAb}P=9n`(NOL90;?z-+YLvDn@p$d!6OCNE1cj#HC7OmWu
z&2m{-qu|6=5i1!{1BpG8g}j=EF*lVj@X4hUXr29<X}Y)>F$0gRFg0P=<uxYUwdrgp
z;F6xXlX%xUMbdDN(dR#?*QWxyO>I)>TU1s&8}eah{0GOsOa{tbr9Y01pafA<^>4qy
z$?RTnYJx9#Nm@>(f#kza79+tx#XNI#&`4YJA}*}YRfn_^0-Fz{FN^}?;;~@_@oUM!
z^M?S`#F<JI+RH4KOBWLz{KhmTdpbgw6b2Wm@Y4mSd|U}_Veqa*ZuPUf@5XilNY+64
zD>l~W+Usv9tKyzO;9UN_Yn1P>Pz#K*4dBD#akp`(U2b=kprTrW2FF9|3EAPUX32lw
zwjdZHg>@TM>FK;xT9|Sw&%=3XMNl-Oda+9oFwbBJuLT5x+0|u-z7)qsRzL$;hm*dZ
z`JSo~3g41hON9~K@vl*^f|rYqhH0z<fgWL7n=Db~w<OpD`XF*HX7hv={ji@dkQXvB
zn+I@Lxa1^JPh%N~HelYWf)2Swb<(2=-)vVH{B1-+6EodsVKzyu^G&U>a&^a)YUKvv
zQVNV|>knK~6jfY{dBtG*u3d_WiLxgE2D+;R`eUUf@EgAp(INXh#ysdqU5Lb@zwJSM
z8N+um+bWywG&$CdR`L@>A?kW~C(&sfUIt_Q@HF9KN@ip|EL>7H3KD!L`!gK~lhRu9
z{X1OT_CH1+gcJ%<tCVwwb!pI<ddFP|d;mf{|7A0}i2UyRM&<L^`QGC7@*PiMl$5qe
zg3m$#G}uDfO-#nlD!RE%eX?S@LgCVjhkXv0h7~S|T#6z-WyM`o=Z@`e+g4RCy}E8^
z@vAm404g%f*i)Ri{bd9ZEpiY<#v+Y)u|HwIR8ngSj$k9{JUW^rw_5ihxMe$z?_q7!
zUGz{YZ&X?lCo}C=u*bA-(}f~@-yV#yI^gZ4-<U-8IF2$fFhKD%RB8~d*;Ny?di~91
zYlOd{nAcXVA+ulI+oNVQbj*XS>n2pQT0;<xz_`H*(*{5`eO>h9gY6K!#F?1mn-W!4
zj>n_@U`<RmA5%7(`%rD4T~`q~FQVw~cfyc+DXfsog)%y=I{0)Beu@qy88wi}d<^{u
z^S52N=_D;VNB!wRpPG;|^(!JTu-oFWn)$Q_3&t$q$b$SXB(p0dPaScw?pYwtKX`M^
z>{RRw{h84kw}^&y&~w!<=F3=>)cH8YbcR9%PudWNiH_tbhv?UP+n?hk>&@V0_!--y
zt({{3gY9Eqa*5u&8}0DoZE$!u5DxPLXS{ve3V<lElSHP)J7+*vQ4z(XKk?9OczawJ
zXYor1dx~~-l!{w@Vtu{S$5d}z`68gSDEbf%GV@o12xMD5OMHp{O<R+2%HrgT&%4+m
z)5p#5#puIU=Pib5b#G3$qNg2`v#+Sps#RR5(cF?^0hx4>T-r<C%`y8@$d-%udh=;D
zcWp8amORfVVSDO+b(^y#xuu5z4stk#I9D@42qs+CSPq72eRlxzoc1Y`YrE=d^K_^2
zX#f+ERCAp@A36jyvSx5rw1|T9L5LfBQ(2JQb#{bFV@OxdXdjqcZpY`Z?939-qo4a^
zzGv#A9$Mx)PB<Ph!X?a*-=*JLER3m(nyS|pK64*1nhmk>43h8iB&~i?oT~-q87t@D
z8pylX9OnGyPz!gJ9(R7ehsRP_$@0FeQ1^8!rD7kxxV&bYfYY_13}h4dCfB*qT21Bb
z6Sry?{pRU8V&YQ+o^J<(scQ(Os!_h}G+yv#mG8SeDgzoRmYd|s_s^bBww?*j7H?G5
zAWLfR2!M(H;bMF2b5~obciGJ&kLC*}#&M1CuC{V_n|p7JmPUw7pVtrgz?n1K`7CcE
z7CRazOMbSsQD+QwnKJjD?@ydc77a1B57-?jDrfVlAJ><=Qyx5CxN(x*f^8MNxJHBF
zvw1{p{eQ%+6za=(QPXb<$uGwV>b^}asWJ3;N>X(wYQ5qt$t5LYXvD;cfK0w9l!F82
zK}+uK7F`!1JR0L94wH0eB}uON1@HYhdRyRbRdCh~WW9LLxjS^YH^xzv^4|s9+}pPO
zj>ZpE0>{UhsMofoE1uhzj$zcqWcuHV-Znq&ESR5v@Sv=jqJSbsQ90KjM^QfyAxBw=
zuV9cx!cZO*mE{!@>{W2K*WRa0E?E)Kt-e&i_HAczJfKTqPoAEtMUusb_Jm(uKn?dG
z=QVT+J5+Po@iH5dy3r=InI=crRJ^;(4gk=E*|*#)Ln?dQ)epL0Z_ROzkq(h0^6?pY
zyTi9~4e$o-1LN*8^d_qNx-lQmPmQH5nbHpVn}-yYsLxd#&5cF((~nK}8JVoC<IC{s
zY;Pknbt`U9Fn(x#`lVj-E>jMv;1HJB7={9z@x4Qk_u!~+eMs9=t<5Xey~Z*fjNx`w
z>@w!<*j8M2Q=uInz~o|M2J8NHS%F+e7i!GUGq<&=Zz7r2?s(<l*R(znT?hhd`rW{H
zZ0sN<kGPKmlSE_&^GuV1PF@Se8kue^LxjFJO7bo(f#uT`KRZru(%kkFPWWTF7*!%#
zMv>8YdA;ur>5$Xv!0N7=$_;_#ITQPU-)c5(7+ENf5pnh&`Pg!>C+97M4<a@^M)hF`
zdQb$ycJ-o^$Gt7q25%P~N9m0uMORm-)yAsnqiuY;AF(CjeAr<eCLy`lMyWyAPc(gg
zk^w_vOrNCF>l5sFZ5LWZlf#S~9ggWGInreur=Kl+H`|6fX;W)ERM0eC@_oOwfkdPe
z%jw+K!EWIbCwR=pOR2N&xR&1(#W!k9q{E-FYF=JZW_jcTwi}IasX)`5zj-(mw38=}
zR%o8<iHc+6<+k^$q1caoy{hk>E|HV=W3sKDF^%v*@Rr#l_ow@B`EJIJ0ZQgu!HjgV
zbZ}p1{p(O*t;l9&$jhnzsO9Q=z*=U3LgpZjwGID%$5-0bG~JPn$_B=8cLzh*BYEeV
z7L`*t2wMqXHou$v!JDyF-HT)y88b=WO0I;5b7B6m=BRc~lp)seRONuBRiAf1B|dKy
zb#|P(VtPNVe_bV{UUI2Aw|2NVA&N}DSVPIa8-3E%#JsngGItIdp{|}y3iN6jKabEV
zC%6Wk%er&ZJ0Doj0}Ey?3~DA=NTuxVj;?Ei8br$Smqj)w_u4bdjCNBFb97;2#INwy
zJGW3Bq@t6a_R}8v1c&7T=2B1PtXA3gd5krE#Xh@sYbdSGEDV~(sY2$GbeVlPt+!9i
z>8Ku~5!PK$3;k*MVa;!Q=A=#QG2HIl&!^JB_S?>P`-<P71}c5^9kiW{;@Z3Ff{X*z
zqr%OwgTx~~WGi5eib&wiaWDo)S0k#!z*5FFfNCfDjV-s`hp3E&iOdsIOb!Xr2mJ(~
z9&Ku?<0MXJT{^1~8XLuHD**e=c3=eA8ABj^BCK}O{Urx(wqFZyYjZeHoLhKIo<w6K
z`E4Gvtu0(yA(pKk1tMHI-tAR~L=HRwTX#db&bfg#7+*iz@u~;$^=xnZY@?l~mPzR7
zbBbu5^PYXBJ)V0uk(R8UQDm|(VEKyg&EAM{SoE+M<rj{|Y6`_|c|9Qf<mPLqtIujK
zOifPZzq1)Lt@^D~Uy)`UGe=F{Pq6-qqKv)gnY_X_@!C{X!ox{H&P%^Syl@&%EJ_E3
zGT7d32S<Q`#K;Uc-2y2wg$!81k};L+M<@Vc!B1mLc*Z9`s^D}dfq>QHKTG8xV0rZK
zrSiX@RZ`M5(lAm|!t_}|f;8$!v@a_hE59kBtDx42?1=Wf24!LV^_I{<NW?q@B?#31
zS82-r=!F`QI%*<)u(pj4B7sD8(&mSZeYdPMv$l<2Ws8YxtT^la7V=!Ji`iL?vCbo{
z-$GA0H1gz<CE{S3xE@)raL-Q_arpFQ%hBET^B~ue(_8ZE^uvWq_ra&?y-(%H3@tYN
zxnQW%8_?WcdD~Lu%g##Ek85Jx_J!xs@^Jwe9YgkA54Rljip$DcvZrz4sPqPu4SiwY
zRWo|4*5!q)%2aVHJ~NbBx1ltGdcB4$dv9BtiB-q39G-0q6`XmEft46lhsQhR*ukP*
z>uSCKHlQ8(w%_c>w;gEXeJ&kdakW$5QQY`cJAAn+=cCGQVB3Kv6T?5Y9Q?f?{<7uZ
zML{py5Wf9*e#M#mY4)G&|6u#~{U870A0*6dtp9OWMVY2{^a2;~4-$PtdPZ5yh!cnA
zed*=u(t=`fo4~1HLqZlrR%I884_T>49TgZmj<4Pr@xIFW{QKU~+g6}Ycoj{o$D1lF
z<rclxU3|pvy&(xZE;Bik;%(c$yzlGeTt^euQ{MHe9#I*RFy?FI>~q+?-{&b=1Mog9
zncj3==sr&s0?T|^ex~Mp;1Kk$F`skh+nU(dWsSv**;-l%^-Qrz2YOEL)=jSoA9;BL
z4Cn-Hy5HVEx-&4T=kPymyRc_u>2$)762}K7B#xgp$LR>^Nmae69^w66DSdK|)BlTX
zIsYDo`%O6o8lo~-svL_QIs8t&e@cf?wP4+*fHSzpnQV&7)FCY)GgFl=!YYL0u)<WS
zJawkJmMaTS=h3}g*S55w^tfykJK7?NKC>R#QytD!8Y{uhXPUuy*l2~q%SjKq4rXAc
z{ngYRwDs>+P^v+(CSH;)$KIHSKV1T~nJ`shekR0HJY4>5C0e)nT)#FUyp+~6KDIa-
z#)FsV(*+aFLnG#>!eac74V1kj>!#(sGtuRB>&KeRLS|!Qyw`=Mj<3xkN`GfaZDU^`
zJlmT{MX*oX40i2Y{(#<C9N@)^bhE|zz}ijY873;k0WTlm_4yI3DpZ`eNs}=5Ht0m=
zzF6cpnw}?1=g4E3P!U({-fDJyZUjDV19qKa_R!p`;SB>d>cRel#JW*)|3sHchxD?n
z$TT_wk#@S-u*s1Db2$|f@zLrP?-5tz5+r|UF3tBcN3WWZW#kCnf$Du^XNQ!qNl9!R
zbMa-;7Rp(1!E}SaBi)2hZKR;2?B9FL!e=9sg<PNv(fAW<Cr@+h|0F3GPo7p&^mq%Q
zY27Mw6W<EOX_C;KpoqHu_&`H1!m`vh7g#wmahGsKaBNdW6DV~2q|`4pgF*dzz5MvZ
zP0_dUOo8Hks_-CXGROp_=yfHx3A%qkXirIPj(E*X3hqQ#OLd7yoi2mg{4z)N*7VV&
z<yl!X6Lck|!qB1Njk})bq+9shTum`-Fq>g4{hIlJMX@7#jU!Kwsc0-dvRU&hR0=J<
zaTge&ZTi~%cF3%<HsV7`iIY=r3^O*<a$Z!_-ru(buw3n91hD<QUrI}v3nn#h*0qc0
zHU;p0PL4ky4e)H+!7`UW7zJ?Oq5B}}?cs}2tMP=~YN$d@^S~Ho^;HX5T5h_O!-K4G
z%Zr0bt>i$&64I}-itUr7KmSx&-&6vzAko7Sr-(>_3@gb_In?U-gw{_zh3s2WGfen@
zatJR?zhlwI!&W_gLz}-lOPUZ$P+l7@AtYHTA;ba`?O%B$(=7k2Z~KcPxla!-j||z%
z1{E91i_9cf*SqkNJEY{1yrR!&E+DW4A-BNC!3i4#=Y}n`z0LrdA&cSbG`ClPXu3b3
zmaop(r6wMIhJuYWZee@h%)o1qN^~bh8|qQZ9wtLKcs^BC@o~JV<3=?SDbH!wnz*!M
z2D%!#n3JPp&myX0AiK=y>*R!U@3q#!b<kX)pfAKlkcP%T30|E49=!fvx27?3u(1BU
zX`h*ioBjXfuKho<{#Uo{GjlSra{R~WdbDijud;P}`pauqHI?`s)sI&+G$D#z3<i-#
zp`!6~?~>liRFXeo$goveu~E<%(S=rF_h=AnK*))HP$Z#|6Ap70cBZ}<wN5XCWoSPf
zcJcYb4|a9UT%NyJq~7@o3v9RgZ+)`1t?KQ1%shONL93rU3Et`H#w{E38GTu0?Y!CT
zH#30(X~trLG;g1--k!K2p7QT=leF|Tbl>~-fmU+~1Y<BkCSq#;cE(_8Li~LSse%5!
zeEAhpGlBa11pU|B7ZHD*e@p!P_Wxq(|JIC`CjD=(`@bmtUkLkO)y)4FOaCu@{vVt2
zpL+GbSNGy^lN%c?vZT@9_R{m1>8=*DCf5;Fv|zxxfd7$|&D!#(i4X5;_%1_q@HEPI
zO$EfxwkB7t&vkii`|14d2VcD8gg?4T)1ybA95Mq>l1PAu(_PF4M8356>G1L2<YE8G
z@zqb}%%rK*neZpMOA4pqb=dYYkEv<?HEVDIL&ulOJeg?G9!?*LA$b2%6O*m96x~6y
z{HwHdQi12A4gCT$4&K8&zZKQm?H~kFHDtm#?5f9ceo`#wOnO>SbzElRf#BPlnZ{5b
zJ%-H0zNkp|qf^H4or6*u&o``1wmtrax06T``OS{ADb=rtX)Wm0ywjg5^>0h@A4Ple
zmXp*^xo<MxI;>I$vM$P(VwcpX(E!CN<ph+<t}qy7&eAs8cHc(6YnEe3_1SC;S=D`!
zs-&tmA)~iim~(*aPO~1l@}mYukcc_EuoToUt*Uw3r|?d`ts&=N#Y4P@JsE3^Lr;e?
z=ST<e=tP=omJ(gj;1o<<H|NX{(xBww=o2)DHJO*XC7OZ5RTP1Vn-O`gVyA<Ar#^w3
z;na0i1TArE!J^ILJ-3K-r<NBPTbkVGdm*tf=?)_C-*2UMo?7gSw*scb;v?Kbmf5)0
z>n~nH1kKoBiks+C0~sk+$=JP2m*@^Pnm+qz<39PU_>y1sKMK0NVn<_Ll!$2CN#D}O
z_g32%mO1Yam{oT5<TUCkz)|PFnF*ncruGWA(J~u$#@Tj5jG5GIx{kX9pXa2V@9?x%
z`t;;P$xKeR^@$E!W;#p@i@X!ZSGmTjXk4nm6jBS*@l(7zPwEP+A)w$0Z@f&+DIGqH
zahRSwP69$z5f5#$Zc4L8^N;GB+f_ZxvtP)2MUDyq=}y{W3IPLvMI^la>U&MQ5%`<l
zERTUB4I8u7#P7@n4dp8!qOBg#8o7KMrF42Dt-vau(dw)cM%jefr(y3;XOY<MpP2ni
zRnimNCSX$VW6p?;m&(y31QRo~=Dr`tfU2u)H7%-`Tpaol$Ps!kqqu%$=M)WpYG_?%
z%{ifZ>8rsS^vt?wuBTsdw<z_|T;`&l`{k1amgquiGt9Jm?mCYx>+^Rq2l@M_hMwo&
zC<)#Y{YiOLik9s?QseXLcS5^ZB%6$n+~yqSi=6F-BxPuk210y(ap}};qwz28j`K*K
ztWDh>l!wwoso)m*7r!o|p>_EF2`%$7MV-m1D-zAB*-wLM(!+5%gfw#?)0U~&tw+}^
z=%w$p?s@ix_zA<l)TuuOfG-f#$n@qZjRrMImE%Vk1qEGh3-vL5Mv<_^OY!;07;_fK
zRaF0W8oN6+FxHzBtyRmz`l2C)Rn7JvgjY%!xyX8|&WQ`%C{ntkc+cRSjL?wQ_KJ$5
z@P42pM1%bfm8*Z-nQbKwv*GYmx_hojF_vEaBaKX6&}!!)bed8BN^8%Gz^jY!mIzzG
z@fO?a`Cav^7+OuuaGRC}t7e1kUGlA2=l%Kev#&VD=j|h9FGZ`6{+|WAe-Re{H$dsX
zDE<G3qyJls=68F|g!`-wZ@q<%+wH_yK^yA}FmCbgI{ohAouNt5z1;7}NT&p1ceTI*
z3Xj8(WFAG_Z4H!iiGHh@h7yn$OyJV7DdB>?mqR9<L{8dfayKH<@#2x1FzFSzUnI$t
z#Rl$A+i+O1ed>x0H(a%y7mI9Y=!>d{o7daf@z%YLYh_v}YRn>ZscAu)iHXo1Em^ia
zG<Jd)=YG;Q8;d8aH^C#oFuDCEoU^!e!nV!zV4lrLyib}CzD<|Y#beMXAB&LJee59`
zfvCy4y%c1ks8--6$uEC<cnnjhT3K%UEF3&7Pceho+)zEXa>CiBg(a^Rm$+be9agPr
z;dm1rUbvHSnFGA2pf*E>@!V$Wo<HVP$NM}?F+l65KfixrN1ahhMvJYF4X#nTPZ3d0
z)|b_o$d{n8SiK|wU~N7=5w3$!a|=^T$9tvDYG9C)wM8W<(PqU8RiA@CJrR!~LWA2~
zQm^M)<R(I6+@~H8C8OqheN(5GFS4UfJ2H4h6yasH)FZ&C9+%it;?=iNc0-?-I2wN-
zj`%i7aM@m^nAR;FP|ti^;z_}eu!>2d>k>LzvsFTwW_}eO+J6ef)uq<A!tq?j{j~Yj
z6ZXEjA-3`1rbOHf>u%~VjG>gDmJ$C=#Yq}ndLo2^SnJQ0-!%UQ#)Dclj^}M>BMkAm
z&T7Yer0c0N;T4na4(TEFPA}ACCN8m_s6J$<Jd8yXXPI(6<QMrY?keeeXYxy208%NV
zqEI}y6GsLElF$|vXqsk>`^3M#V6cge+FfSjy(z8f)BVc8Dm|^BCtI9XWF(8GMH8{h
zPZN)UX<J-;heZz{`iW^;jQb_etjhXOcaYLQ``UMXJX6>8x^)|n9+I+IXY7cm*4*PG
zUoYv!nQhrz2)S2C!t_5J7)<dq&v-s-nlzJ$pLLbr%rqfK8(18>N7lT(S1_KrmKg$r
z3*AVutWzD@oa`dq&%abR%oVuw$|f5EV+wXkTF%VmenD7Yvclu~-%+e_P=&fuK9WzT
zO;@9X+0Qg9iR~(Cp3$LSrUf>_J_U(JaD6+Z*K=snrxh9*9*lm*fdW=T<J|Ok>(q>X
zoSw;OUkiLwBcrhEXxE(Id_+F$sZw-MGj;86+_rEVf)~O9=Z{8=#D`Ys-{~7ILgMzE
z<CRNB@$O$d;1SF)$1WX2UJVbXoAt!m*3kA#H&J$tHkIX2c9}qB1(|Mz6vm&;RIw^6
z9}z8+HhtR)C`W)-vleW()p6Uq1A{w~(H(kYz7f-I=~XKbaX){IA6&_qRRdX?s~vNZ
zV!6_DiER|bYm>#1lY5vOIQEbnBqj!7wB$uEC@HFG<#(uT<3-rDcH%`qR8!H~JrUm)
zBET2gH4?|&V`ZuynB7pCIqOxFeswS_<t}w^NDg+3ZrnYa`jp_Y*Az&9hzu9=L-V%P
z#!={Jl?t*SMO+$YrcV2;pRvQx)u42*6e%krUQ9dwWXolj_R2BNPqzfXJfzf;IAxDj
zE^m2dBTU++#jNU|sMMxQu1l9(nnmPZnK-D;h*n=jeBX;wCe>_lA5oiR*(s)_mEhm&
z{0*8<Pn6G8dmDE(CT)?A!ai^A+dVw#&d<kmj^af3CxmH+!uYCP=XL8AzTju6nHrBm
zIiABNE5LQduc8_chJoRvrj(UFrB73z2wKhcpnj$G(?T^mr_S3d$J3bB5L*#tRn0#x
z+%Mg}r=6(zp^N!=2q5LBm-0y$y?*meX7AoroE%u)V}YTvpuyxgob(J|ZG8>N{M1`1
z_!~&7(dB}W=`u3hCJ?M1U-D3Z$z$m<q=*OvjdhK>O~}{h5U%^58&6}0IyCMZsAxg#
z`#+^~+$nHySocV`W>-F}Iu&Ld;f|#+Q=Ba7r~|$EL9JM;=~s0%17H-}CR;=U#WPQ`
zKx8H#dTHc8PEhr$zb{{YL95DY3}v2IM1Q=wE0yLZ2+?aEvVZW-G=I(BU?8sO^QQ(-
z|6nti+=*gCG9D`ag=imacE$~i&T=S};$CG&CyCbBxCvIuJN~pQ=>0?duBz`lw8(;W
zm@DkdM-o4whog8o<-W}<1x>Y<*812@CJOq{8FxAORq*;HkNuI{mtIKe=Laq#SJz2u
z-En?lk5}UcqZG6Ybc}W1&RT=?ZLjM9(l*$9aAS0y2suQDSLb)W7W=0*#|d6>D9?Gr
z)iBWt$aiUfvbAicZe9c@YjQkPZsyOv5aH66$&-kA?F7AqFVh?zGpH{zTxOpGB?<XU
zr*d*LLN-ZA|3od_M-Msl8c)BZDw84RBXpU?%|EXP3udOv4nKGd;C0-gEWe9=7;3`n
z{{5nAaQ^%zN33M~*|?v89&Va-P2ZUpSzIW$Zt~!Z++;#h?Yw3szO>@O9LUvqs$Kv^
z*_mj6K6Vkr<G}PP$UY2+S92$0`lo(L{B~bb!}}()_n@X@soIeg=S64zrJ_>{eieFY
zbs=I-eUZK%BjT(Anh@WzHRrirYWANxRtU><%RhO>Gf}RdkP$HT^Rm+0*@}{<!)CLm
z<LlLzi0|D}N*3Q;j-$S}Pf>`n!dIRE*!rz2R&9t$t54sCzFKYdtVJJZsOZ-V>=z~3
z<xfXaQYaY?;4wdJQRl0%Ewrru)ZQZcvDI4mEEuf-Se~rfJJ$}|OvwTiUA~+2P*zh0
ztttTHM;6_do3ztal;cA4IaeO0pHI#P;DwL|rF(>vkJI5LyM!si^UN@+en+KYJv|e>
zH1=Dm=;2+saauu%lC#D`zu^0)&mGGR-o}5dr?OO(jqjoI6UWdO{l^(61v@%zCqNMn
zno<XIRxMFBxYL?dmo-Hv@*4kxz4w4>YHiyF@pzE;fWqOZpdz3kBGOSo2oOCYC<rJ>
zAhaO8BS>#iPyrDTkfM}$q=|&yyGZZSLyh!K=!5{t|LlOC^L_LE?|f@!{xvge#w9Ds
z&fd>{?tb0Zv-eK+%4=v|#t3l)<RbfjPq8#V-a@ZGG)Ikt|NM~)=nnb|v&hxs9?`nM
zPxDX-(N-c;G2r<QOLJckS-d{y>O={0^vwC?{&<eV6e>I<_8izt6>&uRo#zyYgAeXG
zIX!t36YR#cPc7YjS8y_6dT`LRedgs?fXAP8&I98pm);ujP+Q%sN`u1SGY`L$tt4!l
z98}FpwUi4tm$TiO#%NhWbJ&YUU#ff7zc-%a3RSt=m?M`15JW?hyIImvYQVHA-e#ai
zlWOgu{!1gLF9JUk=4TTHUmmbw2TWK43A^B0Goq(09z>d*O;+Z%18@n%`~Z2%dmA>u
zx{&VBl8|k^mPtKfyDGst`i?vovdGRW-GV)gckdPi_sWmDmLbHLF~URH=6KS)kfN-8
zEOiv~9s30TQae)7c=t!_ItM$-8cYPhMzR9}OKwb<4If}NNm|M&X%y<B&Q@=cR(ZTc
ziTeuw%1CfywLX-3kuK#53L~aUie{52zYFbWAXDTlsgy`;*Xciy;%7Q`Pv0|qKhT#+
z6AATEjZMDwyl9W0{cYc0PK+OJHlEz}4Ku?7yaXLvCM;=+5kqe0d9Bum>?edhg<4HP
zL}XKwI3;j`F?@eEd$%{ZDfb0=kj0BpqAqJekM=G6M>SL6yWuEfW0Uqi%i1_IDs~Ey
zslPB@=_h=ttw~n3;0|`c_B}KKcQ;~@vEit4NQMgMae?gi51f6kCenQ+UQyk@MKM7X
z#(TVxSn}usd|~LE*VA2zO(aB%<iu;kOYFqFSTa3RQy;*!%j~IMY>4>S%j2t)<Q^93
zpCqwozacLM#eXO=z<fR2+aq7uYu8~Ra7%c=oSIs$@>}HV^u$m$<gY=yRU!L{|H%J6
z;SmZ7yB;Nw^C6MpuT#0@EAk!!gC=R`g!vm|IV21xV$vjX4yH<u-<T~wU+HNw(GUW8
zLq#CMYiDcmer#mBeDK+P;84bsr85JWcyDDji@S+yVV-6+4INYttio5yW0TOAh9LV!
zcGqeuL+Y(an4;U9?@RqIs$>KCtYy|PW$yylc_94iu+svb@N|m$KJJ>#2Xv*-?8ggS
zk>w80sebi&!<W2=z7JbfWiFmtWCl^0|A49=1BBGpd?h;9C$Z*rC^xy>HG!Hp%dnoE
zsUm!+3TcO$dbXbZRBfV6;_|waB_UpL3(zAslv@<VLOqxI*e2iUfK-0bl*dcbt;Syy
z0cp%r^SH|$RPsQWgmaDmZ%_`wx0>$lY}n{TM{Xy`zb5KZrJo(iq>LP6=n}I42TBA_
zS5q+=PtwT99%(V`(jBFd8E@*rJ;`27Qd#BPrw%tL=FhrS?7uPZtE4=ON#><$H%5ME
zlYqars%nn$kH*VGaptu+kclRg(5A4d$c^Aax$AhTeyXrT-ea`Z*cF+q4&~P0vot!8
z8GDz7$7JLaGdCO`O?3w`{?ueo8TSc)7m0!cqh8<*KD$EdV;kMq$t0PXd)g*(JRFpu
zsED9wpzT-tfA`Cg7TqN#4jrs0n|sjrXWmE1sEnjpkv<R`8xsg<C=&qti#viR&8YB>
zx8CHWmb}7of^GC2&cg!bxn3lP+F2&*)|6ZEsd2K-&8s0%a=Ga-i6P@TmS3Jgs+mvP
z?w)F_(Y(dsDna?HNrg9l<oY|UA(K$5;ft0&8jqzv>k6DMbf2ILEnE46n(jnPl|8ej
zS6|Zx;c@3hGt;4c-Ek(K7q(8TTRy<_arayKK-)@SqnwSYgKv?W_E8f7Y}GLkXs$Dv
zEYk_ArUP5onH#GLsS_+!%D5}*?)lCH$}jG5)Pr}nha0m!qL7;d`i)%#Bqhc=yINe3
zO@KVM$agY*;h#P0y9i%QU_^|tK->#Sr*OaWtOC`AGM&s}ck!U;4$&tT!-u_#@Qg3I
zF!;4TNfX)Ge-gpx7;-y}Z^jYVwv$+fJ-xBk`PioRf&C^GB&enK!iKVeu_xpQb5_H9
z<72bMyyXBA_D4mW>X7K&HM~>j)3tQ3<`Y>1-ML+OLKPe`THO`pc6?gEq9;wmebpyM
z3DN64^{so7^?0P?Y^XmmnP84Q)KGz4*w6+cKrHN{H!Cb5J->5di+#@~XSKCOXfiiv
zp#vSP7yAC*QDRqQD$||<OJ>>VSN{lKzlqz{aL0Ck+F_6gZ}gh*EWt#3A|_&t;M!r<
z1vUhk;{nFI<B9p6ZQFflk)?F|<2z-#;{02>XtNcLopgNyi>TX<@u>B5qZ9X$qs<uG
z>z8{XO55IozO7ktm~~TC{-gOg=KY;Ahi?NTpLz^y`(~MTB3c#aGsTz==dKa8nc=Q!
zkC({D)qjH}JvJQ-*f8vIRyUzNH=px|QzlGUFJd?MRx*6Z{q9KNZi@qwZ@kBgOQ^WQ
zpk#Dco_Y8pYr6XnG8*X6Kc4lhdgfz?$#IFwy>z&p4RX87jk%DeqSg9~I<wunkiOIM
z8uM}YCi)xVraT*3V|3*Md3OY2C6+4rdq;D7BO};^{fov~X}etFneAJXYSYdLXB_Wv
z&H#;!38J@sAZK+wlsQUILqw)TwT8J`sW<2+X^j`>k7=<zVgGp4He{cuHlF;^BsVk_
zwl>}FQxLFFUnZfOX;T9)o+cbGwRl`(GYyiLxQWR$dC>068gGzpd$_YkTtqP8S`cw>
zlJ-hmikxT9b)!WpQ|-{-ZqX%Wl-w**Y4r5W+lctW1&!<1OqYu++ZD_E(7%g%)qkbC
z1S@CDHt2fYGd*%<WkS>hKKrV9Px}yP5rcQleC6CVBi0%DQJ7^%C$q_CnA=#{@A+Sg
zM~t{k^V_v#%<t6r19WmuC#TcN)Aws~qKnV2d*9ujn20p*n35vm%Z7%g7RJ-_s--#z
znjAj<%!Tk*O-=R~o&kck@U?617|T{ga@8ffiVv<8L*WL~Lx_%W1AQGT#$72l=5kx(
zWKFslLz((|=YmI>W)SkUqvl6r)rLF=;eM2-Ud>?*&dyF)6^*3|La0(YY?_?(c&erH
z;`nF&&%*rh(o956Ib1bTz#>AH%^38uT^`>(d_`~c8c+7$3b)(ji}xs3U9G*923QEP
z!lFN&s&06(^&^JTTTq{w?5G&8;h@%V(}l;(F(U(ecI|Q8L-Amgp5<utND|Y?s&l)4
zMFJ3BDJSQ{ZHKL}I1OhnewIRPGWP6>>#%<cI`8v(XQ_(Ir@K!D+L}IVH>RhYY<D7G
zK=h@@W6zQvmiwdG^)_P#_j^}lY{a$Dg>{RSAw(A!vQ#^#lkn~cGj}jCdBKUT)h^oY
zOr{@Q<k=xDka?5BunRk$pE-ot^{bFNogTwcva^r-_@IocVPewGtjwhkn@FS282Y#L
zx5ne5CX?AcwU719tz2Z6g`C$`-ZClXb3c}gI&928UuGz2r;;j)V!^^AV+w<Q+{LJm
z#*0=~+Y8k0_wnl;ddAs}Iq%!*`F@;XC9x9Z<~A916yMJt80v4ck9$sVHWz8-v>j<s
z{09lH0|NidhB?o8$6fM+*H@-`H=pC&P5z4(_%eTlBDTJH3$ON{dS4YpGH==t$?hn%
ziiJm<fso0;+TQ=aH2h;p8+!e>%i2G6_WzlM=l{miu!--dL9^!8C@<MZ?zCxAi=7#b
z3#W}VA;@4n_p`ufFTC&7WVC(<7u}rVZNf@9FUM2YaQZzVwDRZ9Ub1HM*G31V<V1yd
zZ5LB~wzQFQ`2TjDw;#K(WmxV%K}>D+uzvrZP1Znp<^4eW+4m*8hF`;kWd2~@C!2G^
zLL=-<o%y07HVOIur>>Z*$?aXS#j;V$k8P2N;pF%8Zp?#B!&eM%ZuLVcVH;UY_O-VQ
zios1!Iv|UuyZy82yyM_9-%}sD7sNa$N?x0IX!0M5F+_o7bHUH<L^L;vhg&L)1aq>s
z4ZEn-l&7$?4WSJ!tN!z<uP4aATw|l-fm0=3r?Ne}eEfutO-m>WM(gIyg^qK1yFerk
zSmJdvoA&pWKha)M>`@ciKB1b7VfILHS$Xe^35ouu4yCqN*t|IQ?9XnEF|RVqFO0S2
zuJRJ36T0WOf>`_R>Un|E3N7Q#!o&=BGkDe%jt07VVRjokywq~5l@NcI*9f!8AsucG
zb}gx+4C1XA-EU%sJ9l}~IAG#qv4aqh28+Bl({e+u4;nqgh1FRFS(AiW63wn`7FSw4
zo|^+@7A&vDN6>k*fXBR^W<Xr^pSdb?t;0>RMl<M2udahl%^ok*3W9xjLoTni^nPVw
zhAH1uURbwX>3T%l*&Ze1cCTN@`e*%(ZEN!PX7+t)DiGZx^l^(VHDJU@?aJbn-lJ#2
zN=P?N>{h6C*O=!Df68!pw!sw3Y2>^9^G2-@OH5sk1<Sihc#6i#k2(q2mZz!Qn4(eb
z-`4ffCu%{sLda?3fa5hzs==U7+gI1}tnt{1*dA2CeKyxPX%71^4>s`?u^m3U^}L@Q
zTAJnI-;;kU>)OnO2{={mLZ0{!MUJYkDU1Tva#Lf)v+l2p1gYV_E*>&A8P55Gu=KG1
z*-D6e=d%^Cfju|O+xKy!MOlf;Wyv7TgzaNjRL3`#zktPpFwo$GW!fZFDNjP<X<l}f
z%I%`{f3DxEe&#Y_5^#O$Fww>AHrRGa7h1m^GpjlCdXC+`?;X@3hV@pckQ_q%xJ(x#
zDh>K~zn+Am;K{&*KPd(Ou&_IA{ohcvp09WI^s%g=o*tID@w4nx81}3Z;^lwTt>dYF
zqFyM}AS<+f6>y8dFG<sU%U5hOE#%@YrOmgoRMHkK%%0<Cw#hh)<3f+MvSBVgNjDP4
zaZ|>>DhN>w7g2Hu8V4SJjkG?qw1Q?c<!D6JXBC;jYw=f%?u`@{pQg6IfLEf@On~12
zWbBW((Cd#D40;8;(trF2oq7N7{|Kk`zkc+8C(8f%x&Plc`oA&5KPZ;}8JGCK#>imQ
zAAa*cb0Ni`Z$@Q!(Jxz{rk^ix;F+s;gAY|GD9Caj_*K(ZW`6}UW-^^J?Q+*-wt=tM
zogm_#AmN^X;@yyvD=U%HP7CwqMHW=1SIq>CK>zoi?!N|&FyRh1nbZz9Q{QsH4WMJe
z|E<H~)K>}jpPTA`?*Cs5v2w8g-#bZ|+ITas^ts8~twaBr{;Nw0jc0yz;qQ+7rk8JQ
zF2485HE$}KJc-5rEZnvuOb#aNdM>v3<#{(uS*i5aOZ?*~Tfs8|aT4Tk;|%;p+9^8~
z8zzajMs$RC6#G%`sMhw)Y+E-+e7OW)w64tRCOQH+NNRc}xW-#IvMU!!Imf{fT>?6L
zItBc0nR=l>8C}^LF~9iQu1q`U{Y(SPUYSCn7Bb3vdf0ujH`k&cM$)c}Q5vj1mfScD
z7mAPf=nU+a!J#=&mYe-uQ>JYk4yc&1S-N(u_*OW$wCQ#~cA{Yh?Wm9z_O96Gi3QP#
zydEf5hg0=FUy9!Ti6>G$%Ovw<h72s>Pt5051AkL0S-&$pSuqQfN>hN@_U%%-W#e^H
z*4pyb)HxSnyyLb+!#Q~IKk)?%rJj7VGzV=XDMo6}yo2&4b+8^2CyZR@=9d)Ntx2d)
zhTn_N`{<O(k{VFPjcS<dz(7}|^<y8(jtmWO*oyp2wTphq96N$Dvase{u~EBr)w`;;
z_WiS|%^f=@;Ppe~@^1V<^v!UtIgGv0u)md1>j<V=CZ#Sa3B%S9+JSm(G&lB_)y3o#
zt3|h#o3M#*%XG)?>XkWf?#$K;!b_8oHDxwY#%nVS`|L!HTCM97E03bT9OGk2sf-P1
z`3q-)75B~(q^`vH?eq@u*PU$N9TQFs9OrDqb=TnzSGHj|mLJZMi-uoY?}@InpH34h
zN$N)F*uM6jws$g|{4FF(S}^aj-%GgQ#-Mk)-RS(ca{0ax;)YYdG-)l9VlbpLesR;S
zSQl}b(=Hftl^xaBMTECs-`Vi?25Jl{w~mcE$Hq%;5k;BX*%8-sTN4LD3&-nUJlTpn
zVNXa!lGM$2z3Yp}+iGZ=Vo{P5W%jiFT=}Ht#MkB0%BT|D<nYISI7MuO3EW{RO=96+
zt<FXjV;_o+oE_w_JqLi)s~PcP^Gzy{a%y|+O^M<{T)iB77d}gVyuwc!mVK>NG27QK
zxir`okP2JUpUV`KkVo&rx#c&~4Q>k^r8J~)%MOaIF<Z3^3ed@;WcedPBnk`tdM@t$
zYx(C@cxG*{E4DwbQ?3Rwn2z*Ij(uRRogW#J+3+LYLok+Z&F6o_S1M8RC+lWV{SsiQ
z|FTvnLp6M~N)0_fm?R$0KR@|prr9iMb!BREGizYTO+K~nfDf_FcwNyLl^WPOHK|&-
zkM3Z{0J_`glH_Mo(4!15j*-Lnhb|;vH*}vi-aaWQx_ekYVnBXrSEU0ij(M(6Qtj^H
zp=Be#6>#0qwQ-lo5wQ!4ig14SrUc!CQs0gJLex|0O>$WPkkI<<#<j{|;S#}1dwr2?
z396MR=i<A-jE`5_k#6r1OD11^>{llQxNiD^r${;=Qw__C%Vn_Q2TTk(+lafZSVmJG
zy+KLhIK;Z}fDNKYX1;_u!OAeCS?l*Ne3!N{QY+!;$Zf0UpbmVTVw1(z1;*XRC7tef
zl$A=(cn-;HyXSqy$VFC_5d((gnU%Aryr@PU8sR`hMKY+dDvNE3mQzWc$%dI2&mr-#
zuz3bkTNv+HU7#2u8FS96_|p6lJ+q;<m9OVbC<6{g>&Kk~X4bZ4=uWg{l<k0rBUlgx
z@k^)pgNZI=$6=UikZY=)7%;HV4+AH!z4gyLV<u2EF>nV?h-d4x%hnxAT5h<*v@0++
z#wOOAVg7rEg?sNYQlVz;Dtk)Q9wbeBzraWQt<w}g)$7*ILVK$)*?#U`X)<x*WXzIV
zoij5<#`S^F>k4W-*xE6rwW<&z-HKwoJ&6;d#iGQ7_<MS>dwpMvA!Pj6<xyaFyP09Z
zG54L74WnhjNirk|sxKtEUp5lIz1va;!@M6c8xQi*ocbmVpNsb-W!zSv)p@*jjQ`14
z)V?e!z*$qaqWzJJS6C8J-DmCZtGxD_?od`Uk|~<;y2(vSl80Y4+QT}hV%ph|;xpPt
zoBo9^D7~djL0)-Or2+mq6BAj0VnnvrrQcL+2ts+w`G%uQ%+h@t+l4%c^FzeRsAk2<
z@z%-3N7u|uO#NQdrVPjN!|Md=Z9_{67dLNDc`fF7h-HX82^1L0*`1rx${&P1c!bFD
zUJqKuTt#*6<$m3cK}V1joYG7r*P26QDGfs<-uAQKVu_QQ(GjoeW2y(M=N>NI#7h=V
zHuzSEXWFrenqflt(Z;df>URocm^$4I6N<=T^gus`>)GHLprpx4;rBMuX~-J;kja*1
zCeMPKbC?x)<@Lq1$kMZva4BXNOlZq96nOyiD?f+bk}Xr3%N6xap3i}qfv(>Z7dTy;
zHA@s)@C4s5o=N@sozIWvrmqO5$;T154v9L|pFFvnKlycrJ5oGIE%P>I@vT3&(u=>^
zZtv#2|0rBfTcof)H~kgkwRe*Vs2!!v+VR%@#YY>K5wbhTDYiM=vU9v6_xr57GnfMz
zU3rZjkZc}F=<14Lf(W8Adl~-Tl#H27K~{Or6$?K#-lZmrTbbvLjH8tID201V4?MA%
zht*x4pJbmlq0BU!KuKe6Gpi&Ce>l{mlya3lTVW2>=S^wVMRdrjG3c1|6`2(VO}7cX
z?;romA35uC%PT&LEg^)s^^BRYe(4?D)3wF}Hr*f$m!18?zR8PcEpw6Ge#E99PO{5~
z8IQU?dE%k9Shp_ZmE}|DA-~QZG3jf&`=_N<$-;;1B$iFK2PA(+xaUQ~^^yK-%eAeS
zwFk!IhE93aq)*H5nuT;$u7wmdhoZd4*FBCG>|%|pOf=<p*LcD3)YKtaEQ9rSiHrB}
zLs$`qyqQt#tJ<?kF=&qL&;6RUYyGZyRZY2J3}C+7-~1^~g6}9D2`}o?T3?LXiC%Gf
zU}w_kv#$Pho8Zv2+5z0~<alfC;^>h#BRnGYjK2;WxZ?dYnS{558%kj&d)XcQ?TSLL
zWj_wL$YF;PC+=}+>a(oi>?K#5+tGPyjx7FpRT3x5oB2u=P~<N}km%_O{n-Ab_F+0}
z%U`;U#?x}#Yc}F#FO0=-qXY`aUNv87U+i*HW5Lv=`BWAFu}PA_)f5fs9So;j?9R0A
zX>yn{7o%&jF}dnEJ)SOVGC>#<(NrJf0U!<co@r?(Z~uZ6PfWee^a?jOf@9Bm`&v@F
zoI9Zr>Df67xwFywZ26$RRF=6dp^vNA8pfmf629Qy5@eCLS9G^#g~^OE)92hdsy5!5
z59IEInm&c6$K;d9?@H%etT}8K(HyMVb44kawOv%_GOlfY@u6sU@|w2}I?FE^^GL{}
zJPZr{8El23Ev^(OH9Cvay~N1Ej8|*WC)#?@;O3GXK~~7k%#vQMOyM>k`xcLW?M4&8
zVn!0j&N1b^6ReJyxYmSnN=<idZHS4`d-e6lm3tn7Ty?RL?!W3%)??-(-Did9a>CdW
z2wQ)q`wwQ^vAef3lI>LUQ7;8Vrd1GLvL^zLilNX|P+Cjn8r=qR9oHA<6NLlucQH*f
zyZONqg#~_WOPoccv*C6v`_~9REZC`t?@37i{ycZ5QmyPSuWbFfGj^&ry}3@7OZ|t^
zp78MlV1`OYDI&M0urEukBi=W_#%j-=A@>>$BntJFNjTkZ=Gcb4kd-hnL4<gNYm+Hy
z(r)SFt?7%SFT0G*8{==TskomnrPDD%jD6eDW>tk>HFtBSTxyb$c*B+e2ltQGc0CE<
zh*7U5khb*Sp&48-m0ZAY+z_AlF>#`i@Fm=BYk-N-p_8}LrT9Ch01jT|9VuH0u%@I(
zp_?Qn<nfcQxMQYNTZ-3Il^m>zPAb=*gnV5~$GWa=O5}R2Yk=#vSEjygKCYhY&ea>2
zyizx@eYbl)S7UH8_u{=Pq=lX=)tv%2RN0Qc3S%WQQ>AqtT|BcFkmj(LfvR=2VFHi4
z{%`%O$j!A2p)3|zR(l7DmX9-4ZX_IW=v_~55-8f(#j;z)P_Bh=WB8)UlbEh3jJ5h4
zy_2bJBzZZZUMXWOvsy_n!RNNg!ixNa6QzNj;Z4LsdlOzIK-A;5DFWQja3xdZdn&OF
z8NeIzYMRNZ{ug7O`P`gpkNmMWtl(;e3U#r}l@_M7^ZYXSU>reXOW>SeuETE3X@*Fl
zmfpW)ubms24ej@fa58cmG~v<2S)0bK=MbVJTt`2+CKP(Gys1X^QzCRvSrjt;A!=@J
z${8<pd92$*DZ_rnDO6%?nGhSnDSJGdV6~(T*vG=Z;2}wik!G8tCFP`=nR2BJ(Nrtx
zirqx8+d!98%`*2;J`J+bGN#4i)D}kfGgF_JqiRh7C#&F`%*C;+@d^*b7%9+DxxRg<
z5O6YIG6wT(uI^MAcPxmP=Gj)bwnZ0DiVy5KnTvUla85(KiAX}LPG;;@6|9lI*J*yF
zqL<aqOUu?RK}O12o6<Z>P}Qk_#(3rrdtxQf#hhf&cnBqG<?+;-AR+Z7cHNzStPuSe
z{|n%xMyt7nO0t(~Q=IO#_XsxBUaXXoM2m;np=1Qs2H0&+-G}elFO{RUB1e{4Y@@DR
z?0WBsbPwOH4&20s!$n;hf|LSTmadCJ7k?Ug5A&lp6DS^K-CIsLTCcg2_gY;o8xs8w
zQ`lD)n66~5%v*6~6y@yRKn;LPBFW0L*j>^{xKVGU6@BE@_^t~Xd#zr0DgHH`h;4e#
z1+A+a+f(2^iX|Oz^F(8lk?N*EG=D?W)4xu$b(*2e$`Y9<)@oO`S8n=wHDj&GGx|J*
z;#>X{Q&W>=6k5M*j-;fR(M#@-xl&QTJNUl)TCXE1&-js{Vv1IeJ)-!Kjaa2^nWF(1
zc_j1pibt^OwoZ*Rr-l-OL;C#3wW}^dHxP;@ldDF~uQbL@dj~$7l{+HZDpL`24s(7=
zF&jhD*F<eGCtvi*Ow6ty_D|*X%%5bktgqi9ujrVV?63}|2t~cdXo7w(bx_ZK+3GaX
z!qWlk<}%O}TyB{X8B5&y$cEb}7Ef)yM({4c_V*5UUoJ|2VjEaQa^b-ftJ)Q$ogBCA
zIW~-IA~fH&DthKAOG{-LG|qb@p(-;Yp^H3ggqI#q0~<a>R9KhHk=R&LOr_fHBu7ez
z`x6KAw}l^XRoayL|K&@cF+i$TR*&gMCFXvcVoIs~$b!Gf-&$wGF1k|Ko{V`qx9o?x
z?OD;xT8n&FX|XDdjt+m{KW9fL=h-2f`TdEwhex1)QXf9F(nxuYTLl^Ey=oPXR5sj<
z<jI_s_A;IuWJ7w#_UXkcHg`?ttj56WBo<fg9>;`md6NsB8WjBocmn68iN5}!dx54d
z=qqCc-jXMWir+`vdl7KgjHmakdJeno_T50Oy>JEk>G$PB+#BB?d6L&bu%D_#j|OsA
zmS6TN23MS724-a4{_Id<kJ3B6GW{el_YeEd!?gT!A$Zxb`WL8c<xIONbgGvt$_r*!
zYvRo0&aN4E<OrH}2dfsOe;1@lP<uAuu2_ss%tW^>&eHbnN}=%$IY_tJ=_K2!8h(EF
zMp=85<#kTNwM_GhjvTq&%rqG5IsT+vhe0=<=FB4L{Ef=buFf$`^EJ146H~<FknmM!
z5~|}>)Fwq7IlEdpAZig+Hl~rez}5^CxZKwC=E^I?QO_dR4292zZXUtHu%}A|6Iqoz
z=or>vt*Yy0w#<!3+$MAWXlMUp+(o&ykDRAR4%KZkP5Nar*I}GC)lbJOIZ7b9PYQ8O
zYjK3OLD3X}aEV2h74;4&8&$FJ*d;1*-nX}C?s+jd;-M<2KVr6C*x1xsc{%@L@F~Pq
zOq*hk(Tdfwa^%Iabj}G?#?x;p9N7-~gRro{6S9n{GDd+!(?HtE%!hWj)1wE)o6IJ0
z^<2(w5@T6r48gEsS!6M|h`V;@UW=BP?1q7Dn(A=r)3dFLQ=(N<o_etnl!XU5u6_2*
z=w?sZOM7Z=?Z2f4fF)6HQ6ueoyU>ULSlug@)1j6nc{ADIQZd4!Zq8H}qiBK=x%+Kf
zs^3LI6z5ISA?1$2+D^Z7<ofo@r%X$c%;BXPZz9|=g-!61spAT)XL-;vISz9&%>1OF
zM%}mGO*V!0OL{kgO_Rc+76{U5#^f^i?OoaNWu*NKie91;;}~FGk!W1YU7s$)-^zM%
zth!pPa>VZ#gJx3h>hcN?|Hv>OOW_?=YjIvf?|FLp`&(TFwZik2kMGy$8(l8y?B!Ir
zH-o&180&pvL}qbIH|q(a>=@A^kvmIo6l5R35bPV)sV3D-E+>p`Aeu}kx1yq2QcyCN
zreB{=4HS;4DQgvD(cc)%H#4aZI60(U^#I+KwnV($*lAx{x4K(y=zLe^s=E#T)yw4_
z{O#D~`|h8+-pbt@O8q$R7<b~fYH~zllL|rp>`u-17{k`c++JS(oig0HFkbk5QnSpp
zbD-lNE(L|8MR7_AzZI`rHLdTeE*BSJ(w6Nydd#Z5sUq{?V=ID-aFgN`|D{^wU4kmy
z`o`^BI79b1SEtJL?))e@&<VcE$n9DGD12X>f5o}I+vS>lz3b>3tq|<Ou4OKS+twyK
zL*BbrjzT_Xf^=JcPA@Cr^}-P$JL1fq+i539TZqV#coczjBYmQ;Uj{78@I{609jvmz
zprOTWO>i@sq4qR=uEXXc=$cgK#yNCCz)h1~1vAcK<rSKi7dVSt4&|sJ5w<cC;7)~;
z!(R%~e_;E^J}Ntq%D<{|sE=-`TOgdhQ*wB#3@K6cDwf;heq#6--K9a@j!$2)dC_|C
za;E98&UmZ`Vjy@{cPjlTZKs{Ec|mtMfC)`G4zrx}@oSeeUqvmnmvN5~{Q~<OV-b0G
zRVszky4BV2T>Lgu@}3>ZV>dmsyaWaeZ@UwsW>!>cHQj_aCdKvcKR~SFn-OKODJgJ8
zaT-kFC@guG@iPCJny-i@U9j}?K4MQl_>}$q+Y)a^E^%J{xPA<jMpajlF)S>wFVW=~
z-_Qls`BROXm`ruV*myd>mmyzyHhi1B-n{zG?v>Ca0WP@5k^LIGju!QLN3orCYF6}R
z-MTB|BQ-PcfWmflUvkn_qCxV7N0czc)O^lRzucdg;-V`2wisrN53ObTrIYNASh={J
z(Zwx9*())b48Ec?teu>UkqD63+U;_iEqW-{_QXzb&(d2SVW~VQ_Nv{Xk`bA@R}-4r
zK4^D$Ti6*a==726;()pobN`SyredQSqNPqgqK!ttS4+?jug177M*>PDM5*Ki`v<G$
zyFsrc8e!$({wAgOkSSP4v;;GLfo%IC;SQ@+`?Pk=M`x6#SlhbNmD9X_EiH=HeNtm<
zsq?WB9x6f6oo2SQs0F4d`Lnwpp?n$vZi?lNksI1;ew|?Hw4|10=S3>7Kgnq+c5wlM
zT2+o~tX-u+Cv3tfZk{!~ex7O$R>#omU%+LNBh0eNoVuRt*<WudPYsUl`KzjjNZOv(
zoxK5aDaKaA9wFwngG~$xkWOjuepS(nlQD8jvl}V~kV=~0o|vW0Owg0To)cJPk}RRH
z)9O&fIjzsEkcIVCRrO^qt$iV`1XjvT#9g_%af;V|rgbp6?}SZ~PFc2IO-{_x`#5-?
zIf0w5*A86no9A76t0v5f&;-9=vc?&oBR!6NlerX5`D>nXnSEx_ETz3u!wV@%3h2fK
zH+wF>)m%4xkh|?P7GN|C0ldrnqBEJZ>c67*+7>32b)1zV5?$xf4Ou0r&3v3#^Gc66
z;=~C2t##CVMTBfgUm3---=VKJ)TL$lb^3a*u;X1ck(f}s@!n}J>~imFzA2BpG{&2E
z?Y&E9%E~|iB2|!VzfISkIcKuUxyw7&X$7vnnPfVJ@H~@woRGONjDv0rZud<Jan|)z
ztK%m37n%2Wll_dBu$?BxDIc$)7(L6o@A}0ItGm}nykqZuAAwuVZW+%swq2QTyMxKj
zF$k$sEUUaV^`J`J7!fZcFy*K<Spkwo4>F(xF7u@Ct2$Q(2YmIfu!P_2-1Z*Kt})iL
zZlTH(*Ja<t=x?u)W<yXi-rMV)(>WnCPNP+=^t^D7+0<!7h75n`b&{sX32!>}_#)VN
z(!1T`=`H;ZCMUV~w!e*C39-Rp6IG8zqH&5ey~+I?i`qRXaZ1A7<|YArrB}FQmqO;{
zLMyMUBc)2Yw3sB$)VG=*Q5k|U=~_}Yt1V7MMpB-YhSlu)mMnicQBy);ceGH$%W!Yj
zW_+ou(ht)ysadls$Xb#~^Dr<6xgGC`6YO>TOsYWwvXQ@lWax|LJ(f}!U?t?FK=Y{)
zd6)CJ8<AN9l`=A+g0J6{)yRCI$5P5o(>;ORo&VN3{R#Umgd<3})OyB`KS*|ftF5$k
zkLJTgGaj#^>;M>VpL0IzPCcr9<O{xu;LS-`*Ix9dxqmCSGf%_1ml9UTtRS1)JMS#T
zhtMy4hTrzM+2uN?=W_Vz`}YwaB}fR*sXNeBsX40%bY>WIC97xoMCTS~g;f%#%zvvt
z`+Fx(0-3Y#=Jlli;*lHw_{Hge_j^&$lR5qyzZdn7hjP$UAIkB6$uCCz$H#B{@BU<z
zxTqNTVa>mPAA4a~HAJ8_o^$;**8BC*Us$kNlM$IW%nPt(e+p=|Hwiy2NBzR@F&d$X
zee*kmcqDDY&DF4~BZ25Yxs4llvt=s&e0+LpjNkN&%T<@9u9J7o<V+C{owic3T@TnJ
z`Y}x7-k*0Qw_^RSYn)`plWK*(iX3H!RKK8YM}0O2PKNIk^m&Ju_Aq!cpd=bV9~Uqu
zz~ilGp6-SFKn-^mT1^Dnys1hLeqxH|3;Avp^brUDfBM0yFP}2epFj00nCypFk4`PE
z!_xk1IlEY2zxUoLMDOszw*%}U;Si*9{7yN3w-vwp9DavhUKzgKsOmi~;az<l`Z}a8
z;12Zq|2mcYFSn%m<+`OUO8wGy-*zdSI1VSKQ5I2qvz&X~U%Gjy+Bcs=lhT*q#KIEF
zYUVV7ys1jr#FG@z^LFIwN(+OzFsjpC-Jp;Ky!PO0E^rRC=Qe46JoDH+J?iwICcliP
zgjNO)6K!I>?_B$_&4?tGWN^#<aSJ?=gX)<#)FmnJ11lX);zaxmySWZdzAI;(%z~Br
zu?MY=id^#bdxBa{2je84SXhut)XtjQj|Js8jDM_Ul~le##J=0Ve`Pn!e7eU+<Ko`~
zs#F=W{$qBzU-&UEUi+TFiXEI~TVTSIOKcjY_RmpU5)FC|hIF3~zQgx(1}}4ATyg$o
z#}5u>%{TDX&MJMguNJ2f)|P+<Sm^$zYe@!{RZB|Lxcv5ZiHP}g|Lwz!Ut)}ehgS%4
z2cM-&xy4{pf!wJI`y0Bq0~&N`#T|X0r5+sJecNUCEjpDpP32$@9Tz!9aN?!|J(N2s
z{6j0s`37A{Z@{?^P5_OE3&MZ?`|#R;h7*3Z#aCZz|6_m?KNWAcK^yL)v7dL$=h9(Z
zNk6qwa-I1d$4oFPj+%u&q(=XeIVorSnU-zp{(l(kZyQbKWEK<oU4B((K>Ro;u)-kj
zZ>??gvWMPEVfkqgyODpI(9(50xB++juzJ+N8P|@77Q?*HCjPX!dm60b@3~Ls8#Kdd
zA2}UZuSvt;$<#@d%m?}(=9X#zBgCD+iXUv4=H>FcN$<@1!^M_}>QhN93o3tW#+a8j
zP5E!r@a#%4Dj2DU9?U0DJ4=)4(}8Wf-RKMMGa!D<)kQ^4=-AhvU&37EI1;q8-v1c7
zj}`c~#=(i(ROR9=tJZ1L6c0`X%QsN+75RMNTM;|x)_0l<Q*>%spAU{#u0{RrVBNr`
zD*q7UgmqI{x6g3E!7N>t{NMWY90a-LXWEzwov*@tT0espxHYR<R>{H0Ag&%VIP)IN
zY^0cbHQK7?(}6p+o%JrS;C2Y8{vlV}EN(naJL?k*_Ts)yVM_D`Z=a^pmNFfDPVo`;
z`WXsssVobtmUmp_dJm>E-4oF8;sjRcVCT$|@if}fg9w9Vs>m^Bj{Q(W-rD6k?SG1r
z^14Kg%=7o|W_&oJt0c4A+2EHcTt5c1tcv_2YqTdl)bshiI^uGTLS~^vva_$<ytO&G
zi9b<4<X<d9bE(n)uwtARhlezbnU6N@AR2?Uv)T_bR!Z5w#On3em<)l7+}*cZ+m4G|
z-KD=jN~p+z$U87<8<JjJwwIl9;9ZMHqg>>K5)BT#b--R>!fZc#06}Tlj_`634jij3
z4aOCfOsvnX4)c6_AjG30PiX=CvA+c+;F(ide(G^$HMk*(JzD#3sg{B>Sr%mXZM+!k
zQV$4@A!g)(v&OAe7$}|B`rFsrK-$RF&QhUAgddy`1dhq-$%GR>?F?ck@NlSQ)#ZIK
zlJ~@$YZc3K5B0-E7mK)8bMH_Q$w2W;Fd?|1^oMvsP*%~{kJ5qS>tNywwg)q-8J}JG
zy~k%b<lwYh1b=Bph3X#>7x$4kKNj3Dx`0}Fu<xPHBLpDXPr=Rjv;<0l5B;zgWD#J3
z1M8`rb~<*;P1yLI|BC&=;UM%PDO0C<e0nbI*NtgVh>#2{rRJ`e_bXoB8ks%R{>{%F
zfZZLg&j$<t9JQ^M9q3_6e%}XFKuT8=#O)o3E?LRFiiMKY<pYmo<>dnM1^rMfj4SZ>
zd-RBRKR#<`;o>S}{wcE9+!;eR1>^1LkONJt%j<#s4|5m$6(jt7xvk6l)2dFut4B|~
zS9mLlR+M4XPBUcyMOH$Sg-;)&p&@Dm8Rr<B;c8hf<xv_=oc`}BRy-mp&aDJW5dJcS
zA9>2U0l(9a--)B_xdg9V0(y8VJdK5UJ1R^7F@(HepWL70ohR)!R-1o)ly$PblISOl
z3ZVe5;sg!N@?<QY8F>*kIeSM|1(nslyv?k&0cR~DV7HnvAt>~o(k%d1QFidh&X9u$
zC{|gjF*v*Mmp=8nkge^V)>j$uN(5JjjnYriPXoi9taTxP3<M$&+wZ(p&Z%!h+z7(Y
zP3ml*vRVsY*xLq*SplJ5?L1qRGfokP6g@H++RN8n@?J-8FTrjvBGXr7(qNgmI>e&k
zdx+)>tD`-a!yBJrP<b-rJ*pp9w#;x>u8}UNOwkT{Out(d7S;#j`RqJ1<QAz}J&_1y
zBOJTl1j4DB?*Z$ARWBQ=V@d+-61MXUq{?Qd`Xnf5D}HVL`n~G57x3`!&F+-ohVjQ&
zrBB|iawgH|M7^{rHw7907n(0o!%S~M!8X~88urpF8OJxr)Ss`^3!iK}hKgJw0(qU{
z;{0C&_fZhU@&4A>gIZ&!(Bqz=c2_lpQRofpm%tdA(|a(kh-QG(JOuc=goF>{-l6u0
zL$eG3_M^JoTs-p)w#MZqs((8#eWxLb=9sKqZx<`*6e^ayzwbh+4n&?8>B&yd6`~Vv
z{rb&Q%kKzB^*6!EuWcQklqj}ZR(EyhhzBtM>bY;w(tFNdQ1h*iKGUw*0xXSEg+K~{
zfpM>j<1Z;boRRfY+DFSh_+JfESfG>4cz+K%9_lBOY*0@v130rK2Rq#8Tq7+?v70&#
zEKpl%4vT<u$MVBOVO+KJwBIAI)eXs@Y6O}27ucr_2lYiT63PL-T*n@&`skkZ*g23y
z1#ywi4PU$^nSTS{Ik%&oxx{!;>VnbKSi0fS6>#T81dxF??zUbRbExdSfS_|&E<W6F
ze6?~~VXWHo)^ZcaxZ@N^%)-Njc>je&DCuz2>OJA7yF6M|J9{-T>M{+DrwqUilTZak
zM4Yfrd+1S>VOn0r9tw^#**a|IRh10m0+>;j4>w)RSLm)+o?j8KbmIuy2^cSz-AXB(
zGF-U|Lr<Df7R+A$Li4n>6u_hcifZ}s(2cuQOWRkyBXr86RJ~BP8&j0I4JLNK=k;dV
zr9F0g<9Jdje5VvWO(DXlN5bGxD)f#&T4kkqB~=1l)s!_miPj-E#dxPhVNkoI-Nn^;
zjb~M+DdpYlcz)OX@pj7e$~=4zb&QsVW)RO9i}Al#>YF5tv%h}kFM#j1MsSRo;i+@T
z9trPTFATDND~44>%^xFVRFbN}aXW`WXnxt;I$ZC-#@U4ooeaLSLwXhKUq(SJ)=keB
zqW6?5W1{G-XW~AF`wU+-=+ZPgLi2?YQE0}?wZ>J*q;8nN0%?5O+RiVc(z-QMm(u)N
z+ImWl%WGi#wnrCRnuHYS#qx^cIO}y8di`V_Q-2E!`cp<lu3~$gZE4HHJ23?}Pq~|p
zKW1(v%RF0KN|MPU($mnep@u8$6^x_KOu(7iA+I{a2c7|1m?r=57hznh$E_3?*=C%F
z?l6skMB3n6pAA(#PyOB!ubKK=p}tJbRt{W$d?+{9FLjE0Q%Sl28fF=+tvWpm<MxWf
zCV%0PE><w<Q(tbic<A-ru6|tYDtU{Z<_q|B3cl&NF8gxP!%BQw5=jR3Sr0yeoc?WO
zi1qab!wa_;AQoa!LsP)lXJghE)fg_)rrn`Gvi$p+J}+&lP1$SEvX>%<!S{S0A22wp
zs);<Mi{3Dnk|2e1)_+_<k!M37D=!l0rk04qslvE!b`<1tN53C3m2r_9nbB+?SNk49
zp6EN+t&?s{l6D>dIRH1mGn>jd8Aya6S5DH<h?f@#l6;O;=fVC3z$|E)z8r3GpS4;z
z;X5pD`1KZ0`8nXTw?OxkK|5bMD>osEKX>;Sn2*8-Vcgd1Xi=azR;xh}l}`k54ho6B
z+#qk!a2WIgD@z-u*n^Z4lxf?pD%X~8;P;Rnv}HhFH#{D=>=JYYp}K~vF4<fNZb)U;
zx<kQKP)j+7>C%;7C0=WMj=y3In2JYEI*A6LE`r1N)%0!TA%p2T+eBAJV2)^^7x$Q3
zMXvoae+$%ZNC04raSDT4oQ^`P4=@-z)=GUk(;Gm|Xsarp{bq+rWL}Udc0~tfxO5zF
zBEa&6DsmTxU5(}F5uls`EtX5R2XyQS^D9{Ep9g%%lxATuJK0geScoju<8zx&3$&z=
zNnY~wh*l4a*}kNDh7}$tNj*g*-{3$AIvjVZdV_I~WgP&;GTdXMQpK23Z=~O)$`>v3
zrwkavFM4YgKDKNvV0-!+RMcTweUW@PN3I-(eQVtCSh>14%TQno+>f5BE$<IA4B`b!
z@0R>q_;B`F3Xoqd|0_~k1hY1D)zA>IIL=uGGBD<Ms?zI^q?l(pwqF4}1O$#thJz$?
zN|cxD5Dl(&u3#n@{)x7fd*9+9N8u$MASo6zEumI~3Uwftq{$u0iuGTYY%gKvuK-1;
zPP6bfD(n1|I3Fl9H}`k2AYG|WKb!s66RtmKp2lGza|`7g#KE}u0nCv8f|Y<@pQ9ES
zTlgDU28@cFO5GB%oZ34>?)C(gb*lC8yu1Lq2h0tMFuWv$KtXFo{W>~<#d^{IB<c{2
z0aMH~T?TPH^Y+*q2T?w)+f*wMr?f@lgzeZRfxCXGi^_Y_5V7MEgb#tw-s1ez)$L7X
z66o5#9KPqd=Ii>_2byU3vqLmleo2dAKA_2Ud&gEH(&IDxUJW3{@8^>%c0&?iT$=P|
z<De$S4AZxq?;B#ZE(S;pYTuu3Mp_6;F&8_e-uI-Xc`9gkWJ>T0KsQ;A^?j^V|Ko0b
z`Z>-{v;i{L?#Inlxd}CfUOE>!1Yi?fp9a{0wgT+m#N14Qx`wO`@RO)6yXU81Tsz;C
zsy+ja<rUtuTJqN|efW)?6X;XGMwoEGPk<^w!(n;kYW1+V0c5On!l7ikN3zV4v2p(E
zcin!dgKo)xw*m^iRw2u24I2#C`xW1n+$Ex~__+-ba~uX^F>7aC<T5z2h0;N>G?-T!
zbYu9PadPV1>mGw~A5FoZiluuXh_e}=G7_bsDX93Q%*%BPpVTsM@*;-q*~VX*)K>ia
zp^Fv8pBe)i^0|{?vcQFr11fx4Eu}u^r}CFDvi08p-*6A|ljHc^FMGmx7!(T~Jc~uN
z{(2M%@)|m}vYiiyUPn>vC^OS&>yZ1PlYj=@z9~(Loqowo^{Pc-oBB8NxDE8xT?;9K
zNQ=U`YEJUX6VPUWmI#cESt3e=;AZ)0Xsq2VU@vtkJ(#^|a&9FNPw}IyR_1m4?7{X3
zWCl37qex)}&@u;l;H)u!xl<7ebY-KM{tQj3Rwt3FajXJ8K6~?{W|TP$xtrrJ&{E#;
zP>M_drGoq7uOQ>CDGk~`VC$j{trzi*3As@r?fI(M1b~S%`+k;k`rA>LuA%_Q14tjm
z74#mBu-*f@BUJ)a3$@)$A}cRupIJ`F$lp5x%HU>H!8prz$v&SXyS0FZ3O17NMUd$L
zjYC!1cbp_}x0(wEAQu{0=ydzM5E)^X%yha1gg;QM#gVt5sM_X$=m%zEFQl<grHxUQ
z+thObEJDn_Iwf00tJ67vA#wGcn-4)((iPAkGQ)rXMDV`0L90GkbQe7RADVNL!6?AQ
z_Zgh&AeSHOWXB&Z{NeJ#Hmdms^@i$T8t>Gy#=nQJT0$~iJN$mM_gHr=9K>mw(%=cF
z$t9wmJy$1tsLMIp!{&DHdV@^?vr1G;J|1cT`@IAJM7V;uS{5}w$)U3Hm0pZd?Z@<H
z3G#P`qvB3KVu~8Pe}OC`_FP&Q_zwu0BHHUhURAG_h$?ajz%fCQ<^4NdRohn3S>ObY
zciEzx7F~rL{FPjGWxeEu_6sa<LQtfRhw>|6A#k9hKai}QC1U%Vp)9l8XIdqXU-`74
zv`iOGjHELy8kE1s2+Y$PRgn5Ut(gz^2goY(Kb_w8@{udm!y=|)K<k@XS*>1GozCYl
z{tK%C4IuHRx;&OqeM$47Slz{w57(6RCsb_<%JP&?8a&FN<p=5eg;M>^zPFa$AVt18
zm1IyTc>3re2(NSk{-*8<*BX1MS08&acNj}K<g5dMN-mx~ZTwO6P~d~40KOlO{2pBq
z2liefjvwAHIs;F*R$;71p?z9~Ex|q(sNYvFyC{Ok5<^U!>$#3;X)p#W<yVkBglw8&
zT=mC8x0|q03VwM58Vm@44?dKu3u>L1$Ld@@0j1n#rNN?we~snwM61e81$F>r&rQ{~
z@Vy`~X!=QL(xt!G3x0X)6O=Y|*2igYc@;gImAGHv>YCb}KdvT6_=<a71BSEqve1e5
zZ%Ow7e!gS@oD(#wA2zU>jx~Mk=*17Ge*vn@;hdSOAo4M=MdIea6?5kRhV_P#C`aJw
z`}EGuK2^U1^Kaj_k=l$dJYw`OmM4N*a5C!h@mz&ZAYi_^_wt)wyD~Izvy{jSPUmFd
z;l?E<?0~9(Pl$<nJa>;jdg#VDGV{}84yh|cB{!)hEi$TLl0EcMK-HfT_o#*0vWn&m
zzp9*koUo=4RX&i@IHEQd9l69N4IcqL$nOJy-dz2D5Ew39-=K+$SAG(-s#=YBQ_O<(
zXyOBmi8~03bTb)Vu1ceCe{u*(f&#CD8c6<RRl=R4v*f=}UtuuoN1`g!T!0Zg_od>Y
z2w2HjFs4TN^6H`q)S&>T`^FlWGA;17tBwbjeZsJ7OOkS|-tBOO-=PvGS6SlxcY~9B
z&Vz)`t278`7$Z>}vEBQWH{csU=`oj`2UMEZw>o-zsL{k#<grJqXMJmh`H0Aik2`E>
zd0Mv7f%<X=#<KP29793aqhDwYgp~$8869@tx-5jk@yz`pUR8B;zCSEW53swPj>xY@
zpzQXt=5GU@2!_kD{{07~9K;?1k2k%6S;OjHzE^Dm&@+zIDZWM9oNw?bmDXdM>^CHY
z|6B;kXEbRBQ<2NiyF76jpeJBBZwrsPV2tyx^=CacZuO;b0vZOOk#AbBsam=OArWA<
zVqsifL6Fg+W(IA{64dEK?wf4{@cwjgLxj?c*)&?<oj~XM-99IIxqK_AZ0~zjkJ^Ac
z*^HoHOJBSJ4t4qUR?F~8^{M_u7}p~69N?C&ZtBMSKU@TNHvjN9fFDV=+q%+;y#~Xz
z{miluoY#_;#hBjkszUtq5^$bl!2B5Q81s<(08V_!9{<3yu=&#}xfKTWlmD6!0e!kV
zT^|S}V3m_zRV|PC=>(sv1OnqbXLDZCED&Y_!2Xsjvqi{#sz_R!w8!Uxn)?QrUUR;}
zSXR9}&-wdoV1xYch(PEpIfF?jtb-<pK2-su?W7HY{2rNa+tNHd84NX})R}w|#--0c
zcdI$d0^!VI=i7o>M{n8s0q(B<ZWUE%79%%>L<6&0sq@-kCRvysn_^~v5UJms{7jlb
z8x5G-Z#Xx>=vkXuslU_#qJuh}Y~B94?MJ6dmU|<gg#biz6|>=3Uuj<>073%S;r)Rh
zlnC4@>)pHfV}8Y`CeTi%Tn2Fw6rrvSz?k+Wpn2bH2!sR<8WrcT*VQgLaveaey0+x2
z!z+E*<0``|$5<gl4##iM!knueOd>0&YYArpfhF?|(t3Z3yA66O&@;uy`QJN@BkBQ)
zk`X#htro|sM0q-rcP5yL=8HF?a9Ahb05JcUk0NI0EP<)>;y2os{I8a$pAroOLpbMg
z&b+EHu)kO9;IjMRU*m9)@Bm9|zAz&<(K`Pt<eUqpP96vb@p!*j*)#1jtM#scbc3t_
z^4Jh_YLmsV)F@7H9uhw<uSgG3P!DKETUm(ty$va_BcMU2?>83Um<x5c1#v^H0@K$(
zhpz!)JHr8;3Q-Qt+D9T<;A;z5);cZBsa_QiIzd^1OzPp;MckbV(pEK9(DLNwSPs<u
z!4o;}c~x1TxD2^2OFPNu-AFI?_|yaXBM=D8v~7;CvHZgs$>1zda1<i1KWt;C<tA*#
z46?u^+r2;N_SOY15vu|kpf!b{h~X6tpY#W@{&{DBUB+K(vADC>KeQfVSyyM73a0L}
zm{Q(#i*ptGdjh2Poqoo*9#278Yj)>@79yV3eS~q@>0c`12K~UWfUS|hz%Ym3(r$1=
zpU#mA060EmJ19P>vFnin4FuIFqAZ27L7;#-6siUe%T9_f`C}nr-Fsp43>R_5ZCs$9
zu`kk%J<f*D2w7EKRY|4l;(^;*(23`VX|gz{UFtY*H8c<3cdUmqDvUpTLA6H;%fi$?
zek}K|H|k&&Xqz9}%^hM#32F&K(>&r;Wy_wuEo9+K3&@Dg!_`Ps))Jt(U|d#!umzqx
z#OxMR<avVS=n>$3cqRa|U#~exxYWBS7=tyBr*(z`R#jS}hHG439s?-v#>%JlFNlAG
za)aCWUxz94F9AZM`J#W+{yKpnQi9e5B@&g`2l<oC{7Ke|qc^jj#KAzUfj~J|mm{oI
zG{X?-4M>VVpq!ZP?+7B~j40LT>K;oI7+9vXv(#AtHr!Xv6NQPzTjES0GOWGq*~S6U
z?zw&*^T%%>&s~EudEjKgoof4L|I<RCIuUx<L;HcV?fqdU5BUl3`&WF*g19pskaG1F
z=~QYB>P2MQ+yJFMzb}2$@z5dggb5SCykxcZEFwXNuOjEN>j6bM%LZ+!Q;pQ{3g{+V
z=Qcrt(y^>+Q-gSZKcM?-`34e9(U5a^Xb-dSa!u2L@*unTd-r}c39$6{{XSt}#X`U2
z|0`&~0|#^4T`|))tV_7XXpKw8sVagNY5Q$@`~~@<>p<995B=WkTv)#Z7{dB7Z8ur4
zqyd$Cbx<()YuuQrzD)N1UIrt_`cIbC1vEg*Q0ZpnA8GDkpUnFMda73wqMO=7V9zaL
z3=Zi+^W4Bj33>j;*DqQ=oTmZ>oi*CYLwY_Kt<NAn3^k!tOSmb*CQg5QjOEC-FUkX)
zw!!?%Q-LNn(i^mF5_BMJAWYv1LgHkDT9(t{sbCP9&bcK)lR29p^kWC^R6&X6Dhoi|
z6;HSvHl(T`mG5C~$NK{s0%3r}*8po+z$KEJE&{M%HUnX*7*sdNWx6CEWj-zKH9&Rm
z+pP2Ll-z_M_mmtcr%<{BOV?Ia$xB4bs?U(oSio|hM8@%#2{%FL3hzAA%CH@G0}#pP
zxb=xS$Zq1XPW2!kYVm%8<bdxy16=lTu&M?k5oog+uyNxC(uiaI>+J?*z%NN-;*q6K
zr}Ju#t-b1F4|M`=rQPnXhh(U8qGm92_+tUUjj&h;)H<9sJ*0b(2YY=^2WxPPmu&;c
zBVJS@0~FelZ?INqSp}{AU!?+j>plOtBm)-U{nq`zhl~R6f52cGb04e{eb~;E5Lk<C
zw29Ngo(8I=v39rd0Bb@yEY?F@XA_h<=Yb@^e;rU+SG(?3^<IZTB@E1VxpUKTOFe8n
z!<*disE~Nujt2zklo~2ay1aPpajWaelyh;Azg0V|?Tpd2+x7TZywriFyj>&V3L^(I
z^Y?*Oj;z+CMXjBanV{4FP}aNBz1+??>fY*Gb{to(+kc|-UP^{VkJ?Q^AR7RN!D;<#
zfRk1c#0_5sY|nF)9oY~)|3#L!0<Z=pyD#QHRsabArh~D#MZD0j2l>U=Hg+rluP7@_
zTgtaf+9aG~JiKXq-Km~a_gR^3!>bc55MylZY7%2v^{Q+_Qf6tI)-L*tA9B5S<uo6z
zel1f1eG7RiD?ETOIV>=7JanWF!N+>Y0ni@>WvBfuyx3mlFCm|Y4bmxa?jaoTC$R41
z4Uz<942g^37T|myr0fYiaXlX7@@w3P6VDZb{sck1+zG5A?7a+}I%ad@uV&GAC$PaD
zNd_ljc=S%8`*xuVy;sG`G-CTW{FH&$I9yfsUu-eNk|B0D+_d!#KvyADQ+k+q^s>Vj
zk4CahFja$xKjJsnXVI0_E)>;~X0N#;k6iu-Pv0F+W&i)LaY_zJ#&KumsBGsbL{=G5
zRz^t1Q79qV$*Ln6g-*&0$x7C-HywLMlvPw_cJ}7?y7c+}{<|OdeP6EYdcR-e`Fy^f
z@9Simr7xsrZ2cU>aUGo0^5k9xlR&19Yr|>|tmn-^+9aLqTM<4m!u*O+ciTc1Y4ai0
zN&M(0&HV~<-D8JBaqx@AsB<Nm(MN+EIuXGLG?)brQfllDp!jwF{>OTbt4!0J{OUWh
zMKONYcX7Ly<@l(5=^E#(Vb=BS0LwQ-b_oLpnL^icq_Ko$dJ7S&jb<Z>1DiPO#2bbK
zc`q@(TMIJ=BCmZjH9Y|>ASyABglsp=ARg1<5J9F@*{o&NKYwZYi@osbRf?Q&YIzrz
z^Za)?tNf+0-Kwgi)vtXiiCUi4x6o<5eKsxwWoE#IBjL`!lkF}r+?XC(9Ij;ZmSx{j
zmt2A5ous3rw|#q1mD-~$=hDTMFBiDD@VKpF#yPc;5Jb^`5&6F;0zR{_zC_5lNi(5n
z=7m%RJCE<Q)4xY$K*B;7?$D7vg^<iH1BpUBMtX?8CLzX#QXL7@bp^WWRhkudIUQ>K
z)zCwnc9T;e&}#_&RHr)(^~R)^#f$RHLFMK1$_-HzTa_%Wdz;OdoBmAGVV;f$$C&ru
zj9vq}t!?2oeDiH+9i-brr$ju+kdU_$Aa86g?ISai3V^Fdw|h#VbkT+0pMsF_EE3Ds
z()BkTE+8ZuaDM|3sSl|1$%!vJzJt<bMH5vEp%|i6C$%(7syj#|-_%fhJ#UW(CAZfN
zf5q57<UESoeK@&5y7GMRf*e1}<6LbCwQnWIQu)^R;6vuCl4$-z&rCEtOK^sNp09`6
zR~@c@{sobBMC`N%<^jZJfZ*vpmH5+0jtAv|8*G+ufATrnD0SwLIU6$Pg2e!kwQlky
zeXjo@63s?XV97TejN3T7c!w-$y20j<h4@(<S1SnytB&XGRwRnf**?UbB1Z+zVNtq2
zoCh9=K0>O8pPk&_NG?#_K$RCZ^jg)R=s(l<$b59{$v(l<%6X34-ijgG4qePS(`Xi9
zFzNNq>JyCn#wz)0+?B%0hPiZ<&S-rY4S`M|{e8o=3O|m065AA|$py{-;q*~?)^PjJ
zjPth!s9;WG+!r?+P%g>f4tj}>dWy97>G($~7Ez{|RcOaVVMiw7zM=~2w;M!Yeivfi
za!SMe3*k-cN*0=wAV$)_U(c(Q>MxuLuiDipBDdb1&&ynW|Go`nzPgjW{gzn##^<TT
z;NLGj(Tt>@;<pwbtQ$i7&xqJ{agct4pU2-5>!?m)>i)WLg}*n($J}g^Gk@+bN&jfH
z^e~~F(QGz^D@6(iB3_DA9T7U-Oc3075c9f#pzF5v6_e4!Q58OTj4EFo#=d><h;p}5
zl^=H;gN(-6=?eEwF_LPaydVYQIu`Yv*Y7qtIS>a5%Qz$Hf|)5t&O!)a|Gnsn*&zCz
zFCCUo?eg#fS#08o4!*%SSlH7NwCX#F4x_S}g7hzLBGSP?^2~&i#p)PB8?MX#M=X;G
zHb~X{>Gfu0T&(f1+@;FVzxY)YAgiF&-XW!=PN_ZBW(MS0e^5|soM`Hxo#cf+S*Pa3
zo?q%*`)oniTbnNZbmDd(CE4FVB_jiM4iP#YT5rOvKkYvM07D;#myT&5lWonQdYS3&
zwI)`Xt>;oz99s5`R>jOVC}g%vM#F&P&cJ-b-DziRXJsWIrl0*UP1BPfEn+;Y!xlzE
zi`Nnti(0rcX=n@is-AAbGfH2jWC=6>LtqV7CtVtRTvRONonbr{?(+ngt}12a7u)ZM
zPplI7c@4&a1g>YS)lRR8CLFnE|2?9cr3W~!N^AP6nhFR|8z#ea$l~HxCnLM<wx2B@
zIKAK3t~{$OjYTLa!d9k~XCWwer-cp7rT>cbgB$2@O{K9)aHrkt#Mt^~lPubB=k&>M
zB3z=!H{L#wSK;sd$Pn{$N@y>{tC3O>3c}%bOBER5;%z9#FH8d&N%pcw<VEE-X60=v
z^+fWw=MKw>Xx;Vtv&n4|DAZlDbLim-EZ1|WnxkzO0UNHOrcA#P=?3UahYe1nzHjJv
z2<|J~RfvO;LfVS98QFzr%nsrQ)MCi^tu>&*0P$z5163dUAKQ={`46m3E@^m4Bn{-k
z3sYfJK_|%p;l5J3o4D@DNeG4^QK_8PqkEM5Z*5)x4Et{K8A-7}A@Q3;jzj#08XyjF
zDo}T^Ilizewo&uTGr}iuBmY}}$n#xymz%B)@j7HKA|nYw;6_@W?)5FOtw>8ZP?>&B
zRId9Mu$wC&-?_m&Ennp&65R*x+FoFgT0t}(vc4g3KnNk%bND#h##FZEN?5d4=f4q`
zyTV~^eiTIJ+tj)=D;c<6@o_gLqyL3<nzT0`DE;gfKC1FCK>`!i#i>9X$FjV$c`4To
zc=6h23rb0dAi`$aA7ay=&-mv#nzp7`V=W=(reBFSnPu+^`)H8g2>lgiTsglz`=H3M
znSl7kL2)$GkI*H5#Rz%b8swN^5O6Q;nqy0eezqxd#rDx-Sq)F?ZuDXx_^}2h(0kaj
zM(sPKxuRq`>iKpWE|N8g1(G$Bw^F9PEuQlO>ZYuf`y~*DsR(({RT88J7)rhpmrHPw
zvuhB#R3};jHMx#Tp`^iX;#J$s)Y@<hmc-4PO-q`HMNKu(d+5?gxM+}w-?$OzJfD0c
z8*FSz1jxYYkU3;vAyJ+$8yhfPldyGO)GJ1pjen2x9d>Ap#Q}Gz)MIsSI7~(0Qu{v7
z^LHYovBTfp;d>}AmcD`esVCywYN{w5_Sp<*o*G=A+um5NI!;I&)A9!4!K!#FOkI?p
z6<Aea8JQ#e+YI+ogKj7}g6moDvj2p^6@|&Wpqw+<(lu?i`?vUb^nB;t*I&W4>Qs=&
zNHTa`Vvv6l(0LiqtL-!vTUt2<E;H|NZ^wL<4+T^Awt6b=uVR-Ex(aE6UqFNkWU(lg
z=Krc6K=JBpyLbVNlbi}%rD?Nwu2RM>oJ>;{j*lf?PaDxWdT6@oWf_(8wkNi8T&Cx8
zh9oKt8OVUh9X>F>d3u_<ro(Su$pQlT#*%(#F3WU^knZ0j(_1r=OJ2=2hYAP=cb?|;
zQ4l6OkZfn%U4$8!zwO2fZSm1zgYT~Y?SEXj@U&2`B>K002J>44M{@~&chgdOmUF|q
zDoLX7$aO@g*7CA`4<u*%VeBh#rvk79l<<w19Q!F@u4P55#u@8)1MreSuR2W%hLvov
z$SdzZ5u(bAH4tJ6QhA0(`irg8_iRtIZs(nx7IO{B7ZsGT<ZL<Z>-p-GgEy(_ZVth`
zyt|}Ok589;R~$q!t7K{HV$cfk+uOpu=B6|EUYaQn8<F2!iY%w?%}K+I8BV_~9hPQr
zhYZMN*(2nx5lHgWTe@vUoVJ&&9qMkpov-oXSDr4p=QMl|JgcYbBF9NGujt5Xsp5m(
zmKohZX+WCrDlj?eUQIP3=PUkcsU*m4XAVs;?C`vPw6DCJ5%#P0!g*mfJuupke~;SE
zhRB~WwiGtJz|coOyc^?f5pzx1myyJkF``3#Xj(n4ZR0^?>iOi)J!goyxJW5LvH&f0
zX~H=}z~!S$x;BY8-8TA{P@A)-)D9k+cAR7zFD}`Uy0=<+zjn->at~T++tq=}6sQkr
zXhT+X?NLQ2Cfym*J8mO4u=v@b-OcS;uC3Go`E}fjgKcLjw_Ii1D!+2<rc8YL3JaGK
zQ8?h){rlKas3IX=lyGAZvg&lZs;2aI$nW_hHIBM1`D|~`%CEbDHO1c5Xa1)IYrgwA
zb+gT^9**65(UwqJ&>p^<^ddyHyTn{omZC$$Vp_@8b(W%vnkgGrE50i%WG~w>W`~Ck
zKd$9{NM$Q4)Uaef-XEeFfN&{~<79}>pB5u>R_Mh3%m^+{Gj9`TizMRUvA^FmRu}rN
zblo3PGow#sB<YZCc=VqUkO+Zgf*JMD2ji<%)i1R!r(^?ueo34k1=N@yx3+N3Ap^yx
z%$#e}kde2iV4=Um5H^7;C{Fvf+txhi`owYJnC=rv1W$Ke8Y>=+vOruFN2q0>`y<^+
zPnX)gvVZ~CLxcEC*MveN)KwVkgKY<<d#aSXwpS?|HO?1$mY^*CUj-?iK5}#$YKS+h
z8@0Bup&bNx_m3^ZDf*3k`R87pm=|L({M37!dcM6rT~VJ_TMR)6Zk93NOV=Ati@zT{
z_t^$&7xTb;NF%%Ez+6Vq-{(f{Nu!yEqXXPOtHm!S6~XK^TbQ}|3!^y_T*-EQ998rX
z!VR~`=9N5WGd=8#1Rs{Jay<wYQr}VjHh%XbO4m!#$!ktA4(4jJ)2~zyfMjkJQRr~v
zC+CKu+f_<w!koYJWBXE`&eEc1sqO2x!+%Wr`q(YtX6KiT2Oqr)jEsBg|DbUh)Wl3f
zLE6QIPj`?C{0IRJo4<j?QhULT&(BL;IIC0B#k=eNlfmCaqw?T;&*>{^I94e1O9gY|
z(pXux?9kr7_qL$o`NAyF<YBt>&O_`1u)8Jgx(XfgR?lKERl5H5i1B?~$#C7MTMquS
z`?_6Q-uz@h?BKdMQl()C1(Y>)-DzHAH&MP7REp9bi3H+iH_@c6T5cz%Mr8th*#?Lj
zSBjSRv%8PV>?Dv$imj`thk8lV+FyKJfY3tNvCpN$YLt6xFBnPR^6=}J>uIRO<=TkK
z6$lFwBPreL30Y=k2t`HcQv2SdD=AcRWjB}q54{x1DNtWoD}L+zCP_$rt<K~R`to8R
z4m@~NwEY#?Y&q*W7~CENh|?s>aBSS?(^Lv+;C{|XDm)_Y>FTz1w#g_e;7C<5xR>wB
z&1<yR4hA-|HP}X<q6OY{lR4Cqh6N;N?x&KVI7xepYtil6`uNE_<wu=6mhW*+U8}m%
z#}Vr|69B?2B7;Nwu9q~R=BVbTO+7vLFwj%-8<E35@ykXrWX&kN(?rI3AI^@@_{9-=
zcNw;9`kPWj#QWDKVyne_$@>p|3kRu$trtjD2L=ghv$#rv81wKFNz+GiNrwz`lcD7k
z|D$alGA<2sTD;hX*n8A4jT&}_8o#!%gi1`4#7J<BDcpsG#xaX*3?HESq#scT1+@lV
zp_ECshd4^#;?j_<KvN$PVMD2%%s<=y$m=1^J&Hb#MRTuku$lJOOGfx4Gm`2w#h)gW
z^K_mz5?7^M6lN8!o0V*L)ZNbG@$QMBxf6=K_4fh#TFH3gv?8_g)pK#o6W|&tcOYA5
zUW6N@;#f84;9n^2in;B>SD0`WcJUyn?B*c7Q2MT-8H_mmFf|W-yUVX!E7kU8dV$k2
z!$%vP$%C=rI%uFl1q$mOdwuVXU2Ep2XWU5@){=JDyF?OVHi_#?Mc^OVTco(<xJBR8
zoir`RUoh60d>30sFfHGMB_40Jlv32VBbbEzZ$VR^mNZMRQ`vhLjXM?VC97vAT;xV>
z$lBKN)PU6NiYWwq%H-h(b1=1mc_;VYj=nQ+d}X)=jwz)KZILv8ayioF8;)=2{GMjp
zy8@hb?ow<D0J^!7D+%r`AEmvSb?}wtfUJVW>}b_!SmLUe7`whNn+tNf&jX_v-M%Pk
zr_m16Vd)XzYZD&4*mR^wUZLC-5P=f}N7qd)ay~C76Zbk>Q>VnylF9Tb$o5ey{t^~A
zfCAIYcR1LJ68cZNyG)&VUpPpx8GCvy%om5tF%`u;XT@7^-b{8zHppLw6x3}P29uPJ
zq&nA{<lm}WIS(G45<~Ph^mo?OdOq-Z`+F)Z=plADBrY&tiC;RMKBCYyElEA?NcZds
zr@50;@Ee9$pkGMh?ra{bzV?-ve3lGa+SX|uvOt{NdV34AcWTxB7};nTB*q2hM=w7c
z7t7ILZja^hwmCF2or7GSH#9GK+KhYVaCNzc>Zb2bhZMt&H%9nt=*wyi(89+<y#b;N
zB7V?Max8@o6KIKgQ`izbGedAf8#p3UtHc3r*qS_~-XMO_gF>giizz>!6)mTJ`k$CL
z@=MTpd#T;JE=G<Aj4&}q_(~Z_Z-JxyC^jA8NT?<l^qkBg5FmtYwcM0eN{;mAUY|*M
zPd6|x`09U)1#Gy{pc<fXi5}l&)w|St+}y!%gIKZk^TA|@eD||u;5lbdz7wW$2QD!}
z6I}e_lk+*cu6lxm&}2HCEvQ3IceVg$JL@Y68(IPseDnRy^G$3*a0jkk)0Z+Xox)@b
zlhnbmWI|8stGouJf3^iR4F5PLk7Ty=xB0{c#q)>H!`gm@#}c;ASY?U^Xk6vhTAIfL
zIwZL-*{*e}uS9ysIyHJ@7#;#J%r}raMVcvkPrvl?qw=Cso{Ym}!L0$TUD1PC?Wg{K
zls8Dm5~mwrXyLY%fBp}!zt0!-=8qK+a`F9g`^Me4JgkjcAMJ?&K#&9v&%`#s4bxog
z1QuxA&7vJi>q;Xp=~WNGnt5z&$uCrVvhg}LR($MwJgH(pjE)18o$*RST;Tak_HswS
zXOl(}ENoxi5}6AKx2ePLQ983FQ}hKqUsgh^NA~gUCea0s41G&SeFGXcZGH|viwXyO
zBc>TTshqhNFwD${-ws@#x1e4d+KG{0<JzgH`a8Z8Y__{Lr$)JJ4v_OC>gM^ocMjYw
z2I1yUsq2rY^)RHH3O7pTXHs)hdY1po1)ED#K=5>tuOHvtoS4|1@EGs7dkff|x~>T?
z>SmFtr0ha7G@11D{?|m8E>ptRHBUp3Z)jOG3kY8_uR#f1n_T$b+#7l=S2HXS=O?+y
zD+g)L1O;c$AVJO&hGHX#jR3vs==yscI1L0&fJd)Hmi~0o@h-~e=*y16hTW-BxJLq}
z@v6=K$ess_*tC}puY$~A^0@|tb8!59`v3)}>d=O<7b7I1k~+VkStal02SVMWgoh(<
z&{Ur;8x%l%S=wynH**wy1iSR?8Z#r6;wQ{`;8jZW`O#~)=51RU<5GtTE=l8%S))df
zr5QO#dWW1Org#snzk<>&LdtD6GSj8GjBXH%S_VH1Ox>)I<(oDtRHZ2RfL`o#c~IVE
z0~v!LPXuoEl}@p!wN49(fnatSh90{9^OZ;g%dl~x2@i|<ikW`hIfBeQ1U&BTm>pAi
zXmeAteAR~C4}LA19AEflQ1>o(iidg1swBAFOmR$M#4i9p64Uz~a1S5`-egjqF$MYM
zN>_Rpi|1#c&`oYz*;@tLtM0uT1M_w%)+g)XWf@5}2I!w_U=xtY%MvadP7UK$gr?9i
za1Y!)EE#cD{E_(QD(-Z^Ej+Xm>S`n8cB2Ma%icBxxn$AboNq+>$(QTk`K*_<7GX3h
z9j32IH^RfOtRA@-CcoTG-O8^zyJp*3;_Ip|_R5B`vBWeTu~_2ip(E*G`w0myt9LRC
zeG$Ca)L%(lI43yx21{wH!Gm8b?|EEF$d6qsy}iEE8|b1h$%gGhkc3H3T<NfX78kne
zSqY2K>08@+=<tY&?h5hak5_yqnlyG9Q~A^Q<YV7ghy~Y5Is**YAbK^Nx`hZdlSYMq
z&@3VlBExS;<{2pIB=NbNyUEpVo6}6w*iT0BK38N*dYp1^BFCx{pBTg3dhX@m%>A2E
zjg-C1C3=V&Q0InY?Z5!v!PObqn6F5l&3u3UpyzVWr!>Z}RVE{KPtdr&5i{Au_FSkn
zrLO9f5HL$gEgz0yDFNUBfW&owhx6Q>DFra)H$wlh8)*{iIRz??z9!dt-PAcC_JtMy
zvC1=qrdC{JEv+dZ(%?Ns59*b=Fsqq~CKo`HH{7X&i9QU>ZZ{7iCpZatd#=#|1}TaC
zY{1{SxdNv_;sEDa4E0)d_7i*+O%fsh0Z6E&p9340)BR?hlR@{ebu|GG%5Lttwo$@j
z)roUCa&8S!=|%V94|+O)?dTd&u_nqMaaIk8Jt+}A0i}KpRS(0-T$n(1(he6TOlf&h
zGCZbiu_t!=FssV?TXhenbk)r8Mp5#eQ4lRDGL;oZhR@U|*bz|IlkyOp>r&x&X;Ybm
z{0PG^Rhu?6POo#DDq5Gx8BZ9p`4p%cU71i<T#f++bf{Onrn@aZ@CY3gzFDhxFn-mU
z>45?E{2eXpftV9FZmxD;p^{tAUX!_Nc;k2Su@};nhpOL7e?TSrEj-*cJRqy-nNnn<
zdxbM=2o}}$!MT?}M`W#4n;Jk|WJ5^(&r~Bkl-@H`ZM*2KGseIux0uxJ<y^ZU^Fi5%
zRuC81lWau(y#%8hiQ<pJi}#&>pqIF56@B{CLNcr2R9K&`Z`G)IF?Hc!YsnzGirqgc
z%e(Xq4j!Vd_Pk32eb=I>TiWn<Ux`fg0@Vrl?z2Q`RvW+Jg(FdLj?t}Q&I5e2T2!2`
zHgIxt;xFw-(Gp$x3@|bsSMS!H@4uH2`3a$*F(y4Amk+=84i5gL31HP~-NXl6PnuNy
zTgpE6Ki(aCG3iJb0x0+GMyV7E4SL>8-FIXvURcfyrMJG~Q=|toaA4k3inE}eMse7n
z+U`**dD@RZafk?ZZXP)7VSOS{)a>C~tI9zR(o~8sJIA8|09o^G7te#@2Y*6Nwk5EU
z8&EH35n36Zf)DSl-5IZ{7We1cwsew*Sk@F~4L(!3RNKOM(=aYL!+rkqxu*$GmBK*%
zLNrz@*@>S?<WoNCJFmU_z$HTt^|-eiVQNcgR#IQ68wc0fp}qrlg9o1L&v_N;oyi^h
zzc=_#bzXlE{WNDy(AD2P=2-pW%Wc;F5oxU7sp~Sb-He~i1mdempTYfPgzx7o8}@$?
z32`TTW8`-<CmUi6DBUY=M&x8^Z#f|8@Z(9t23>6XD>rO@IUi~>jb>r|`I?v<r3G^t
z2skgwUZ<V@SSZ6FrGJ+eKvSebj;G3q?ksYS?G+X4{z|C2o%-w|a{)|~#%98iNHP28
z^3RttVJU$LjV5A8?E0lN(z(^LuEI$H0Z2==pYI-JY|4zb`6DL#Gqh)04?&2?&$2{C
zdCsS;yH>0UFg%(Z3vEqQ<Pp!GMyFupLJ1cb{;NI~N_p^iozZNbq`C8f_Yu}K%;O1i
zpy^Y6PXWM|{Bs;-*KwExjIi#;4~mMdPEDe7Lqx!r>5?L6E+)ASi=h^ndu`c*GBxmS
z6f>890*|P#F6TOg3kbhE{PE8A(BQi^Rwdc#dK+YAfBA&*gn6dGDU>$zgPt3;5iQXQ
z>$Vo(p1W}>ActTi&L4m-3!tXPI{idxrH@f}#qn1Hah&V&non5c*TtTTa?&1-7tyr8
z5A({w*{n>KaPB>iGhMa~_%SyZjmQq^k0S3;7V0kzTt?C9kk7UYIAz&~1vv0R%GKn3
zc}KZ<D|&gueQfHr#DL6WfJ|QsrupG~hNt~^IN~jeLU&QF@Ef9nZ7AU~HeT$9Tw*nq
z`Zc<$w@9DiyejX|a!H~z2ah<i$cV@sAd@0<s)y(T4Pk)$g*>}1+4C+xcpOooj@X4w
zn%ZB(;YMWE<r7JDFvJ`Hy+P+g-p2nAKZJc&o6}ODA~e{ZvOBg=3I=lK&|Zu>wm$WK
z(m?&ioAcL&Ba151yOcO{6Sk0sT9gHiwyQ?YPQ(8<5C+vc!f@4zX~T5)j@h+poScRO
z97M;T2rzM188MGSt#{w!Zf7zfLzN-4O!fcxYqOyQycDci$*dV3oEvhPKEO1GVCd6?
z(O6n6d$G!NLc<fPsCra}@%ZFZhYOeQ?coipccA0zWE(m+#M3LRtgEQFu!)OlLZYuP
zl*kvv`*q1DLYHcsp8}aXnJ@$ss7v$x;(+)O<yDR$%7&uDLyqt{dV9YFt^eBy_A(&y
zLH$XDqGx71xh3(*EE$VpiNP?sy5zPMlky6L*v9|@zGZ$|JF+H<I^~odHxI{`_J_X;
zgU+m0?`dp$30k`4!87YaPC{Ok9}HJw0<(eD0O~3o&SuSD8v2GD0kDI>U?dHjzC&-v
zdwB2E{qEq}Ro^+?(BUug<^>!^LDBbcn61_E-n?~#7i*0jJ72N2u61EyPUG)}`WNBb
zdsu6>bfsA6u9Mg0Kh-{4oASHYxpp@GD*gmW?qBWzM%)_3B*H6PKTVCH*RV0O-5^yL
zV>Xwgn<ogf^xusy0=$SZ`4$IWw6d;Qvp~_)rrVty@+Nenazz(7u_(cI)vL8@p6frB
ze<_{PI8!MT<wtJy96Xp!-!J3g9J>Y0aVE>Ag-J;Geng0@2_LY`U|$z|6uleP@k;F$
zYSF#DbW4QiM(UTZJ;GiTot!-0p{o_Z;0awi>Dk61Ik00pZA{NcnQVWYWnccAmT-wC
zTx7f4`-L*(l+~ojDO4i-u%OJm!Yq31?ay!S7LP_hBCWq`s=wD{2_<-sqRHR;(k-LA
zf;m48CAhnA>Xul<*%gXuw8Wf0xbPBsFw=*eyzOA<3&0CpBI;B9inAfPKL#aM)UWVj
zLATa%+q&?57l2e=!S}d#>cq0?<V0vGkLahv86n+0=NtviO6~^&-R+8b;=mYPld0$f
zhqs_Ybp{#G#|v;G229kgYxcO<_$Po+=erHQBJDz!!GP9izF8bVfUS$k=441?SI{bW
z`t~?k9OqILp7+)eUhdLQ5K7>(1y=)C@SlzJUs7YNJ&7D#gLecidf@F7_J-r+FP#`f
z#pOwX-IUwpKVMPu5CNy>lNetn{6UWiKbR3b?~GX13k3^C`R4-IOQBLh|6#Arb@)}o
zc^Vbw`NbI*`%^cGAcjv`6K{9f{+$MT{<n8@si94<A?Z{72{H2Bvg&S1V`m7rj~EW7
z9X0t0Z9{?v$)%@eGQ_Rf<B&(u>YgQR-hCYLHooC0NB2enYo&1P$R~~n3WkXr7<w${
zPAadzJH+3+x*eOgJsi^BG$94<DZq)kW@LxYEvwZJ^U5X)Z2l$hFYr3T#4OS+dGtQ@
z_Je-ugP3NY)-FYPu2W{7LEheqqD*2B69vnL0d^7T-LvS7yhjgZ8zWsls|~t4x_>Kh
z?dHHdeak4xApm1=#WCGqjRMzJvR^EA@Ex;%#0|X0voUW4$Pd-c@Y3Nbs6Rl&fBL((
z5V|%TLSGS&RNbwN=;nx*nDYjR-RACJvlJ&&yTHR`O5Z<GkPfF<AGc-MfPucBw4!E4
zKIJNPkgZ*na}1TuG(BvDYzk+sb5=7O&CK8tDCVgmR1Gz^;|=X)?oOmDCPD;wn!v%0
zkQ7EzO9;Vqrv8DUK4_$&HsqG$-t%|s&qw?orK>v^#=>aUhndzxk7Ye$&NjY-%qCW>
zPKrnqQ-5%bX5b8GLw>G~dmNUl4rF_va!P}@5@y~oj;P@EkT7M-A9`cM5Awf$PXT;4
zz}0DS6Qn@TV`i>Loa*YoNc^rzBEXTa{D_pgT8K~%a3Wug?V&UJ>9Q9#Wmzy)d)xom
z1(=>O+Vvi*EvyXvSGO@2e~b^sv(u@agCzEL?b&%PB{{Yzdo9*jMo<xK2jI+8F^}ZZ
zFz=8Pe{V1H@P%8BG2Qew@kFo0iur}?TJs;PS0pQ19x5h0Nst^|{Tg37%ob(i%d$6W
z8lLJ070ch+9VV<=^85;nV1z1Ar*xamiGSPITwP2Ln8S5)D%^wQF)(jH-{%Qu(WoTg
zVO<b-Rt<5pbP_)5Qu=qHC5a$jxEt)*K)3pHUjE5-obOWW@w`qYA?UcRJ!vqQ6n5S~
zEJ7wV4mUbDQ`+msUt3ABML5QI_n%Rv$dzx~=Q*qo%BUTy-(Kl-JlwDD361<PxDXEu
zYY`Im2xCzeNBHQpF?t2qL;SKP*Gu||Lz#FlD%*)oZ8}XQZ=NQB=MICLmN<EXJVld=
z^Gwm2UM(3bV(|g5n@qWKN6F>CA=MHA8g4u9)0=$0yAYPlBGeO*yj_iK5GU9Q&+BH6
z`cGCB7kNKw<`+o@{`vC{*q{K94S&g-FMWrEqK4om(GQM?;;&n)tE@UAoYtjiS7Wy`
zo7pvOYv`P7*DzbqofCG02g^#ncyMjJtdy<4b6_!3G{zLHdQb|NN+m?l{i%wB49-5i
z+t1~X`kOuT@!mMCEFAf8WLQobRmL}Mv~KWlzD3Vpd)@M7+_hUSJ3cG3sK%UWndwcb
zaZ{@8$cc%l*w|PTN3$QJL0Gp4o9Nekq}Tk<gI@hHe;$bKvpf@io%wp&P_3(R?)6c<
z({J?N1_e0^<OrlWzIh*zdp!4#YPe4LGJ!AfHP(9lScLIx%x0ulYnjKR4b(3=$M#`4
zDq|`P-LLnei@PL0<=Y*Rab3l$af`n<EAt}J@fDMO8ZYhC)HzT*-`tnp^@-{d`2a{z
zg+Da45x^$5p`5;CRSm57X*v7cH^?eWeTkO%KDvwb83<DnJ>q^V&VQfFb;BP~9m}XZ
zS=@jJiLaMc;%*}^I5?>cXX`G;p~Ll+g6!+*x2%_D^EXwrL|C=SH-vWgv3z}djr<86
zFN;z0m>Rm^+>q@(lADb}?(8c1auua(b>*d3N4iC!DgMnXA)`A_`B;BxiorGT%;^F7
zCR9m5Gv7eDN<7@gQAWFWouS?zw3Q&2WxK$2ixR@v6%ygg1>tz^4-MqzSbjlSHM8)^
zFISR1;P<}_saBgp-Px|j4!ri{_YH6x{&VS^N>&mw4yFo!WNP!Cp!0L1xk!-coD(m+
zX)?#evUx72kuP#^U;aWid1nX5vr``=@A@WQDs)bB?LO!H&`PMJ%o$eo7~`vk9O#n2
z%k1T|3oInG{zT*T1BxIZPzimxbrGk)6ZYrZ(zdOG0L^v!y4f}EVBM6<BE6q-?_K^~
zc*QLBkve%uP>ac;e5R*UPwAEeMlJ?fzfO*-{&%A)BB|iEp%R)YmuS^LNEe0<zpf;3
zy^|wed}nEL7Ur(f>6{(^&0~vR1UfcYEfbI3Fk$9p5*lm1vl@`!BSBh0@z6*(wz4=M
zIRJmg>O!`7FvV6RvWMLAu;^`joK7Q($L02;=j|vqlS;Sebq+zht(`voUyc{&+W+UN
zakg5Z;>ZBrQGv2wDGQV#wpVBgh8P6+Pzl++I63!p$fKf!aJHSMg(Wk8K5B6Pdx8Ud
z#37rHKAQ^_IW68+o4=GC(kZ;FvU$$7qWb-q7Z12u>P<&-D+x-J`nP&$mHVwE=qry;
zGy7dCeQKZfj4$c2rJzRyI%Ty3i?KZf=XxyyU6PvHa<X+dp7vF){X)MwD$yTb<+;6K
zY9Q8xsv(MacG^9>8>$}>#X5hV-F+o&WhCWra2^{xW4Nm++u@0Yir<cu1xdq4ymRQw
zOtz2iU8?$1JZAs)Pj+O}Pn~TStM5!^9Y60WNFN@!e@yhg;g2_3Oxdo5IM$ddJ=VOT
zR`^3yhV|}ttVvErY^av0lZz)=y(m`J<|Txh$$cvFT(pg?mdf1>ia~ztE!cKc%TsqB
zDq8u6r#-;LL`6u$9MI;Q*>AQX(7t|LmYFo>aBk`}jfAgqEzxI~`FM)eo3}2~V6c2c
zNhmwU;&dW^d?^1*8E<j<bq=v6PG}R5Qtoymj+9&Nx>>s92k56uoE}P_zvjTi?WGN;
z;?<FKtk!wWyn%VC1OkIf`kyN=3L=Ug8<RzS&*WX=@doqmW6R{S;qOPXnpawK7nVH}
zu&;hKEv=pOnx{4pUSsVT#=(`^LxXuaGiVk+lgn1q@2)hRhC{GaYO>kEow8UHCLy(b
zEziSkm6M|Ohn0%@Qd23CnF3z7&9gQ(XI>GhBZ_#vzs6v_%Xl1>?s$u72~Z~0CmkHh
zSlNR8JF!tg#IVvJ=`$)3*PHRxfI&(q#3_dN7wu8CH~Z4=bleZ?i21s!DG^&&-CJbR
zjp`aBYBNZUvHv-0sw@lGlPcWZbgFb1z7#=ILYQ#s<#9}z3?K#{O)0JyDY6uLL7P2%
zG5+4IvMej{;5y@trM`<L#&}E^tns79ABQb3(2U7pkl+uuH;r*^==qK7E4$W~TfKDk
z314q3mTGYaEpX^jz~K_b$K86%TnAw4X!u8aPQ<Z-nWRMdNPB|$|MuWD7;=9&o@_z2
z#NFN`)+y0iG3|?-O4nlgUOKSfTqWJFb~<$5#AiH1y0wtP*F34D^ng<|`ZGdTZPeiQ
zLd&;Kww4a3>i)1zh#n>O1*ukOQV+irjgi>@>6p;n`ODPPlG`H2hOr|$LJI5{oTEe)
z{|oSEI=233y?DeCIu8}OcCmk{YfcQ4@p6CoApZ*Lc4%W-TMo|9`o4i^_qnyFBc$)#
ztocIR<RJNPxxDjf`O<P;6msN&w!-4cHe~rDFEOsabNGS8rS*6LsSOo&fSJ@6+k2VP
zy6|>7>OUo_$<5IdiCiTdt*5M%*b4qzNSZ>kI4DpQL_7<nE2k$yxGpDM2;~&hW)%wo
z6iFpCQ7)lAzP-&%I%~G$(HEhoq?w(<*BfxR$Br4i&|D3C!b1^5vmF@P=OuspRudM2
zcr7=G!T*U_7m>~&UoY8<F%yx<zZ=9u?q>MBm~s`7-WQ;G%BdWEVqV$scouzT2Iu?b
z(|!@pS>v~}D8?|f{&rIHzxb?RZIs)dg<~WQ^cD#?*0zk)P%8XEm(1>abWgO;N>N1L
z9rRGTMZ#2e1~o<+lNogV_$nTgKnH=G2%lw$Dmubx+#)#8ZqmO(QKF<E7mFJ{WMTd9
zPGZQDavUp^(u+Sl!pT?6FEw(K5<lOa{Tdxkg5{%Xk;-!c53MZL(jnm<m$p^ZvAnyn
z8V4V9M;1x>eQI2Z?h_^O%#HO_-zDtB$gRq?ZV>w-g_ub^mtPnI)1dlsLiZ*x)T6Eq
z?fP3Oo=tYAaREdPj(r5`v3t+B$&){oAKP~R)Q&c8zIWnz@!#d^N?<6Q4oGGuy+Xcg
zLuI&-W@p4Ou_`={26^5LUpm}=NSiDb?Z#~}F-0%e=x}z7wc`?ggJ=#7WmQhEF6^u}
znZy%5M*ITw8J=IZAh^^Dg==tYNX0rzcs?U^^csH@_?>Bv(>bkeWB5bBy?pNbOhn&e
z(|+mwIH(Lxdr>g<;W~T~$5O=Jxq-{!nYt52-SMGNpcy0>;YieR|7)+^8rs9Ep~XZk
zJ`>Z7GSbi{PkxEACMp$WGWgaTUT2jp66E6X^J~0NQTF`pJFMfD_(={ytp|UQn7ol%
zaDj$pX_RQ`MafN#;)_&K9(i$1GuJu2>Y=7qrB~>_({>U^o01JjHu3GKbJ}=E%H`O;
z&LGt=^cmGBfCoP5e74bGY8@pe$5@U+wdhh;PI{3R@b*jdb8f?GW`gnQa%Jj_Nzs!g
z0!N1Z`~o&ghhw@N8%OPGn>3Iw3s6xNeJa=Q@p)Q!sre!tkzgNVcBDjZX$Hf{$G+}H
zZRi-s)7)(NxkFn;2i`2BhMy9ZE9pH1usi}-|CU24(V=yc_xC}fzHa6HY0?MXI&&Uv
zx3Fjo`=AlZ*ZYb~{9t*?*k`E=C9f&9`;}(BdUYB8b8u%9y`^2qMLmJ^8pFZm@|h6(
zJB8a`6g_WTJ1P<D_{ix6k>MRhr-L`ba3Q3wI?HS2UTWuMs{5g;BKAC&g=Rvul=muS
z1iu6Ih9f0czO8>G#;VvgRFx(3TmVFM@j&R4eC*j<;=#%Rc05#$l#lH!ux`r#E_-<T
zCFuCMRnnEsiG&LtP3Oc<=_!3a35DsG#Q2q!fLg2{JZc#FvfCCz?vSMba4RTAw&~fG
zvuij03Thm3Dj^g~%assxZy$N`J@$r57Y7&mc8y8gy`%`)n+#3<GBqkfbPWAR_B9B@
zD~9X5HBkEaWOhy9d3Ucdo^dzmAXm87b3WGlo3|easS4?xy6r?#OC*dCgJXr0e8cpW
z97mAw_;0+xDpWP^1jlqp{3wyX>yqIY4j+96s%KP1o1!Pfx&ku;EbwHi1outL5<-@=
z9M=LZM)?Ml`f@9LNDDGPx@W9};O_fch$eg$!9`ur#~y#*W__tsj{vV8x$o2$*C)P(
z$YL8BOSyY54L2eo<p?3==2@g-QOe%f|HRT9&xl&Q{hn|x2wB#)CK=3&0x_18&Jl%!
z$TrhOfH(VJ1MEE8)laU%8J1qth_@8P%0h}#YvX^cG+YEA^y0XXl8>9`C6V6ZK7|w5
z)|D_QN>t$wOw&^f3UQImg4ixsg1d5(CZp~Mu}uKk3Rn3<xqPhVE<(hC6MedEOLSMv
z$fEE002m`e0)QwB{dZnol(RRKlLlA^#)y8eU#N3IL3vQdb>OVjI$7luOMS{kkIMK;
zZaWdyx%!0MV+p*0!0MnGFbiTW3)xv4QHx7SMb<3T10Pz*8f?hLF<soQ)`^6R12n=}
zMzbLk)E7m18~YSWRg#8|BXxAtgf=p$ksA{BGocWhYtGp4{;_$?aW(3T#j@C@%1blV
z9VYc#`O=l&d0x?`{vHxj`hXleg~yHSiI&A`<hSU;fX4Yvv>k)B+=gAGwLR}N-c}b&
zbEue+c3@t+3SaR;+_MMMs=uD2GD5BW`gBJh56m~H3>C7lIzO*h<1`(VwUm?EP+hB#
z>73g5i@nCWx%Stp@Q&Je`C#G|Hq`Kd<h{aohgIrx+E6X$NqZ}8ZJI8>?pi{~t-|W8
z0Nlpd>IV?_&2A}t-M8H0Nb#(C6ZbkTfc^YU{5h(q`w=y&$T~@l7o=c2$B35NWU;k3
z1)p3Hj9>*c<>gze-Z%8mNd`(1#v+lgpg6*XU8pp9Q64z#2&)v^)6W+PcNf6sUB9O#
z63Nwtv6X-uHVO1+CEw6Uyzed&8KJKv@E!BQZTOmmwkAvT8F)!5HOcIPf%yU<8vSk#
zGu*Kc0dJY#6CO)f9YZN@D>(hPINZC~*%H^s6XiBc?J!b!^yL3FRc33qE!)sW8I+Js
z*jy7|xT}i$dqNjHjRiC5#lcAyzm2mgw|=|N+S&?Y6>mxNSfQ)0E7eaUUjsw7W^7;{
z4rbpFG5j4u>*wf2QGkn)Jvs1Xn(Zr2EJ9SPHm<pp0EFO~Fy>9pgFUcI)x!5#5W5Y9
zCjDvaBOgBgL?IfWI_fODpX@%LiR}z#Uq;sy$}-&1#<#mP@X|==SqNY?%<v-S$bK5t
z1vS2^B%Jj)#q`m-`!Mw5hU5Fm=zF>LWGeF{`OW#Ek=%%HyHitK(8;<`=OuN%{Cio!
zTxL>qDgae5uFu|p%EbaffJ;G@5DcGc_KXtO1!mAGjVLyr5EC=}=A|30m-irDvwLP*
zfO84qzSK)pRWA5WElyd~2pzki?GN#*jXx<{Ra?t(?fj;B2<EvM^%<rT!f<b}P|{JK
ze*hxcQvaRnrjyySffCDA9%WTCavwJ=(5wPnB+rHt93%FHP%*4)z{+Cb{>4v`0CFEM
zFn{}b%d1ZnlRC;w%EGZSlb~qsgXV+oqI16LB#LQW{1Cv-6ErkLYT1i9{yOcKg9RQI
zfrGycTzSu6Y+WI2*r^R8J3J$K&?N*NfReQF!qku=Ru1*V+C9EFTrNRl(Y<B!(9JU$
zc0`PZrK`!mP9A?+0Gq=%aBZBJCW+fzJqX_}(8N3nF}@5R{-9Fhr^z!WQz{9$FVSG7
z=(4td$@}s*AKXphnt>ncNUNU~GtMz?7O4Oq`V?$8h!Y*$5eS$O%9KPdeG=4|F?i|9
ze|5Q}ECc?aw@?I5w(xNueO8JR!3bqfEW#4rwg63k<Ou^T#;3ELK!>Vwmad;bv3&?w
zQWr7g5q>%y$$T*61rYzE2azNe!Uzp}Ov4Bmeizb-a;qMB&=ys<h9ajMqiL@)xd(Uz
zqIM=vM$x?_p(T9l<R8S`PL&e63bO)?6NL$m83eYD6H28khxTfD=T#?)Qbz6}{`FYf
zCj>{zD_o3K@<k@wt4fr|BL|0%!0J$&e~m|vT>+39BV0SdNiwd6J0i$i3?sBsUXJlD
zRc*WZY=Y0wvElrb{(FM%tt0!27ts!fzvA#cczzl$3T&VBO;ryp-wOD_sXi?PReusv
z9yUySlCtI=<C!Li4U?v0M9}zaSXz<9rv+k@;~T_fJ*9qQ{9tI!9rO**OZJu(SD}(r
zF>Yy2-qMWYIK#upZUagTT8To{W&aZTB(V*p>t~Gr*`rN<ned;K$uamZ@T^N+{rJoP
zy?gIC3|$*^v#_uDdex7i4m6@_s+F{R-LNZw&XP_!uD$E?6?ZLY6}=5z?y)5Rx7Bjz
zE7$IZ&2eg5D<io7I4Xul8~@4jHNf{}G@LxVWrjC{WxlM>kjC`CjW3t>=Eexodyke~
zPAMU56f%Cn*a`@7KNd@T`sCsa<RsdQ0xZV6^c{V72DY=6i~1IV75kJRB3K~dpUACa
zXF_n!B9Ytd94eQYXjLDA7R5rjOtDCiuACD`MFl2~dMGt7?K_09g_bjt)H6>dR`e2f
za_qAN4>FVTl$dBAln|zy{WtuwaE9IjE3&!_{FdyC&xG#Ke~UB5zbC+Th8G4DBf66}
ziIA<$aYx7@KI_Dw#{W*z92&8)erILQ9#mOLID=778py^scFP~%W3Z0sqopDkb>`@y
zGHKZoLZ`mcqzcf_t3o?ZMz$2(Jca5BX851>#cC!>&$k>M9+9o!aKKSBxSde!toa|S
zJb`wU+U~WZD+q==)8g}t>e!fV_1P24YEBdyW>WJg(T_Xr^XO2%w72P%6WX#6+m9_7
z*$<xfqHKg!FU80FiqsP66@tBcH2LN6g=8-Zgl}>A8z*gYafkHl6z_j8RwG8E-^-Jm
zkBdw*g-X3f_Pl_Ev(jxx3bkK?tF}xBN7a{HHwB$o|D#4m4A!MjX%H<J@D%EB*5RPf
zD7FA1b9ZV^)T%`5$0x>Qeg@P5<1GHBQy+c?1T_ZGyFY6L^z!c#YZv;m`~1-$)zy>@
z>oQ0&B6l(#I`SS$EhGpG_dPKvbnkxm0I|h%yfA?m?gOi#AQJi7H~nk%$4kdhG5<jW
zdpXSzh~jTT*@(SvatW$_JkK8i^^(UR6#U+B3E8<B#$j%HzZK2GihjQ*0FyWhk(il$
z<8q>RVcnZo>uHAWS*^Gc#W-`{GXP|-`~$N3t0&2%EXnME*OoIMZ=aj9s|D~xwRh!m
z^@TG`&y48Ci0(R%#_WL3)mT*gy&i|Y{O{7>tblv~F^IM^R<(79nku0aQK_!sBGCGh
z%!1o~-dxY1tz+SPxaH2QQeds4BHKE<c}i1+rx~Jl%tiTImr>`O29LHp<u}-+-A8Db
z)OKXlHSjZ1PI;|$73Wc_7Gr|i$F=Yp&_!<AB_@YGOxt(x@RL7t=rf0_&BxHX3|F9A
zhQrm@dU;;GIQ~_D9T3?YXm1=V0qj`KP~GG|d*n6wn=GyWDoRja3BC=o2AxuoiMDYi
z;PnVG!3z4m3`RYfTNKC<ee{dxUX*}6dX`q3^BLuoAc8}?zkwtu$G(!qrXtC+e0K@J
z#Cr<NGz1nUXp75(BSn{1P|yFpqw%Xg@9C9?LC|S@lS$YCp3YPY3l^wcvs=gEGpGg6
z)t3r*F+x*_wiX~M{h%wf8T(Hfi1>A~WTO9?0eIgo>O`svV%a1xFM=8;AfBJ<RGO+{
zdU`GjEA(*08<UUp&aUPDy>x@!pBCgms_-kT*V@-j$bxerX2oIhJ=c}`=Wa*gM;GF`
zscdPh^^{&|6OH;#ozYsFX0WcJM#AUKH+d^&(m&w+O0<NK5Zh62%DLF=NI4{cWwScL
zt|Y{mqQFGUcbQ_SmZ)Ed)%kb}zCva4U5#d^1xQ}!?Akx<GkVL3B4b87f!1$DJ#RZa
zN_TEN`CqB7J~z&^5}>qgyOsi9LzBk&13x+CveaQxJruBqNY&~_h|uZOEu+lbr_+nC
zB)RvVkADYQavCE3rdmUavRvYm3w_4;Y<ZfLpU;yn&~xOA8O3VQ-ufr+7^{m!rUx*Y
zhNJcSIpohyq1uIROoYh8)l|$RLsqs9l9x7qQQ{QFme1+!q%qlIq;)%BPfZYtn60cN
zK}k*bVYdy#<p!yqTTaG0B5lp$bnGm{6(-u{+!Dgo4Ox5DMT%CVzl>t7#GP}6w=HKo
z|H%QT@$j*f8?RtUX2!tp0m(No4`>=-(5L0z6ddbh#AV9W4I&_LJP5(zmno8a31D0b
zgsf~pSCmGgT)NU;ZUb)GKPs<CWg*=L;7r^}8~^Q(yJCM3@YKY*LcUH~o`0PU6N4VR
zW%?1ua@@35`Wcl`OVDgw*V~U##a&ShP68Aw&h`z740GS`Wt7@DHN(6OQb{7>jLCoz
zEde-e0v1M!LhRi?=w}<jlV}$I7g}kyDymVdsM{IvKa=%9Fm#x1dh#oReLBRx@F~sE
z<EsH_NP4|AP;!*GRH0z)NGTuWGlbTrJp@V9DCq+oo67Kn2?uJbl-^}ANEK3r<;*7_
z+C|26*pHV}40p~Qyx7lS1}#zi`48z1E*YFZ_qxXDG$*ML3r~hze)S39N{UE!2U?!a
zpE*(7s((u5ey5rZdGFr81h60tzrPQ8TFDog88E^a$9*V7_a9hzH34fS9edq(=F_9H
z;TU7Gm~|qfD{ECEZuh_apIjS4QOu+dF;gMgk4lHjDhW%aCnW9y4GNkLJNu87Lkt-b
z4&2O1T>vmWyG9Bmx@+4OeFHK51fT=A_klOm5?v)aMw>3rxknk3NpR<X!Dj&%Ld$Ay
zA(~CZW6FlnMQ<#6uRZz==;$M|qa$8O;+SS(bK%p~O!N1JBB0zAZFnoK!FeL876^S8
z6VmN)nsC6Dw>&&`rLkRn2)GqS9{joz%k7zq!s_LM?uS=Kh@fJP5b4+odV_UOpr50@
zB_gXPP>3`9Va9NyAJaO^z(4%qHy{mRNSwb((#LLH5KS;$p&R#rE6dqhlmYduQa2%s
z9hoN?VxMo{Iz3vtX(jdYGUZVJljRX2Xh#7MAN$@DF2*^ZU~s!wVf!Ufr)_XCSMFRF
zhfgi-sd)P0>@-e<;CpUYNBI2a+3it@D_!_%Ybru6A*6_Efw>D75V-hfR2~2<zFsDz
zgJ0{M>A-Xa9$BVoD`=YoP@3ggYvCVAv%P6C&3VfZo(ONyZtQV}W!?bi<066U`Q}Bb
zUb;P>FO$Z)C7`F2;zfy$+gW>S{4W?@)(tfAU22<V`@9J0#eiZ1OGJPL62164v8t;{
zRmE-&61Y2#lu}ntHV@N5rm7_AN@oux;9UnGxn=%xehFn?b}S)m56o*QpOOwg%J7}f
z5I#U3`md(o&0O!)7p)9Nx3##?58Hm`N(X$ebJV#3!vHf3GScU?Kx_+;ey1<8uU`<3
zD|mO|VGeL6k8L}LwFXp|$0hgt?L=$%3?IDISiM~VG6)OnAct8!w}+BuC=lOqC<>?U
zS^azvTp6Ugn4?u&=D-?(wyGEKftR3)<YDuOzM*Wfif_!TSTM$GL+X^wu4&|DhPPd<
zVTeF-5j8l0eiofPFz*2X|0dL`4C4{#WqvAqH3n}cftlX;y{y>PX=6mWG#HYaii`Bf
zFl4X>D9_$+SI~%xIRt#~A*jbgM?YM@n`P&1Ey7BQO<0&+gMauJCD}p;Yz|Ej%ul{Q
z**avLbHetpzB-B#(t2YLA6)z(gn2Qm@IkxV|1)k5U0;^-7Pgl6a1H_4ifg{Mcj}*S
z>Z(wP2eyfQTV?`MXF!iodL}`0S$RYc35!NYN&qoI)4Y^7ZLTON^n38jz-ijym4IpY
zfE-xFPo8~2jkPz+bk8@=O-5ghL9<NJVHX=;Fm3<FFZ#8hY@$QkoBq9r#Y8F)$W;7;
z_}@zg$Uf^B?eZx@ngG^C7Icm&pRp|q+X<~^CGW3cnnJB0E|>|#LMCR?xf@WOsDSnc
z@Krn#Kan|jKB=-10C_Ew5;Sxk#MJz_MBq@|V1JApru8yKzjeA>FvSbhjJU%yoFwci
z8VOm*xJHFJhO&i(%a@{cXVzuCC`lmQG-^soMXoEmdBQWa>gF)_WV|ONYzrByP=Y{H
zJ8Nj(bZ<349i#+cL_(1AC#5F%@`6J8c#ew)b*3BS72zUh&_EnJ9GpCq#+XU}nr%sQ
zG%>JGPiYd&FIw6AZzYr~FsXxZ3mpCq(hP1)%chhayZ0J6yjKa~49#V)*#~~I*qNRe
z@a0IVv9xSxH(KU)%1JG#sbIHcDS~XwrM}rUB3~~ppbY0?*%=Wf5!Ok@C|PWU<cdty
zS}}YeUDek^>GH@P0*<p)wrH_AZPVb|J9y7tW7+WxMo4Tl7<+^6L#{D7E_~fJv@svy
z=v~M=T|Co@y$}MqB9~C|`caN*mIshCHWW{;?)?X$s(WP=Z%~MJtjO_pUCxNC6gMm)
zt0aZEEuZpT-szD$of#k&({iWm`Vck1r_!NlAbyzW_6K@Dv+y^}@PomM%qsye_D~nz
zP2%s@Yr$nbbDFcpKVq}QBb!iYbyY!4{R4IR*%?^JchYh|eUR<GXv)C<AwbDXVe!eU
zI~Tf^E4i1IMF1iMNXBqmgyQv(m`TmRE^KYMi{=^QZ!+AVC5|$abXE+M1O%{ma*+}c
zhECBE)l+(}nJ|F{QE1t-W4Lq}1ggm17cW{+f-(@nRIP!*MDdE0Hq=xg(Zt;}-;LKp
zDgqt8f|@$=@Qq8us<DV+mnZsv1^;5hrw{20Go>b77<Fp1<rP%kUdd9L3z2dB#Q=Ye
zP;bkmZlDzRCzxpBeR*r>aP6Jl&rb#S#iChCWpnjJXAtQ33b6SIvXKjUM`I(e?I!Eh
zy+2PKUJhbor9V&P6B3M5*-MZY-25t=9q>a~iE_NhEP8tM(FT#<-q;Lp%|Z*(56jbi
zRiu9nR9A^Yrn)2v$u5gk`7a|NNffa?j5V`xOH_<~*D9ASS)6P$Fp;X>5npWZ2&;Gt
z!VUDrInx_Dmd}X_cUzqsw8UD+M@NVnzI?1FEm-V%X`WrcB|quo$vuT+)Wh@Pg55zW
zn?~@|koN2aZT0#Z+3TOu4$DjoO#di%e4xBbp@gpwCjzQTBmk?lv@I7}-={9wdM4%f
zU5E=%qD2+*iqsrgW~V}c{@t}^dJ&`wPx-ahrNN*ryr<NDxN>CY`AyuUJn-JKu<N``
zPL!uQP(Kd~VEsO$x&%><loTTfjmIIxC|!Lf{}+eub!h<g9k~cYRMvOq#%AQLy<bOw
zYVvj9VB9oIFulFp+aHzWZQ{-WHk6vxhco2s>!Y?zt&D}Z-eM5yvjg-Xsb24OKx^ew
zP#qvv?xih_%T{RPl|_2_d>i;n2*_5XXJB=bw8;^L8Y(~qW60u>X#qdnoNjyzTe%LW
zS~LZ*Q0OQKlFvP<#7+X}2EL8$aZ8vksJljrEvj)9NIVbQE1Je7L5&Jb({(cn%1L--
z5@W`}qp#Mdswxv!BVHVxn}IbK!enG4sH+Ph@+Ab|F|qq2&=P;2K?2aqo~;W~-J>FU
zjuY1NeeuV8Orw`JZGWYW7ASGkq})l^?CH9rejJ59T2)-SQ2l!}+-SzuOU2%dy!83g
z{!5^>gdxZWJ~Om&O3{RQl1T~5!HyR}CJfO=*svl>lpj8OKNIm-pmKqKKDa$7RZezd
z)pB4y?7PSLS-TJQmmd5bn~m|~>pjIx8t^r{P(a#REt}oC#E{9n8lVRsxgPReLd6X1
zEe9i=%k>XoGiZroOzzp6XH;G>oJfJGdexad1zBK!SB>|3&6Uf%o!aDQJsm|K=YORg
z4wJ^2Y^MB4p=4iiq{IcSROXissm<}Yc^NZZ7{VAFt^nzz!_##zzl6Z8P3A|i?>jwx
z17$P(SKb%KfIu5$doZ-4L&bNzPwvsgcauyq_#(#DZvy&CXE^&k`AWQgH=n0zk35N)
zj_?|=**!eB@$2$%#-Hy;&sO|gCER^~o(_f>U-u&8hMVWvtJioo|NBf(P7=HMsRK%g
zVQ=#&Kx^uIQNWn5Jqh;FIDvZp{+6=EP;AVc`hBw>kK}wpf{A`l)_iuQ9e%f~RP_J;
z93dm?wH?a2MQK!DuYhl}%ADq5L!I+suQzY3zppY1p*?}N((hrgvHtq-2<I#GSQ#H{
za|vk2@$5<r42lqkdW5_WXM%_(9#^)w<bPC7y;WTeV6yhzif}b;itm<SCgHp^x4yJL
zPnFwV<k|?8_xZh8wRE7$*?Ze_*LFoPzF$=Q<@nDPj_gX-pvs|!a-8A+BkHT;n(Y3+
zt?4bONF$|;?kN(IqLfGo(zPKa(%o=71xHIaDBTQ@E=M;=hk(KWX<>AX=ZyRNdp-Uy
zJJ)rc^NDwS&bG8#FNB<pq4%Z!l1bUc#*lz!1&ZDEc<N(KQJ4u#r^pvjvF8)-11*yY
znE#8MUo)qbK^zoK+X8QvL;L%xTAxy^>z`16SWf`QYSZj&XS&2^zh=Oo+T-_l>QM!T
z`sX?BocA$Pap+iHrv|e}zJ<Bf0vy!5Rz|~ohHiCrr;oy`2?0AnTZRns+y`mwgNdGD
zCR+?L{5}-sdl3tBzxRHZ9V|XRJ>Q~k^OsV_PYd#9mUB!@t2ElQ>94f@_LtK`Sa3s0
z>{x{Pg=tTI8#^wK!%z2IbI*%|y{MZUSGbRF4xH`x_X&UGEH>EI2G2(Gm(1*blm%r3
zSD3J#r&HHPi;ZuB{Bv2B&vsoHJz5tcc@X*d?*O7s@x;G|)egwnFKK4~io$~6t|ff*
zXv%yiK^7COL1H7hyIYZyW-D}mJ+V`diD-W>)@#bu>%<LyG_zH^T<3c_?uYes|Es@s
z*m`xq&$eTDn}@EqjMqcM4zMbZf)?gKa225_9I7X$>VGskWH^0*Fa1|U5(qsIi7`u8
zS?`g^VRo<g)>F$z`Ro6;?QDo7U$~v};{`}7+gj%MH@&qx<OnT);8y*KSk&}DNf8n5
zUS$F5u^Ku@iDEsoDfXxDagFME6hA&{?YFe!d4<$bX7%43vDDNJyT`)4LEo2<d#4p^
zyi!NgT67-MC8ikK$pkx!)OV?hc&`j)iuGK=fq;3*tU4+77JKL7$mpjG(0CmB(YP!i
z2^X)oZ<1OHG}CZjY*lV(%R9=5>5`Rcc6_#oM^z}YqF!tN)12S=0ecl(M_)pGPw31A
zysprg80@~3)y(qCb1Ut}{SG^P=~*mY&X%&R8zX)eyKjoiOlVJRL;&r|`LL?^cGrEc
zt%N;uhc?=*8bppB0E+Ypc|kG!14lMB`RalrMsXhnVrBG1h_b`T8vrz1x|I7El9mZ|
zJkM`5l;RfJT-gPIVAiR_tDku5X`a+%{cFDsE^s?ZruWypWt`t$Oo{JS!~F`?*?;zW
z{Z5{r*Bss$SQkHbhyZwAQNNiT#kyD1#?OwqgZ+8t)NVkP10so!P)va+$qXgQ-6o?4
zl<Di#8RkfdyFFQ?{G2;M3jZzSL75sFycaL+-Hj<-P@`-K^>&QfKH^&JxMKM2@MORA
z8~=nrpE*Zsim~(fW=xv+i7)&}%Kf<1&(2QjsAZ%7cB#XF%9k`tp!kfKVRq~#fdZDI
zQx;P>4Mw7_5`wN09L5DztAYV=<ZRh^&bw8{XdWOOz5~x&O9=7GjL4Q7Di)LKfzH}0
zoJ&|l0-}`s{`4@NG+w&8=(!aD%56f=bN#rE0y_5H&arl<T~ZQ96Xv<g1w!wwa>|*9
z4A9kph8v=^qB$Ul`p!Eq+JysD2ul2m<o=mZJn<5N--s;mW4U0n$ji1%zJRRvt2W80
zIEAwar6gYJv=R28{+<io+l94<(2RBnGY-Oyj@$E_xJvx2hBX)_uN9}bGD6C05I$Zq
zcXl$JDI<V8z?V=$KPo_(@`i$w;Q$y$i^|lSoGAKq7V3}-#7a{GluZI)7@I2bVqlb8
z)r|~9iVwfYVWW@X>Y>=0ReH)Ia>ct;e#<irzcVy^ynp;M#~Ka;v6w*kH*OGXF;OcG
z0umk+F2~7l#G>U#G{5%0w6}I5z-~UZ3*ltc`zVV4iv3j}2lEFVHRnX_ig%NP>bM*x
z==H&wRaYMg{hzqwQ1Z2=9MP^|`0f2U>%*?q9SIU|C8^~d0Vq*hMVvL?1VYvn^o8`e
zav&(1Ft>UQpk(ulCgG37oButbY^H_eo1je7wHBuGOG(69pqKsvw)87Pixuu?UMX$5
zvl}z~J`~A7;W?DVF>#|lN(vu#KQQaGBWGL+w_9@Bd*syhVM}E1S63Y)IX>vmX0UK0
z^iGux9Q}qbek1I@<{I%5=VThO930Jjfyp>`3}lc!RgU|`L>Y0rBtr82M>H8LM*6=U
z3@tPw&HG^RW+M!n&3xrV$7;(He{EPqsW=tPKR92PKiC&j#8<)3EC#+MvS<8h@;;Xu
zafx0ACvPKRPRUkCdv9&xT5(cJ5_F5$oGLS4Q8v><rB<G$1|bh89AtIAl8+;FBc3;f
zr1@BT4p1YixsmxkVvlMN=Cr@Uz@SvHhra~nI?9?dQ5QzZ_0iVF5v#&TODhD7*0AU9
zi&NyEM4Q$Zgx&nC#PFTdQt9V^iVyzilS9NRju4Jscj>>ixR#3fCK3xRS#$wP&;WL#
zekvJGXd3>#0Fc#|StqhQZ##D!_;|60h=vS(c|5Nf&vUm4B*3SXLaCaZ)I4D683?Yh
zvzeDi<om;>53{uB*3M7#fj8LZe8tac@0fv2F>7Wow{gakwdRS(5|gTDR|-fm`lOa0
zbR#UoxAImgBYp(7-#mFDx`L25AUt>=as{W-2~v*{Qdu@rc!FWhYEn#1fuitZ-(<7{
zkb+$lqac(C>mt-1q&qao1Axv7bnV_EGa)7(xT4dWCmvmyZ;MZ!CC>;O=f&_4?WeBS
z?1X)?nOGabXBDp~YyD(a2fWH70Jdd{j%IQ=1`%>T%QF2mHBUM}%{z(&p9fh-uX1yL
zzb4gPtmgHVzPMy=p|!MA%iBcCu2Q<#g#lYu@hQ}_`-wPFww>GTNR=+dx&b4E+)dmx
z15vVB&$XNVc{Z_$ZAko<oi_zf2`Et*@2R0P0FeyJ+4aYtL_tx*N*MvLLKKG%=LyEp
zAzY!7&_I2kIC3*~l@KD*>V&K%+F7#}w57bE=-r2K%V2Eli|s(hKW3Q6&TQfn+^j2w
zqRx$~J*4Ba5klwO#Z%NuGM0St3I}m4M6Rubr{d_+qa{Yn*{R>zBwcaDT;YQDOz2cd
znA;e#5C-F4dS#54P@^aWVio{`%yy>PKkq1Sox0~^)lD~SfbKheqN|2oxnXl<+)5Zu
zZb|d<oFZc8z|tFzhPnD+BI)Q})%{>1a?K?C)E@(MyaWijIujrt1}O|!xi1yb$X?FS
z5VCC(iT_2QX`iyTb&mhx(4h$W!0XciAbxJB3&r}9{w8kx<s3zc6lW&cfzK<y6`&mm
z;pu^pTT)mr*reBt#St&z8F6n+>K2wMfw~a9jA>gt9JfR_A<~00qtmG=!nZ}d<e^v-
z%ug9%X6@$f^>^yVf0W8LZmZd%HzNa4JN2U%rtOli4Fnh0KJkg}Tbvg(p6%bKN;+5(
z6CxU$8Lw&s<rKcGQR2Whg3aD=;)fb+niifZ;nA)olV3>aM_%Iq0`l_d?Lg#LIS?ml
z0lOXfDYEBlGzb!A^QkSd7ag5OvL7`!RNi;C-YyYYluDW!mQWp}aI#XNawE8PT(W4(
z@2|yAToU`v7Oxy;cJKMTJif;LR|_;0X;a~Hmlr7Dx)Aw5Tx+`AK&pne1hn0{A^}ub
z0>1hsWEP3Pa|eH%woEOL%755|FWxZT@WzJPfU`2Df2zcQqStlHXEAu*UjCzv!vLJ@
zz&FRMu@6!nqy}3IJn(6rtx$t;2P6IY2<`G3pqTDX1|=H6M!LqfV`MOy8f^LGAAygI
zLD;Fa{X;kiHJ4gsW4NKjbTUDO(6Z9(ro)Ximw}^S11KKPQQAmitwD0gOQ1x4d`nfU
z3j(f=0mF7~!MNXfX|WIm(E6tnXe$yIu=!qA8y!9x_#XoW1Iu0yld6U8BsLm0wfLGj
zVf2<~GnnC(S>s)GZFT3K_*0<8h6ugy>2|`TzXK&P%{rlT{_&akdOVna6|OMSw}k8h
zqzJ&>fUN%1KD69KtC~4Z8Z7y{NZX`Ki~)L24BVIiEpt)#-c1V%$D3@gH<2EQGo6~_
z0qcz(?Hh{YDMC2|r@m<oLg-67V}$(we;=NdLR-Qm-=IT3SI8jTQEot&OK8|N#)lc2
zz}2VUpk+3xKVRKGYwPCRZk_w%=j#v7OpG{@5L(`Ju@M1sqSyw5Z<hR1S(aBK+-0$H
z8(YGxCsLt*hisUy?xT33maM6kh%O2em{#eUZHxqT7~CU6E@|aa^mTwARI;gXAM1M=
zK#>>>6+XXz_JQ3`a)RL;CN6&K&QXy{5C;und^o$93#7?onHDguppYQe%aSjsiScKS
zI|KvcF0~Id6==(V($NY4em@x_vW9;0F<g0VwDOwP$fV&nP-KEma@z+3a=5i4M&+@}
z1d>ee1H)xNz!YYgye0(!#Kp)TP-1!C7Ad`CVuNJ;_-HQFe(l`8?c$#I^UuIYB>;|@
zQt<SFaWHo*&5AI`V7$d7^P><PM||{9_J>ksEGfWE){$Ttxk;f&kM8^K0*V8zF172V
zx_nz<{KVm4rI#{5#WA-FdC3h0y5U42qF5X91i%n#-KRW8vRd8HZ=k5vhB-WT#Dx9J
zLGvX+d3l1FtRe_Jlka4nE*#s8GC-4A>cb|5Bf%g0-g)F!K?pTxYsdY1b`;ifKvC04
ze!D8ilty!!`B4e#RuI1|#X149duHk-1HMj*wlU5ZC(*QiJMRZ|p~gCJ7cgsIWW4V>
z0MKc%n7W}~Jc8H=@%cg?8jP$M0-rea!Hr1+G<hHSimlEhV}yzC-)6=Lwe76R>FHA~
zc3E(=Yz3A1Xx=pvP2)E~t-h3^z^9W}ZQon_KNMWc!PQ33C#HPyGj~$6)x-^RO;Stp
z>auJE6x_b!5#9;36?+h7YHLTp^3<hPUSJ_U^8hK6(IdTg7eeROOLW07J(Z<AL2eig
zRk06PkW6ss^jO_Kqw*W|krT6|=;e88Mkvsrj}$Wy7Fy1!Q==aW{<pj%y+puAdr-Qn
z!Aedy6!<1yIm|u%PfAR=H0R$r4x|DzJ;(d4HS6!UDI*kXoY6!;LN<1IoRixq52WzU
zYG^Oj*`%M1t~f#8f+(OR1Ii0Pr=~#NURXsZCz@P<D%_-?UUUxs?`<9)xiRff-YP-W
zd#KH&b~<6Evc1cG3(7UP13=|QzaOH!;z+{oB(>4Q+P@KzULuC~p*vu$D%k*)VLT{(
zp?%U>#Y8Tk8XCeWazp#bQOFnveVIfKohgPiHNxQsNwgFITmWX`(-~(83(ZF<Jy!k4
z!P1#xJz_Zg^hfx)S}DGCo-radQu|GcG@G3PI{c@bx;(~c&PM`u1x`AV0O0n2b=8ta
zl2G9Nbk?s#zSQfoP%Kt6RH7*K#`e-oa>Sn{@~D8V7D7(gP#eUqcj>+NcC;5n80Q$^
znbR`Gsf^`+*Li&(OT!HRitN{=25ya8ed3<`7M={3N;?&orl_wtplX^3y!)t7({i}Z
z@|}k{9$AIk3i$fG&sw=@>vj=pJ=^U3&y%*v=ao97FCGy<O>m&uSHk?}i&cGBqSAaf
zhnxQXfWMWe<bq1=!clg3tL?C+M?X|4Gz&n7LA{3Mw>zQyF-uuQu9y$L)5%b1oYAyL
z-~K<(Wo0k{w57@|q;FW6jg%QV@sDuS^)r4mK*2FJ>6Qc_JRl2ZTK<*#6?{_wdvN8;
zVF0ou%zrMuGsn&^shbDg`4PT$u38I4gUJ~mF}9trsTYQq7h|hWl^wR+{u!oS&!XdR
zsKu>*n%!setr`V1n2xt%&FAq##@hTtayC`wyFx$gUfdOxX@EL$#QA1p2~-)kN%%0(
zy!fF0?@NMXJjF04)aJK;T)y8AM5)ZBKA8N%?U={`xr3C0%GS1$X^x3Ax>~tN8z?)N
zf?SitQOL$Ua&=&(q;bYi8A*sbylxtcYA{Q_APt!?QA~|V+y%d`k?5Di5wE;LO9dgG
znzz@Vd*aZ4y(zU0pB#+zC=W+YHX@8-IN~V=;?orzR_OLg_5bM-iiiTN>uk?AHJ>_j
z$}HM#r0GY^Gv!hc-T_t)8prA4_Z&Kt_XZfsk9aKzsy&T(za+)rr9_dpBtQY4g!E7@
z^_&uFn<LqeIuCv#i%HK1xh;C&qv+8~180KxJuJWgJvDCUKdNWFTjJXxc)IFU(MWCj
zF+6|+F!oDG!JgUA$5<s<?B|vWzi<UbDA@C$l(T`t`^b-l-o{CF2tw+(6Kog*fHp7z
zs8R!wn*V(8Q1=~PL`v{NXN-X{WVZT9?t8v5nGB}8ts$&hots!M25%^jXDSd^Ff?t0
z$4TA*j}&U{c6yyMf;{bbo%H2}poY!3-~pZ0(V28H=R^%Qd-x>z;mmgUK6!#=VgASq
zgL?Wo23D!(ZmQM|$>NT-8wNYf5C;NQdTLt$q}kPtLCeu<nrCJ&7qmt{=$d|HxJ+l2
z?)&~p_8DLif!aQ8-t!%FxC6Yke}91A&JIO}7NW!*Bx_1HzCX%JQ8FiE{mXUDJUa60
zUr`IjAMp4wgd*28?fPhn_R)-%JjJ>@&ng>9<K2=3ULgAWw*XzU2RI?H^W1uCnd7b!
z1jZ)*fc(uv-ICXq0b&bRyHTuxBZg~>)KctE)j++zpTmmf$uA#vmr#}>4BImbYg_Jb
z3mTsk)J(Gk1p&b?r$*nl^xYb8SHRAM4Ats6{jS^?MneVua!3+#+5qk1BleiOS3@S1
zrwgJF+7nkbKl_fVHU48-Y`HR)1%(`~ur3g;f0jLwX)WOBh<TM%h-+8|TSHYA`zP>U
z1>s@rMYZhDSsmyd3Wl^Sf%Lbkl9}dYzNqB5_7dJT*`W#)cpdT>>#JuU1lWjNSJw71
zCqmAA69vLR-9ZpW@#I2$Ft4^)MeN6C+W$5J<}DV8%uKhLz%miHPM$cIE4rQHgs#Q9
zZ>4Ne;$B=MKVpnnNV8-%yOG33RC$*8c8&szWVoq@Hpwpuh=^>jArS!&zx2}HbA};-
zSnlgwyh&^rL8+G8-Txi5(FpMChMzEBeSQTxsiJCRG0oNQ05B1WsV#c_Msqnkut-~G
zih8|oMtHhqD%tpw8hYVPIuDC_ta(#95Sxs6-wZQgN6KYn_GCBQRVRIN{6(;8DO%yb
z-Ye%<TO%T6D8{u`9$ORUfn;y!=$DNBsk^7WOnzgqN~l@WY^T7fqhCCC%h2yh&66tE
z&ED<=*qyYR{aa15LEZtET1d*Lxh{u-SnhRGrKIk56Hu<>QBW4@Lg(UFxhR&Ggzu*b
zB)4EdHW(_4iCz2RH*awAD+tDk*b+NvY}(uKTl-NS-fyP%3us9F%#R;>@Tf>}%pR6a
zcup2i-WNNWxZjBX1aCTaNh%L0y(lYc2tu<s9-<{LfJ+TM<OZ3uYo4GTJ>;zJg9uPY
zWU+n}BDLQ8_E*2M9lcl~zIc|gbtvz29GHF+^hSe)pNV5T(-Ehh-04s<H21qUJ=zK*
zWM7Vw5&em;$pqaaGAuIYPoUQ83w3vpb?P_@aN|~|*mgP0(#Rd2w8=zEYY@K*P$7Wr
zdcz%#WUYcXJp(sE12))DaeDLcsbL&q`t1X%)SPaWJ|Ke=Bk8PLD1SjPowNhg36u;8
zmhxBqsfz{iHQ07=@y)i@(g}G&P$w6V6=m|QZxF}2@2VK)A02P5>3`Bc4JaTmHr($3
zU6AzM;6n`RWr>G6;8eI&I&#l12*QtVWHUKl-f$|~-Xe1$_~kme7-}S{(vkq_C2Ul6
zo*cT=ewB`d#f>AV5CyIfYm+JZ6U9FMs!n^mq*^fX&&%3{3?n{j>rQql8H`+7vdk<4
zxJ#F?4@DsSK(Y7FRQiuPTt+A|r8fh?TOv4@mJ3F}d53pKE&DfdA+MI6B~~vm83#e(
zlOBs}+D&)~yK_e0E|UmiR|9H~hG5Y#_dR-IQZ?8JD{LG=S*Pl9?7j=3bMbtPy99`W
z|GXn2#>U|aYL&{^zN+1gK+z0@`3}4WsxBo}<8*xa?9~|Uy2>zZhyi+)+wT&f)m}x}
z66EUnSaF`cw7U>)i%S3AbVRWP!J-Tc=!4+Ajo0XJa6_x$!&ONKfwk!f5TWwbNiBid
z*SLIk3=y8@BVKdXK5F+_;x$AKoj773<Zh+GIVSdIN#|GL``QWDBrYm5X%Il=%e%l=
z8w#VA=OcW>Qe*y6g$%?7p53}3-A*}MQ%uANRB=lKs!kZAQor5K75T(`j|`uM=04)n
z$c}K9=dcpZDTkn(yJW@oEE5vYdmJMyXf-s`(LlE>#{GG0%3!Yz?OIh0;ugVs(_Ts$
zVMGO4D?(Xs1vPLV_b;76dmy-FdPs2o0ilwYoq8bE2eEPwb(`5P#`eF~PMeQ2Fy06^
z`SnkpzNuH=Y21T9d>?6DuKN7gn>SV?JOGDtha2QS{+FghQ$`3_W^A5dyR&s>C@fdn
z9af3WeX)RMnxf{}o)w!*`YGwL{ld3vK|YcxS9z~m({fd7&ztXxsr>N<hqM#Z2nX!G
z#0xc`YypT%J!?<@=M}Z2nMX=s@iYT$etAr4Fzq`YO=qhxaV6WN{RG@eVDBTi78tG4
zd_{<w=ji<~2j<h}(JRN3HsMAEh6x=R%u<a8o%?xAdrlbrxBSC*^w(pqzn<WrG4W5F
z;Fv%gz~INnPoSn>0`8XstfI1e`9h&yz2^a-I%9Jz&^wf@>Q6fs6dS<m^hzR$$6k}x
zc%*$+bUtY73!dk0f~Fo79i;i42UR(GobTZD2XF<9eHQ-&G&HdJJZnR|-f5T=VE0ME
zh95V!ZCH!!K-A9SRF3YwGs!?GHti|i(N|q1c8aUQe!i*XTbn_+x#v<oYKSC0hTpoX
zWXAw~V_kc1lT^0`I;7%#mObHKSG}Eh*vsC!rpk7nJ|^Y;`|7gPUw`4ozu<unZ7dqW
zWh(!Ghi=ddz7ba~5Uv^OE=`8X4`Zr9<Z2@%1J$3;I;0N8P5;ZGvtrq|@eg6oT1Z_d
z==qt=9+nW8TrqrX7i1b>*LyM;Yg_FY4jolM6ZT#eCEBmGyha6?ZyWGAw7FlYhEDTb
z&pEUSe=3VTrM8Z0{n{?+QCSk8l&IOE@P&;4xOhhB{}}iRb^Q4d%$5T`p+T1QkiX;!
zn3i&NpPLSnWCcfejtU16K_d9nW9^`ROH4k~I@DW-xsABfrZa$qMxGw<^PRWZTExxm
z=SG<R^X?TZEhQZ#yl9^I(GGcGt_@$j>ENp<SlP^WPl<bKP6p!g@06h^eTVSQW@hk%
z-~S%D{o4FP=%&gH4Wtghs01}Mr2ubQ6i=pR1HVpu%v0~b7On8(kB4GSypqRG$34`3
zTeB5)_b1#Rpgu_Xtf?Lm9?*1>%<9f|#)Qq;1B<=!zEg;uQ}-rm*Wg#a_cgaj3Q!u3
zf;AfoL}y%m*A*5BDT4;=M%@EWO?A>5H(B8%YW3vWaY;no!hj$(PjV)v$|5y#898%=
zI<z|fDNYeIIy{efX>eFh(zMZ1vR=PK_?V?9QtkZSH0g+nM32w@xqa5-Lm_PM$mQ6G
zgm|cX;gk$N7I}3&0Vh<r>P65?(ny{QJ>)l=hku}q0O)@EwDW?;0!*C33DhJ-O9cQE
zm`&Lx^7|F&h8LU9Qw?4|-}p3#+rqC3G#!Ht^lIu0z3q3JD-Xn|6zZjIY5~b!eL9~R
z-47w=_`%R`G;WqWMzGRfVxEYP>$_53CH)mzR>c{w;DlMCg%Go^5VIM=(PdIz*c-bW
zxF#GPw*^c&sue0W6;+4+B+vP15CdY}g&9EkSX_Yag3!4(;LZenR?OnNGY!9Irrfc=
zFhq+BoVjlE&jAEgL&ml#-A;8bP2yDxV}!1U2>@JdGI@Aze~{SqdFDC4>QqE$cRK5L
z=#`^K*oL$(fU@7x&6`l76<aF(0{z%yHCS1^JbiiDAVb=eJy?5)P&Raj(nr4&Vs!%-
zj?7vc;8KI>3+hU48O~4~_*FIH>dr?wk>U%mr=Xpjb|QMhn)|ZDyLtrGquQM62d&v4
zKuhMx7YA^kmW!DQ5uogSBa1}<W`d$uX?%H#!7p6`Itu#mR=0D*uio41=gjyvIAvVg
zVwJ=@7Qnb=)*uQq)sn(2t5yIqDM$yrwu<*;E}IDM<|>;QU$DnCE!IDZpUZku0ov<E
zIwI+SI(zL{Rr@sN30`Jf2HeV7b&L3e#Lm@uyK_2+9b1Pz4~Bp0j;}QRH3o&ue)2N_
zVT|5XqTo4#CupsG^wP6PE2aGs{#uuVEsHRG=90;-bH`Q@>Q>#GWfva{(i%jUqJ~y6
zDnzc=YwJX1dl-I~#9O8wXEGo5=?Hu}H}9wMufy3pIiy2tBN_|yt4~?#r$kqZ8&gs$
zVr~Z%bOPL`5dnnkgvRDQfxqR|CQWedXgZ2TF{eCmoj2Iu6$KvOMucV}(oB^O_j@Z)
ztc~6Gx%>f3k!ApBSmT|Dfa)SnxpY4u`C}6InlJqgbyv~45Y4nV6xN4ANnp)SrGdRL
z&_4lxF!ejE(eR1pEymGG`OJKwG+_TTv3ej5Kfj+bhQ9<FlX*n$i;g8^pxjDYWny1!
zO|y%r@V$Z^lS(j+`y$cGae*NMUfj@)8v~ZAWM@A`!0^y<Fg1bVIt~l4Ukv~%5&%&Z
z;|H&(y>uD0NGEqRTMT|p0lBRGLw>-B+&2~iO9DO5Sq9fWA#+Zfch49Mq*{?<T8A`c
z(z_KNUHkV*jy=y8t(gfKjHyRmA81X&OSu+-qH72I*Grl}E(Cnf(>uXSUF$U|yW#Kt
zgl%bZ2WpsOM4iJGG~g$IUy&qJk~Nh9nwO!6amJhhvKVnX$lCRF(#eu4ejPkvwh1g6
zD8m2>N8Sj!*{=js<k8T<D7}}pKQK*cDgbF&#Xe9fIB~?Est+l?iVFk7UEKje^OcrO
zx^{*Y6lUVz4Vp3mIt%`o#$Bod)Or!>o3cV8d%B3H%krp5*mSl7-hdn<Gc}g+hEE50
zX5rY8mjqT_9{GkfRMchRRns<B5xi;d#e^@`buYn86=w{6UgQiDVK>a=1}Vf5@8eYQ
zrzB^`BxgU?{4`pwM;vdZ74pX?+>8Qlu?newzd<7fh~5ngslilZ;JW&a%j6Kc7l0E7
zVeP4zF@nk$)JUz($j3zHfb%|GvPeBqa$KexZ~P&2Qd4z$B!^*}Vjk-E1+%ijUjwrD
zWs0$(TxIQej(B0vGJLJqNlPOUyFu7Z;9fogJaQ>SqZd;CyJ*$`?KfI85xC0?%Hc{e
z{HYVTtF&+^%H}tVG<pR<`MnVj@=!8GqR-f$p3LeIo-zw46Tn=L%Mvr&z##<w6j0N6
z<dp?=?%Qgk&YccqPe#Xnj~Ux@tb&m^zErZZrVUnv*Y(me9g(ZqQ9lDdV<M=+0804R
zzOMw{`knAMfN9zpoNJq}V)*5;alTKR3(G~7JrMnS>QxWR)80lBOybxO0L%79d~t@O
zQSYA`imJoE)8ai>(iAxxbeh<wXP&p`tAZgv4i}mB$1ua3mQ3Z${R%t$RC^${N%iN^
zM;L)G#@9PxfcEU2+P$PlQ~;y%-M9ehAXnd+NV&fg8vkUp{4oqUX=+UY#8F^TorJpp
zzP}a10ZrM?v*mVeZ7uIS-{S_U6mO5Szn&66#`)t~4T5*hTaNMLDO*l!_x(X@3NT+`
zB-@71_4YXy&0cMQ{?extDq?O{@d60)E>Zo`_j^$6w^n@$<D)JF_`4qI5%upr?7js1
zmf!M{Sd^IXl<=J^GqI+40K!`234JxRNo**uE!52cAT8K=GtBD1e3Izg+g3cOci-1_
zO#5x!3xOcdaP^B#BNAKe_wuwGPM&t88rCx)AWpr`nYSh0c+|NPGkpA8q~6nBb7YXZ
z_albOH@|KO76UZ|Vm+h(j$HHr=-X~K+rH&<D_Uy*TVC#~>WbuR(adM34k3W_-yNKA
z>5VfD&IZ1WbdYk8tbSg%q)=KJ99nP_pW01ir>&KqXp=Z=83169L|{=hxUowWAligo
zFerb8fJtoZht<VbsND7nW8YiWNU3hI-&3XTwb_0yFoguChF;9Dd~u$>_NUR$y2As>
z^Mlm-L#*i>C_NLFkqpiUX~LFTTM{|?3)9X(1d!wgM+festOeKa>;P#AL6&8tMtqF?
zD(OLC?eZ25W8JN&AqO)4)p#%~BM<>T0KKql2@bKJw&J^4F~E9GlJOT*kuXe^|N8{f
zq#%X4Xwd*0QvU%1yxxPw6lr_>$cJVb4ByZCzhkrd=>eOE=6CcT5>>8pL3PVjz`y{6
zibN3j+&RNPZi^(T)ejjk?9;1Gap-)v-*f25>pi$IV3wMce~+9Np%R$+(OFsS=d{(=
z)!4TPECLhVOUq+g+6#wuB$a8kyNlTO9n%bxLusmMmMJf6`8U>{^(XG53bnq<!_m5c
zlKsbNb^97<_!bATNWlg7tS7rH>zu$T(r&PPJh?EU^>FQ;W^XAlFxj6@1a+FGQbG9k
zA2XjU#mxOoff1Q|{RVyx?u{Zp`^`d%dAQ+ma89vgjQEbbaOH0f5ZbTW;07Q`U!X&B
zn5oNPmO{xHAQAP|Ix=IvP;K<54ywU^?0ic7D3Qlsn*xTJNV6?zg7Hn)K~S+@cODKy
zl-u5RrCFu^xv{zF?8<g11peePQo`$OQla}*cbeZZ+<W7=yo))Um^!Ci4OXx?0H)49
zR-@<zlU)DaI~uu&6*-Iyy6nYap3b$k&@$5C*dv9UXbVZtRia|2Ghl2l@XzE2jl%a*
zFptQ5j&>b(yP%=sWbE1;74T?EHtp5>tcRCK`P4Klwr$rfCi-9jy0R{|x(a4ubpdnc
z_f^CyAx!>>`G(bb>T^e#Psao}KZhj5>K>L(Vp>KSzAXh@16cXLCY&!X6Hg1IzRW2R
z*Htrpn~nhGlm7;F<aFPlY&7GF^SGYva6U*2!?vtXgh7ygO|C)k@Ou`XUN%;d06sX$
zl;SYtQK`YbRN}F}E(@o8TiwRm{M0qsggWGx&MITI7%mS*5hc_a4g^O@#QWvrRYEcS
z`=0ePRDI<8x;gs(L7jSlpgPs50uwJt>bis<9;MhafXmMT3p#vr^@q^WZ{I>|4?j*g
za0AQl6tBl^lI9VO!{mU4{#Sfg20{Q>3X9g-G68?jrz5=D=)JIr-Gob8pO4dpOZ^l*
z*-om{r6}wVQkbUhEuezvD@#e{NaLdcT?J!*UMJ7erkUIJH5l0yD+O@EgK?Qp1mX$~
z3noC);0?v=^Xb@Ug6>d0bKHHgom-kB8A!%I{7pq~`y8CdyYF+S$1EX>Mt~b5s#c@o
zXJ#P^i>3?X;J_RbJ_0DLB&krsUl>oa`QwA+7LkIqwa+c$FtqJh<m5HS+6BUK6$29h
z+zV?Lgsq=oTez2Z#U0NR|E#ZeB(bWYfy!F*Cv(|v&S~j&bWfQ}?ZscM_|^q6dGIRu
zxd8j$H-b>=!bu%!04kO;LuF?#1Wq0O4!~OsD8Bsd=2+X%^Ugr8y||Nc8U3wUJ|M{}
zz^?{Xz1gyGTWSStdiS(M(P5<^&F!5WVBQ-9C2u^X;5!Gz(lxGq+S$P>16s&}#N+_*
z7r6!zx}VZ0NYm2Tg<+)S{oU!9Gw!t0A$I<CgFok$;3eALJ?iiKv=?`^29f^xjuvPy
z+a#dm1<C_FtYG?%KL{vsL(U!YKI@};ZFm%evEGv6Po~b-LdLKggjoS_r*+VW&<l9T
zntCxhS*{f|;L|$?B+n<|zQ=J=d%ZcwO}qfP=Z4;Ya$<Xy)ejL+Lu<XDu%4xi_*#G}
zJoeU?2ht^i?K{!p1ljfY0ZH#`vBB4uRYO+aO+M0{{2DDiXx<t$6r_+a<2Xq8DKV#F
zl)>I!*s9&;KDF#r^#ow#&gRV15n^g5^RsQ({+8v`K@wM2mj^sQKouA-i&-)xeWC`3
zo#7r^%L4HR!Se{x*3OJxA_vXV*5I|u=(i!Yoki9YVhl-{p+-WXe4+jh6BmyK&O^w;
z#1c{hz5OqT)os_KUyhDm89o{3V#=~u(A7sy<JOjig=YDb?A`)+tkEX5H`P7crF}NR
z%kA{V2{NIGiR3CsXZj$WJ#FschU%)AY)(a_61g*HAPOu$^{aS&B3(;3j`u)5>L~nt
zVZoq(IpgDI0j%RQxpeKKw|0T1S$0w=Li@mlYC_Aa0Q@xH1g_4Gr7AqxS4Ne2d~+}y
z7@Vvw`(Q-BrnVm&0sfqgXe=A*2t3c1oLJmNsg-hK+p%$PHbsSq*yMexzYXc_DVx8k
ztLs2f)`0#I=nep!_I-Oq`2+knj}xYB>=4LOS%6WrnBL%ptsVWHCFF_(6h7-GaAH*I
zJ9g@xeWu_9e$STv&-b5sqjGJ_(*|JNl4>2Hy!Bz>NFrtfh1zXVw)^^lYH_2nTY`Oc
z5kZ|hCR$V{$p3q@K(5@w<g+s8wj=rQGx1nx?KnvZyBlDC9p<|Gu}GVQyuF%Hr(;rJ
zi)5Sgpjht>DnKQ>@lAvUB5joJ5{3ovjFAFUvDS!ap>6GglM3c%g~{2A5um2gdM?=O
zpTwb)<}7M*K=tLn@J3X|F##UV+Uk_jZ*h~{Eg1N^t!|93r>Kl{m9^7HMOKbBB>c23
zwqBJV>&N=({ULU(&2qwcFM4$+t^Kp16i+<%4lR%68N&m?`1mjoc2kYSH-&X|?2qIs
zTj(_cTDwjL;|WH*D070*D<D*S-zM|-U@{fyVHmLCn+R%h95|NfO6fU?tIO_fR&4Cu
zJb2ux>dPn){PPj7n@zHn4j=G7Cc8o7<LkjBU0F=$bbJt@94rBP)LSlph|VsD<;WR=
zl6)NI^Gi(EM2#X`cbZ{t2}xQ9GM<PLZsr-|7%&{!1dIa&tYeko_UIqE8SWG9%_k1w
zXRoIzdZ%pd*1Sut_yY&d58f<B``8y`JU0Q6n2Bi2U|>@cz5R6On8a3GWJ`ML$z#e0
z?x>3yTfj4WsXSe%1`z>L-Rhvw$&~x-Dr)(g_u@1`m)ZbAlqVU$Q#vAB02S~{gj23@
z={0Fy=G0qT1F?G7awmb4VeS(NHP~62)KOZSuw;@7^J3+TyTJ3`zf>~anSn^+PHH;4
zf4ZO8B(x=+SS{8#z!)L$^x~NIaFaSvs2lrxtR*U_JP!>)3PzWRjRv;d@sioMr;I>e
zG`eAZr$XyO_0Jw#*b<QUp@7^my0!5;B^#8k8vH<Y8`N1qjbA^Ptk}+Q^ZTRno8c!;
zW_c0*g7K&I9^eF3{}~<TU0q+Dq`kiJ){Brd6@hKKH{zGa$`w$8^%{26_j&t)w7d-9
z`ww@3L#2b~V!8`GNz-v3{OnhW&tLAi#z-lR5Tw6AALQi;@+Q#r*m|WSfUc!zKlbh1
zY1~W|K29L1$@4s8o*ln9c7o4_-EPv_5C_-D&xx0Qc9?!L*oPF>Dqv$T5(3Rru*)@2
z6)-c+;F%xU^t`WGjVF?vgWumyjxDL5*z^Zfy1eyp6PT?5N_g~Bc;oJ(%818m_v@qQ
z7;tyV?O-IZvIY!IY66i^C_fyg`Oz-X6*2v(R&Hmv+frNg^CGeWG#qQ!A~yaCVi+U9
zR6O%i!twojfKhe=^C`k<i#^!f@+NiYd?K9G(EXR0wM=o1U`|E@EBP%zguTDh{9%1;
z1#o81;V?T5zKQ2aBscX*kB+0_yi+XA4#GwzjdfqcegJosnEssvk(y_+rbQskFDbm@
zyDb=oLK<(1F16&CFJMv23Y?nOQX60sGH--!sW;Qy1<Aav3^)1#p+Lc7J@9u6I4_D5
zNMdd{VHjt<2{JiiRino>2yK#LwkrKkV4flH%t7Qa>(?XLwY^m}QwD26!5j2n`UUTB
zBY*~2uW{oKNt4ZS*grWQ%?8WnqIT703i_m+7j6|aLJ03NQO<9=jbG0|RF=l|K!^<}
z3h7)*?i;CY*5h`?{PX;7!TolEEHC*i{!*mx;3KMxl*1%iHB(u9qlzW2RC_|IbY1|A
zJY7>jS|<Z0N;V?mt3+;1FX2+hx~n;KtoNU#TC)4=8(-QO?UBI%@f|oTG$+k#@WbEm
z^WP<gM^p6YVcY}3vT=7NxY|-VbV|!Nl)z#(0f><(ROhu4wmN>NcqJxfcWbU1&?P2Y
zJEQ%fgWhjF@6xZky1BUOlmeg83L+Tf)maL#7`jR;m>N0{G^$F~Ow;#-+48R8D4ktR
zoE{q4q|&+}$NXy<95J4g&qwwjSKKqE{{|N1etb6WdmfXbjsM$xzkiM2eW7QbTIzu>
zZi{a}4fsnvxuME3y=+?pm14eCgA7t5?=t}aDg>!B*$Wfk_QZ8;eBh4r=09o2ssd&c
z$k%|HgAb7Y%NzuD-W<q}5MkHGO@K$gcjoKlS2=jQmXMs(FsKUll@4MX%`QBH)vP{?
zujkj&8qDy5thdX}*H(j%_osr1Q|GROGG#xl{*C1B?PVZ&f|EMb<7412H@6rJs{Blo
zkTW%&%XzVQFFR*9eov4zb}(jD^4RT80@NI;*>qe50KeV8352kEte`LuP6}or_D^jj
zbrppyjE)`uvG7#)dpvTp?$*=;y7NfF?1W!hj_9J{#QFgD132|;5n7A)MPwrHG)-f<
z-#R{_Qo+gWHNABoK$y3PE8Sdt&J%T-O#HTj&X|*kU6-d)D$mdQMBFnXnt}re7Hpk0
z)3Xn*9}LhCChA**-Ya4LB1_50qg7{Tio$!rG1<bK*KE=e00fi(UcJ|C)=?sX?=N4n
z4<5`DEmdLQT0gEDSpuT=?UGGs211R#Liq;CbZHNulE4Dufq)gvqR=PRPJ;{2Snp32
z4*^DL`mODRs#2PrP`RBF{u>MR`gYn~w<c}x=_dGj^#=VaG?Q5da|e`qHH6dO5UWy^
z6S|y6>}qx%lq0TR7&h(TIu7Us_qO}w5HQnDV`V?650h`rN0YV)x-9N4$HYi6?i}0q
zeuDt7=|#D?Qa`Cte%+u5ZYD@9EU*U?-F?U*!Mjs7C2RO2aA;g}N=~EjQ!40#^`Kcr
z$5FVlFT{gSr{FX3et-DNIe&BLSs>s+)X>0?G;Dl!>1|{0J}TMHw1M2!cURbNx5Ia>
zgQKC|$HEOvB(Q2NM*Ce;t=J`upOY|HitC#LTnX65WAW@8dvm&uCm3H>u?|xGx3Z>G
z3u`y`CsFZ563GCL12ZXrWJxC+kh{kRwLzVu!1JP<CE#nczZbGC;a1OH)9}r2C7_E|
ztikbEq+ZxS7CXfPMokQ?d{m=(crGCdXyDtz)h0~IP80+$HWupzD5u$?$feL16@8Dh
zNPET(4PYtF41lv7o@Pk%0Aaf7qjdnl5M_mks48W*xRyd^gd3f=U%KGwfHE-N!`{V6
z4K_m!JfMjN=x=@svBa@IZ38@g-`-d(Ee~g{;<ss{NZb?#4$t6nClLoA!Tk1BQS1xH
z&Yz30`nguWCf<+2T8ejSZe<;|UX@e%Lf5Xf%#n|Vx`q*m0G<Ky=cVtw*w`LOK_1i*
z(Tc|}pW{{W{i;9+{WZYPgzA)QD=ZCF3r*Bz2mw1u29v5Uz+acv9~%s;GNMN$xIdHf
zQPbLPM#{FTk5wMmw>!AofneOl1sx{&K_bd?H(Q4Q+rY&7CO<HREa~UQXZ^eJEf6`A
zJ;la48*Wzc5YT$s+@3^C)t!6jhb2Ho2EG-Q+B&i8OM5l+W-{=v`%$d-H3&yd1LKv|
ziEvOO(AOize%iPeVb<YQkvvnC{K+u?_czq984HIruYDSi;vXnZr8IWK4Hi{;uQaXo
z*6oHPkY*Cf7%D)!vUNdTD+)=N1te~Y%F7c9if4K{lzlbiM@C>ULMNookRdUAy<TCe
z8BZ#%DvuFG1{;J=v^QxOfw?oFt*=5A_MAMMZWyp0BI^)>X~^^G7$<dNw`K&SOV9N7
z!@hOtHt%kODr<N7AxUvIQ_h=zt-G80fy}xt`Skhtnajy9e4ntLvu&%nR&`AoXR){&
zm%UV1O@)(N(Oitr$wNz`?C}pb$bp{5uR4$IiD^=&<wb$na=SY#`lEv(K?h;0ePVOQ
z`1ei4BLL9-UQxCIL#53O_`q16OP8u+Zsl$1tAG0aHMFO<oL{F4Rnbyu!=tatK0n{Y
z*JS4xQ*?W}>DjfEgwTATvs(zoR(g!r`3#Sl`>p9uf12(}iJDb>F4)?ZBQ#8wRyVfw
z&ZFoxZ(NM4k|QRaqj7SqDFd|ao)Bq@i)k57EDD@`qN2B!!9eZ<FvDrb)$H|rgHA;|
z;OIfq!PGj;trD&)O^`cP#q&fDHvn;6a1wj_wzs+SOeD}l7WZWKbiZ0XvIu&kmf0|@
zL+RU7SY{4Je##kl>^8$EAMp<KOP1Nbq4m-)vEDFL+)S3N=j1!BabL>=FbAf;B!$|t
z9OeK7x3-Me_Zdn{S5<dI!N5T@A$pa^y54wBF(5quSr%jKYWrxtid~;H@6EtLd-8j_
zP(g_*Fq+V_mF;g<Ci@Tv&DCq*G(fi;T>!gf{`;#=>jqk4j+8so$BYvJMvvX;f(W?L
z7Bqv@bPvdBZ!dK3#qIg^OFBMVG01O78L#BW%Q`MQ(*%P1|G?{00TXk8g_iK%KpDb)
zThMj<P!b3j+Mx2w;7lms6v4#%;wzH*++K4IFCJ|NvVXpGnd~RAf4bn8E0n8^E^&Tt
zRb|t*Hg)=wwcJ^QR8?2nSf4)l$RZQC*2>0w&+pu6)+Zt1>Aw?CzZ|TcW`}q6MxAWd
z9VBo0F4NDS&_?j^(>&+4yQWYrpz7|J3Ng_`lRq%+u+W2DC;ST_CSjynM-C!ASlfif
zdKL4AZt#vtOI)s^TIX4W;JS|%C$q=-7Ap{AMkbivJHLY{ZbJ^6(9)}95QmA7fbMoJ
zBjP3J$aG#A9^zQywY~`7dMc%vs&9y6TUN-`+<2<O4g?R))vM3e^GH`rs6rMYC&Mk>
zbT{TzZZ$b3NG0A4Szfu@%pAN$Zw39|g050)8KJ{u)f;}kVUUqYoT?l!GeVO?p<aOy
z@<`;1==5XgsoTU;rO#Wi_|S?zK5^%}zqJz$_a8u6`omvkP$?CR4f*Yp^2Wb<pgw6v
zrNo3rC=ricol6tEeD&&AL8ym+V2PDXSv}&GRz8H;A{B>qG{snl%v**>RUnjjI=&PB
z*}wnJ@Q-EFFCAE&oer$(TCZ>a4${L4qtY8TH|>G>cqM}D$@{AquUE)4@k=Emg;tL=
zzRTG+<$WATBBhCx@q@m_{Pe(3_&g&X8#3gj=_4NN{)Uj)KGP+K!Ct}ja!FTqc#Afv
zwp|s8&8t4!El2T|py`~MFstc26A2Xvq9=UDlV9u{LzcI{ghE=5f=5xN2$2DM>)THb
z1+56*?RB%Ov?b<etkiY{Rqx7Q^h+bsh-DamytWKW6O(4;BBXq`yOc*I6_SB0`OE^1
zIObHFHhZKYi2L+U*gbhU9%Sg3KcyqDGI`?liCr7zWw^2)^V67MYDuU_yS_j8S9G{o
zl9E(6K_#dvYW3D59K`hlAB|3m$Z}xdX>Sxg{Kq5{*^`YTvYJFe23h@3g;dDG+`Sv^
z-|bVy8|ZcM)D)g9aFr`iT`w36=6p&2#<tHgzc(Z4N>P0I!A&ZqiGa&#ww)t3q!E=y
z;<1r>e#TdS^{Fxh#PvR*V^y%dmREt@5q^P%nXMw(6$A9?V_}rO?;97WqkTA`Wpo}G
zEDyhqDn<wF;mglL74BPMYTJ>5alh+i!`H;g_P-f%jHUG4X;6lW;*xVTuKy!ddQT$+
zVuee8!bC-OE*p19LkyPcdnx%L?V4$!31Ne_a9$^BN4j(s?m}zo^WUW|qB>pmU`7Rt
zYQA03l7T4a?J>B$lsoRV|F4)J**@<hmuOGU)2`MN<CFdou^Fk|x0quEnar$dJ(ww`
z@J=js;R(W5@al81YLU62Rl^=)Ib9h2R#G6GrcR9ddLezk2U)~?$eafEDWss?{8hw1
zW6r3`UxPxtG(Cx6ZHzS^l-X^;%Y!9f%7(0w)n^$k^Fh@SjrIJ)Dc6*zrYE<LO!AVw
zxt70NdmL{T|E!gTN;o)zQB-rst4NQI`Yt=^iz`QnV5cx!D@^pGZ}0VOz#;H~QH8vh
z{x{yOIHl1XGgWq##`?O^h@;;9#+q*%7NH@KIs{_*Bwpqx_(a8@?UP@#l<D0roZ%30
z3wkWM#c2$JMgXph!P?g8O`@&|;nUtyEq22}>;-3g<J`i~vsT4n%+OGqT6DQCb0oh|
zdxZ(6_0cVhh{G>(EHnDA#Osf?dE#|h-pyAan7TjT@#CO;83(VRS5fC#C9nChSEPWo
zj5cI5jebN$I%(2zabg|BhJUHld9S^y%Yoil7QqF5)+ZjD>a-p7H<@t|S$@&lE#Ui_
ziM;0!|5i{K?V9lm_28T;SV9nbkA|k7+-<N3^56H(TW6`F>UF<t5L!jibD#%X=wj^9
z9YSvRQcxP-oZMciQ}W+ZuUU>t9bf?`!EDl<suv!BA-_!)s2hT9w;b~2WFe}NnUz15
zBe9avqYr_sNfLI^gD*vLnJqc;+eV+CIK4x&RZ)dRJfQyUB5ywwsVIs;zG!<#?b=J_
z!)YZ<RLtv?7LQ&(ymf1tjz<an=kNB%mZ`XIV%M*h81E?R-j}P3qi>d3_-V4zrYten
zs6vE2QyQWe;GM*BP8&DcNkdSr*qRu13e6X?Lzi^Fd;AdIl`zGugTrv}-(k2y+<xTx
zbUXEYSL<x0an<>AtfKLB?>7YX9cyt*X3B#8LuG%B`Q`5(#YXVvDP>sr^f!dedKYm!
zI7$JyRt9THhY#=HzyF%DXT`h;Ss~`*k5@I-trQqX?V3jY-8LI4#389d$`H}#WFR2R
zgPY8e#;)Ej9KT=xIezgFTBaBVEqP!zI7vcbUt3L5Ma9UmlGrqMm6s-sIz(1x|56CV
z1abFi$IG-alyhxzv-(Yb8p#h-g;~hzsOVBuC-Fab5~&Nx*EERobbddr`#P)BHWi9o
zn6ko5JxkE-0f&KP^FdG80C;hF?oOfzfx3P#sWd(OqtcK=A!wxVC((S;l@}w6Cq0=r
zYd*F-sjompL)Mge<B4uPlcbOQwg}1S>CI6L-FjUpslK-r>fv{`@m9P3S#c$VpJk+}
zhcr=x*xZaqhvfT3Xo1d#?^}i{xT*IlNEP1oyH3@cLJ<Pvoq$}6E7$z!)0>47UvQ&*
zR5}re^K8)V&{O%hPA)TER^|~b*$zP(aqHHtoKN486_y_T=hu#+$%r)l$<pLx@}D1V
z-1&xRmDfE|rJ3<C=hEr2!Xz8%!R)AdEjQZOG?CJO%rRKs&88tIk)Daqnpd}EMNO6k
z#;8Z`DGBAI84OAFHWhq&4c-^yhf>6?TUYwQH&IbgkBIK~=N;=WNAU1ZK(6$^(jOQv
zi6}Tp+wLLCYh8KT72n_OOm1^~A{&wcM1r0coICeu`bpeA6BZ0hri$KIzg`)b<V{B5
zQTTgephl{$x?CFS{2+2iHu%WjtI~r;tUG#Ztta!AMqNEZ-HtbYKnIrh34*Jj3R$T3
z%%~V$GOj~-c}enV*NLz+tKg>DqKeQehs|HrlW)kkLSD2QR=%;6VJRS;Bv&Bh!GBZ)
z&o_tfMew!dn!O7(xJq|D>9_M-cHVZ|qxrJ(Uto4{dv>#yQ7c7Zh{!@5rFv=Kdnb<%
zGo6WH&3&(fb&LpG_ReNah$V)GhDP+-qAeCrLwwV<%uWZbz2D&Y4gXgC)zCy|spS2A
z?>;2Z^ucL<r05YZnY>`=aL_m(m4rr)p?3R;$HaKz+4*%|T{-(GC!;>-^p^o&u|Gjw
z7j#oqc1DB`zj(wcM&!InVR%##5dG)r#M{z|11iCFu3Wcj1O8ry{MeU<e6~N9Pl(n+
ztnN36JbCo%)jbtd#zI|&!D}>agv50du)u4B*Pb_qqOj~tG<lrFV|l1f)Yr`8e}Yl<
zh%W^LZIZuOe0TayJE)WBjnO}Tm6c^@*ps>$!AQ?1%1{d6L2poHgR_GW;pGTtK4=j{
zq?IB@v)>)mmHh5Q9<e-%*a^Vv87D2E6tMPBI5a5=|FJC-I?@A^fG2Z9zWBI$<KG;u
zhR%#2C-u9Q;$C!Du=qZ!OOWX#Zcq749nuW0YW*}^!PD?e<aXU!k_4;3r?<l9CL);%
zA8pdKKU8I)`$f(_7%mAl=vbqVzph-Z#EvbFeYx~T*<91nbjP?G$?Cjp9iwiFso#5h
z%McO_s+G4S1z!&ibR$%_?nG9a-K)@;c|sL3j+70>=Dcc08a~Likqj%Zc&-@dph6O%
zVCramjJ_UGP(?M^?^c~`!xQf&!veCh$K_atwD<3S?|%6fXQ2ExoBcj2-XOW43;F!6
z&jA?Jjze<##8NAvP*`19f1s>T!$*Xkpzr2dJtDSpK3ux{!GPJ+5s77J=jI}$$3SsN
zk}1i^{{CV{NH|dv(aP_7W~ipRrhW~}+!Ev^zs*q9)Q6EWX8yh!7bw>cBZGv7MI8p~
zUOGl)cV3!$yWZl5)5*Ut2PJ$cJ(HUA`1#hwyA&rf(-lydXkK2V@af>KsexO+7ORB^
z#uF414`JVwq1U*bJCk-iz4oox<_ummrl=OmRZ;Q0!dRJ!Wk7-%{kOnj^}mwxm28&s
zPS&%jyx-$|%}*+fpiJ$0W1g)qiQAzdk@ZVevm&S@93J9Qz`HQ5`&5R&f6Vu?Zb&0-
zMhJ);b%wL8O`2f(<zzDds#-toMuJ=w`s}$kh`L5`8a%gu5q}}hjCTuFxCy^r8p^ZA
zv+DS_K`5!8`Xw&b*BiTVqf&gZb38=7`O|v`q%sFt%_2f0e2Lk*OSaj{vrOm}tJhK)
z_U|QGhlUq(?@0Ed_-VtV4H!%Ir}RIDO}7l+@OGV^XoWSIm!H+Z9}Nf5WxXM-Ct3|@
zVtD5E#V;O?N~@>Kk;Wl)b!ANd7h1KDJrq0bKaFPXR&0~6BaVM8CeYVY74m{R`pOo>
ztTVHSggHQ($MS`C*c)Z^hnU88{w`VnNOkLOcC&MidFjMYom2LA+4(J*Tp2A*_QkG~
z+fSNxV5>qp6L&H8jNgY&3!3KGrD?t2slx9EfR{FKGanLF0n+SU(n$nqZ0tZjRmd3X
z+sQNHcHxL;%-Gp^{oc;ysJ*D8AK$hc`-$aB)L1q14h;?&Mo}6>v&!QkOD3n3_W~JX
zF4q;fws?i+E$KK(O0#vQafpvnjy~QkQzpDI$pG`yUZ&i?LmXy)O^*MZd8;V44stke
zawX~0DOY~TqG=W2<kWytNj!48WL+W=^t%ctC)4r?y^R@r=6;`YuJ3ggX#}X$$p5R<
zVt!rXwc}h_yjSI(gZ|p%VuiVat=4c9<&AHoPq`NVvibUNDZ@KUFaw%FT{WWL&eyoa
zav;G&*Se3M6o1Y8GcY8F5b_bAri^B|7t9Cc@ecF=_Xr1{mS>d4*N>(Z`b1V-d!821
zvuJID*VgI$gprOxV9Ku@fy~AJ9EI9#`JynyH{)f8QT7$o^G>z<xKLf532C8GZ)|gi
ze+X(iHN$hIeiRkcgT=^XVJD0C1)*MdN%O3t*hZFg=wo-MoVTR%-`;&o2Qt)pb-%lT
zMdS;a*Ejr!RhPn1sX`nEEYR_=u-h6vP(k<7o;$Jn>&366j-K*HI^zQ5*#mAayB<X2
zoz!8YFEVc4#Hel0h-=nH&vw59l|-)}0&({jHds~!^Z!V?28K$zu02yzO`dGqwkEqK
zyH2+4>15k(vTdDg+ny%d_|Efwf8pNyUhC3Yd%Rlia`GMX(gJTR)|G?_8!;3iVwfg+
z3EK?zhUxnPPt;o{M)7eLm>4QO@m*)$za$9B;{Bs@*hEhKpyj*zvu@_YLIl5xiSqn6
zML4-6e^KWS#=9H)g}ssi5w$Mc-^`jqIfWQph4LY@;;<%QP~z=wPU*n}&vM^)6xehf
z!W!!}Wnn!Jye66hpl=IHX)xW^0`P~yx2-*sfC!(+oi(og4E!-F=F8Qr|58pB<(5Gd
zboN{@p}81#gPFmtzx**#xzgA%6(HEpZ+(SeT8?NL`SLPPN|nc_2bqmeQ4XPqvs{(b
z&xg|rw-^adF&Z|DZ9#?1&&9n7K)V(0(9YeFI0|Zq{jcbJk85Qv5Hw&UGqvn$R#6c^
z*yw9!j0I=D!lVY%Nl7iO-T>WSYI#-D5U{7*xouptAnm)z`V3~vP`glYi~0g+AaSFT
z{ZrKEG#YJ_a^EDU60zh&*7it0&+-_Slm}56Snez}Gps2fUJa;{YyWpy2zr+UnbI~x
zwQH-v#IrF@@6sryyt<bFLb?nmfbc}`S2h-Vss=(?9#rD%e3(?On30zO<@5y&g-ny`
zciDkFsSGH&A!`u1o;k>Zn_S!$2{AMaU*LJwaXKXI05xVF`r-DYor-kMoP)HhpJX#m
zcF>WeFF%niF1*5`Zz*j=Qc!t<2&L;Lf0Ss0Jp%V3=}mc@Vie`;CLfxAQBpB9ojrR4
z%OCH!dP?x6kzg7AlDT(G61+Ec<J;9dk1B|-OgbFF(5{>4i@&R3R*E?R;Bys_X~9GY
z9R<uOgT}=4zcZ`;dy?|&5+J3NT1+<(`$kQUl%}h5I_V1jP*#@vuNy9DSYX0G@J1Wc
zK|Yg<+n5iCV_Al8n!~|<A=b`3DTIJ8POJrYa_EqlpO#GN8QkZsyW^bzy~wZ$O*zgU
zvF4A+i4UrD2cdtu;Z`!pqXVoN@WEtRgO>TD4PJ-@;$mJmKqZE>_eu*;AuW_?$CIL}
zh!{CoS8&CY8*TtNd^p@Rt$LeCY3aMT$UDd{PRH!LWRR_qjBXi}_z-15F8;YE^;<J|
zILW}T(=@5wk$I>jK`D7TB4$#zRyGQI%#|4MY;7A?CPPl<h>bu_kZEsAqC<%c5wk=}
z<uF%kA`f|OF#LlDs5k}#PIM$WeGjQJhvdu0Aiet^>@+Jg71v#D6E?GGOqdf#^;!yQ
z48g@BCG=?#L=x$kXK$euZMws<B;>kroIhvNbHyx@vLOF1c#Y>uaP7_lU3-DEBM@`{
z>*H^UDuyM8h~Uo#r=4ltsm1)C9?|Q-YVo~rW7>W7dQ+P@a1!9Y%J<qZwEuL`7?1cV
znX<Vx8o_?icr6n?_nNpBl*yHpT?m!<tP-45Lq=*@8>w8L6h`61BEg&&*zYYM0`Y2h
z0QE<^7NpUqBY%5M>Wh-*n|Km2I%^tl3Zrbx36iyfJbd+uN4Hr8IVDa?)6}xSg6s~L
zN2OxWHEY3raIS2$Y@PDn+vy=M^{D9Xpi=n{<gP%6^7K&DMZo_cIeIns6oq}f6r5hw
zxoWGxS9!P;CywiW_6SNeTFXUcj;IAx6kf;@IYf2Ww3467*Lsr;V3o?v4dkfnYwgQ~
zrym`R6fZRpFC|o^xj}OzQK7V!#XY^aj_99KEF=Jbv;++A)T|ZqG<W4vm8I}@nr5AF
zyG7YViNQENOX6Dz`qx|P-e14Z2BzrWg;x(mF(-5&mNuRP!W5dqQ-9PY9aNIvKWF1U
ztZ6cbYl?)|ZkdDl@4xZ06xxAbTnB=I;}LozAZQwiQkQb_LZq$S&H{AuwD2U&7RKsO
zgPPu?${Ysz9)(ZoLt>NnxC{ogr%<GZe$zFBLvJtO)Dlt0)37&X*3md*(^plpV+F7T
zoWwf%hYbel#18y}TOrWW#;{^mcKnYeLA-=ojcM-{eFXoL8O*!!C1-6a@wO?WM1;a_
zNOnMhC6bflZD`9unrCK(9)ZlLnq*kQta>T@PN^bb2^JDqjIZ=Y;Fo$YW>*JNwG6u5
zkGnqgZ?;!q8@#P^+lwJOa}^xr;tZ(#QS+73&R4#kfcm~D>MU57mv9U(i<OfNOT?Tz
z%U>FT#uPsOj3;7&VSx!s{D6wYZ%fb=V|n!AqiuUlVUdZ*K~O5A7Y!qE44_%t9DGXI
zZBrNZk>WF=`LPk?q|%N4jhD&~IYhPW%gvUclXS4uvYWNPf;%B}dW8P+eIqMoeD~SB
zrjL)t?@tknF2Pn?S<18;@3nB_oOJ`UtF*@rj=z|=GK2uRnpRfImg4N;5)f96Ltyp#
z-PD|p3A@K1H=;C&`d)0?iYuNnW51QC+g*?e`wXrdfs-&gYypX6EormLv(__yH0+w?
z(T)rQ#({u>ee~5Gh*{b4ca^ql(86_uykJz?@P;kfU1O92mgFP>`nGW3mw^y<8B41~
zj#}AYZiRuU-Rl46l|$s;KI?jV7J9DYl<P_@=y2Q>6(6M%!5E&n9AE;Ham%Q*xSKb{
ziPjCI*8~^;h`=Yp6gky5AarCHKNh!Up!@Ex^L%|1(24d;kTNei3+P1QgPi~8?A{D;
ze}(ucZ1HDOhCWZCk?-{_UoOn8#Vg|aA*$!L)yw?wW0Sa8#5V>u-bH^af|#OU&3ko}
zcxSNzP3GME+A;_0XLal@^TFwetH?a$S>Mcy3YNuQH*NVfpc*`MC_;$;$pkNq!MA-A
zv1jpn<g=PM>YaRer4X@FG6;+Sq}2XV9u*OlkWgeSgOx=>?ab4S)oZQ)2&FT;9^vz|
z8R|wZf68o&!dXx!KyW1HvI^={1n9%t4?R@S3aeE+2aW~XYBRqeg`S!+U^gbrhv1!C
zi+R=W=Vo^TIx(Y)hf1*4%bBPc`B28gC__r{d9hHmQe_3Zu-Qg+UvPWgm`Du+wVOse
zTwCdR+nSOKx5UVm6PW)U<j##5=a1<Z=iXQ|qm!{rd`6*T5AHWW+m4i{bCHfMBai*G
z{jE!CSI0eur?W4*Xd`t>`#%*5;387%tRu7{r9s=e!BJ3YAbkSNVL|laHu;Ra*5kw8
zns}QKqk_$#yhW#9`RWr(K=sy8BQEBIzx1FSs=M-@Us&{QYaH>g%hEZ6g<O5_DiZd>
z#z-|-l{8hH8`knm$?UI99ePbeXOdm0+kZ{}5(}vA^W8$X4wX37jAlh0`5OAcSCr9b
zcCki?1Aa+ai!qroEWC5h!YdrC`;Z#%TfFl;ntLesdj6jMEy((t>!F8**y8u9UA1+U
zb1VKk`@4SD-JT>45kaMZN9zUidyE)4tV%FVk<4**<M3Lx+ml~Y8LoZ_Z-IJISLLVa
zBSObtU~*IwXIm41SDh>&V0WW{6Mj20!ZAP|WhPWXZUp{_sqnby^Gxj*Cc>FR;N;B0
zXki7QSA{RD9`O4}VKtPh7EriMM!KoZ69rbchD#b#!3bm66Qs~B7um5QU@+U!fD-?F
z8o$8To@ACFOpvbo9;$4H9%+0Qv#X9L-S(g=)K&0_F`OB@&3|yT)z#RkZ32Q8cYDBT
z^HN3VoazfCO^tw&gfdY-ZYaM4>xIz&J1Jrg39`ETeeQ4t8QQ|RR<+pp(s-&;+Yaae
zsLYVd-4S4V7A7eQc?Y|&-!Q!<MGaIW0U7wLEI~;Ais}L))h}UD?aw0T2s`!4=1qMw
znR^+$%=rfchcg4vuKE1G(pW1~kcs#1k_!|@F8KoIFbxr%B?n`=2Y~^`^p%<s4wF}f
z1)=($Ao4;6z7?%M;^?U2xhki}bPseGRYuneO=F_Otak`kx}7Nx+C{VTIm&e|PIo5Q
zb;!#EZfr*V{UM+BN1q}|B;c)jht*?xGoqyLq+|;yyX6kynofO!pv^JciD2I~J-3Sf
zHGpL)$0F_-bh;*VE`BM`uVw8=y(#x`_*5b0y{{{x(z38;&lz8rN672p|ETfQbOLtf
z(sc0BSEqU%re+*EZU4lH#h!>#9aVcs-7c+rX~7@u=}!8X4E@gg%ADigEJuz3q+u7s
zk%C}((xX1|qfGNuh$tSrfrXc7asr@8A8e&BD42kzWTK@=NE7^98m|~IHw>Oa_(*T=
zMg?f+gQI<k_B!0YcUCd~8Rgx!Kz$8P3>qzYp_%BZQSfY9W{S1~C6K)s5ey|A_fEjQ
z&&s@G^cSqeEvfxKI}@Rmjz*fajZQ9=oi|qAmtm{@Hj#}Nv`48Yu0j)0WT+jH8}^AX
z?6@((V@UWzli81vJ*yM@!YKjH59zo;yLO`JDW|TLsU8qLJQ@KrdN3?~V=AyJ-&U7J
z%S{`F(S>bqV9xcUZNm!ryc5iPF@EU7yTwQ?%;}=8$eybfFy-TQ(7N$sv0!-rv#g#y
zB;^^GKDa_djeq&3I$4M$>OJ)<*php#0RZTo`-DG)@=!PdvliA9Ry!U4^*}PBPXB>-
z--_u|x`@M(gaw(RqYxPhIu~ddYb3w4>)qNbLyfy0QXcMf!JWg98-Zl+(!z?AR9lHs
zvTDU{eX`|mG=Y@j@^Gp<w;I;vli))?cX0J+G+=+P(j?Ep<-5OwL5zcmip1xNi8{Ti
zQ7>_IKfH)#6&$l3^FHm>xtLBpWb$^ssc=j6)p>3<@@1*A;N)_=;DD^*x$L6?(`B1C
z;|la~dd7~awWQt`Qpo-`k-*-g#22985b&9kDQ&B~1X|w+KpORsy$GBw1O(JQF<O9l
z2Z2gcvfnY1p260ey4)8^vYId{cel5OB&;)&(abuy&!36Fc(Bc~Vy(azpTmnHc}U`u
zN*%N!eI93J?5d4cJeq6Io}lE8I=Xtq_>DnR>?e^=m?iLyK83hP=RYqq5XKl4*x>Xk
zy-)=665Xb)A#4?sKvYA<#dL~<B9RCjj6!ia^2^^@$@GBvl4>e<4;pqy#VH%t5m&ai
zf9!wpF=E@18$vVZC!0xa1Tb%=lw6A`Y3HiULe2@2nR?Gc9OJ;NFDW0n$)D<+@@4Ye
zt6I>C`x<=8x{xM4;^CvP=*<GfE#I7V1~9`bgbg-y{<HAZji~8f{p{X4V@Ja96rRr^
za})2U6T%D+0`$xS=64Y%u^R*8pelY?i8X@6vs?lb-1ZvO$eeVZIb$5~WH}#%F)PI=
zErQ1??*p@A8tln(45*i|gkFaKKzHl{&OtQ|-AHjT-^L(!k8<+f+D%6okfS_)R~LAb
z^)UgDpicFu$s=&C*@_1hUYmB7DLiF+O=V`t&q`O~*V8&2?)%WX5zIeycI}zud<-2%
zc5X`#tr-xnHbSHpaXo*Aw>3{KfyEne_YD~;;B08fv(Ls>V+g=GbMg3Cja;6L>|u98
z<T&S@1U6AXk!>1+s9D6?m@}AqS~4SZ%M~KR2F{+?nbP_X=J8MNSS?ZH^3jV?uo9)D
zGBM=<pr-{ui4h2aqZOSNHL>k7E*W``YFAVpqY4P?l_iRQ>X2Z#oP9WT?BWRJIzmM$
z`5=yIgPlt()KMNxF>(o=RyEPP13G@%shNXGs6EdtcN1v4ik!){r!w^(iG^o@>)QJg
zvzGd)lV&`1W_eAIEe|Kr<$k`Sj-rrmWh|g|ef86s0TzC=YMN5rm@g%o60G_iI-0(!
zikWz3#D&b8Qc-kxOL5){!g1|;%Tpd%e~&ojkrwj^mWtJ6jv*7;lsa+R5nO^A_k^UT
zr<GcLCIGXiG0JptqpIap$_Hh>S$G7s5Kc{8w^Fqhd@UatOayJGTOkju2WrbQ(u`x3
z^IOgSIxxh-2-moa`|m1nF96lfgm{FzBhjdtc()^`Qt(5dK?KW0T<eomY-E2?8IlKC
z4J)bRWuWn_zp-WK_kWl!3f&BoL3faFuyc$FS$RLZ1x|ipY77;di(iXJE1-;;i^0X@
zJj>cJ1vdfToBJ!&tofxE|Fieu<{R4`VfpZMR&74sUnrW^)$jbbw{m(%^49iV)+ag*
zsAkzr(FW%8Xi(w5zP-``WhR<<L(^TslDBgRG#7lzc8kKqur~7;Fqm2th>;dh*8t{#
zL$H>{AURjf$zR1M2m%MUod9-B<s&t+ImU&sLg(~IXRRzuFNp5n4(aSyi85Og_fMhV
z00Ar!x@S3t3+*>}A~}gIv4{`i!SyyjteOoUEFZV~<Is^tF_O+B`hrG~iF0cbtD~-i
zLDCv>#P_%e@n}k&<gK})dspcH?kTiA0O;eK(7@5GrgrTr`ZC{AMZ9egy+-N*`y;+W
z@EHACI1zXc)_{&`g$uuGG51Ut_hTsoNe%fVDUXmoi8DNeptCtJ<7d8#1dOcI<#Z`A
zV9POQr`h?&?49SF7clrnLRmACA==7jJmZZ#d3#HtDyd@ANk~Rrd}x6R^;7%Tzel?o
zrZKT;5|+ow@b*AfN&IuN2-DRtsE5QFgCO-*`1Y&eGGry42!nC6OnFPWGcgVKSDlBG
zqW){4ImN@18>`bSO*{YN@sgyq9LMa(ELjtow}Vq>epxt53Zfzi7|yLg&L8I^R(Ofk
zOAQb0W}>gMMQuw2M_6|{PFDn$=j9?89{!qvDi!EDE%wA~$AtuL{^hreLT7?(xFW?!
zpT6nlQTLQ0oB91HhYLo|pKo5#wozE0naTgS=}vwklf!uUxO+UEa0N^B!Rx`qCi;7w
z{ui%*V<HF?ZT(N$9H&8th0Dd(=ozOlddS;n4K2k(hNN&xLA1J6a1_z2yr~#$U&1JY
zz{)Ot|HkoX!!A<v8T?hX$FVUcf_|ZI*9aRPm5Y}el<|#UCW;WhO7ZvY27s;Q!gmAZ
zysAMtP7<cH%xBhB`EFwn7~_N8H+YQIHZsydqe`rQ^=P5@KPLmQKe3sy6j{^2Gnp)Z
zSlXRIShcV!I&Jy73~JLdUBOwAMP+Zz4pJoWl0<>ZlmX7;Wp<<G3v8H`760ERP;gCc
zYTLEBbO=806FMncN;U}n)@ACCqzjNJ3<IUshSRXSx6xVmhS(<ShFQ{NNvRys_$i0e
z)<-TgDe#qk<6RQ5Tn!l%;n~}z#Fax54Mw%6zxmMdbSI0&QV#LHxm9XhU<ZeU6<Hwu
zUW91C{VP&mc`K~w!0iml@-Iw0wk-QVAXA*WgUf?)R4)*o!xt`Chkw1z+Pe=p8zz<J
zK8fV4h;~4v6?G|kwEicAi|`YZ^UqrcrUC{^o<*(XXjpXs_XtsqTSTY;1NCr;nkAF#
zs1WJFZy8HUM%N1~)}t7-o{W1snkNEpr<+4^a|*Xvm0G~F{4+-}Zr`xgeHhdqPf+j7
zK|=*xI(H`sE7}Q<%)CT`d?n_>p{??zQg9HMj7OV=n=io3u52LuQR(1Vy(nJsnfYN5
zILXXpxz)I0d0E&a8rkL5Z*cV4gYyZmM)J2Jr3@_)_4P(PT&y4wl6g1rv83nIYOSK@
z;Pd9?V|g>z-}7!<JP=Ed?`q9MzO(;uMWyL)*v0oZw72MP2ZkmEheTDB6DbUXH~4X}
zzDk$;R6H}laiqn8%D#$vLH^Z&)5KqdEevEDcr&iYi+{5}MgXSFRYU88VI$n2o9_|B
zP*X>9cC`R@1HT#&!A}`}lz9AMSZ(IE9!>J%CHi9MTO7qX#&?`56lpZ?HZ5iof}{a6
zAyxOMYJq7gC`yJNtLJcGpCoV>IOn`fIWnZ&8-F$Mt7d=l<XDOFWuw6!tWE39I!R%2
z$56yWuTH8{D`NcppQd!q%q!@z7%!~t>6FcISy5S&gZGKwW?yl|RTN_5on7e(VGat4
zoWT=nPB5wIWxmh9T~`tB1kk!=aUGf{@1u5UqY!(w$BiU8iTC#Id>ziXan?RH66}^5
zVfy7N_0$a3JIx@}zRT3Oe}v+{fuEr(kcf*U6y}UjASs4+vcVYDi9G^}Nk9~gE|f?~
zkuF8Op6e^O>#V5tnK-S}A_opRnp}pK=4L$ofF)W8*Q!oeB^Zjv@gFu0I9yPTP>Xwo
zgC7bNMd}GK`H+)w%l9ujGb5~0hP)Bm|1)Gyx4lG$IbkSH3d?*H6H<y^{lpi8HVos&
z(9J6H=OByw>$2>?!4<N}n=iSQ$Fx>$P;bzO+A52iWRYCEVo_Fn!;Kgwg4a`u|K8Ao
zxzrnZ4%E6^`JNyjo%<Z(RlBzfnq_i-FSdvVy<!oR^?r|-IR&4el5@N_Uk6DC6N*r^
zku@0!@U29Z62oFZ2&Omni*;tkEEoy@rzRojLBG%2L-l~*!CSF*W23yt=a>?XBpjWl
z271LZ{(f|Zh|zmG?nOGd=9>B868#Y3bh1(RRkt&~0LxK*)_|*@UE&7I5!SRq2X9w*
zttD7Ux*jo!A>8LpK1Ks!zct(7ylt|@MCd2~OGj|S<n6`*iq#3pk>DA*?@@Fv4kAMD
zM8#`hT?J6$^^8HC_4{aZL%?hvjuov%AS_C}8TYqg9SN5`mGL+zHXa{M%DKI}g)nqR
zv<bG)5jWXOWuChDro&dCej(GC<%Be>{B^VWH>y$wyvnJ{b=7uQPCI-b<C@&7oW7S-
zb<>_Eho{n~oq3=CxX&vyIIN!JXC144$z<nqH7uID#VbLH(y$x---X-+r3LM%NtTPr
zr=s?B7J16n5IVRzN!4GqluZ+7t9AzZI0x6Z&Z+`0ht=a*+!J8^Nq8!lX}aC0%O?A#
zUlj#FhGZ_;0|vyxAt8vO;GkaarfLYV##%@;Wp_t|-0Un|$=)gl%2@>fs81@1&z+wE
z!V>&ubF^))wK$SkV)9T=7lJQvS7WZO1wGsQCQo>2<@Iv%$3k%R=3kD~p3aVxPD>tH
z+@O)C<OXSH#{I2tCMH1@3QxK~NwQcY@i@NmrAFe_`nllDZ8LJ{I%@8`29=Gw5jG|&
zb&g?2Sq9(EmdZ!3y2MW51y>IkA_UhqygEe40;xTUcIc?c1N^Ub+CA0v07kwLchjH&
z2YIjAwUQBz+_;%SyIgd&Ve)U}VKF{j^8a-4v1{e4G8}#QA`tUS+B~Z}U0bJM1<dFA
zv75dvCD&o{>4=SuzHX?|kWWo7m_ATTmw30S&4Bl90o#rxbo6T*c30*dq>98~-Spjj
z4U9k&_k(X^+dDf48^xWd=~33ztzT~b^yzV~%7494S<9Xo?w<O1c^AEep@pClQ<!Nw
zL0Td#9D0N#Bg7^Yd|N-W-`&m5W_}G0XS#EWBjzV&Ca3it`V+8Cs?sEl!&5Nc?=R9K
zq;>hr@dwAqs79P{YR(nb@f&iC&(+rM<JbV}8l}T%q%#%~n9|P#)$IyL<b8J)10w{X
z$B*04ETWJgBxxjt?#gXbr4RG2Lf%#`OkV;b*y_cB(dQYzY%w4m-CuOqqxSlg`nq`I
z^y~gBDr3+S^+;`iMZs~5A@EJG4+yJO{pRT55_<Xk8wy?>dOmE#%(`LzFeyur9Z!PU
z_b{9udl#)F#~HIy&&>xH#j;R@Ib2F45bfQ>@4o7uvIAL*d6yNWHS(!9I((@!K&oiv
z0~g*WJ#w_h{!$Y?h__w`X5EhWxPI$qCLal(k%7)&40|I^kVZ5o1Ah{=eaRpo08fb?
z7IoG^zp^7Wso@^gabD3V<aC;&?{=_>CsEJ-{NMk2jKnA#?PD!!XQ-umavWb&h2#F|
z_lV`({bR@=jSR~#dSbS25#qB5jwF2k7gEXxNB6fF;U9w@R8VBLhuX*WQN6%mq<1iB
z!Y|4wB|li&W+wByIh0b$&brcBY}OV$lxE$Bnp2fy#Z2@iGNkp*kSF@VlU1lM3q)lu
z>Wj~f`}GF_%g67%r4)W#Um;~v*sUuN22PsvRfsH<`6u$fs`@T+=kUJ{4gu0^@q!g&
zSI0Je(6Ac@pO#O80Lpqmx@>qEp^hjYdcV-05HfF9US2~snze|^h@%BN&1(fYs+#bj
zNP^~HD<o;Sq5i!KmJU2D#>^5J5}vMURLK}m5jz<oqT<oyfi=V(+hlF0Yjpr5yw%sQ
zJoVq?1zI@*YxptZRqcK@K=WTM)T%xTb-=cw{N7!5CS}>MW-mGuW&!CX7KT2LXNREZ
zJ{5}&w5}Vl6&VRVZ(DQ*jc*ahdxRVuGabZgjI?@>7KZZXA)QxI@6#&wci`~;1{-G4
zk7ra$XwL60@n$R}>+g_R_tB^;upawOs|W4&Qgbf#v6n)|m#8T>sEmE<Fz;{(N$t9O
zHLj7|2%Mr41Xd0Mq%13`7$Fhd@+~rGzu!%EWUZ}@g3vuEH(~!>9YCFif%CNS%HwIG
z5tvgmTzOf2l|fq8F*P)nGy$gqh{FBr@~27?T(7w%J2u-$nlEq}xSx9~WuEe$5_PTl
zMeJv9IQ9gL!x4QLq9P%ML7sBEsJ^3Yd^rJ}J(eT#$T1!>dyVwt2I>pC=!aMsr$l&o
zKkyET?hj{~G%%_PJ|<og?t^MhJSKlzU*P!}6cRC#M1^A;JFgv}dNSp*+zpw!Cjg@l
z5_%HK6my?ic?iheIU?voCdhV2&%@Z#u<|te(~Mi<&g~NfF87_k349aOeMDfS`UL|$
zq!|oN!@2UEC@9d7lXgw&h0A28$mGtJdj(kWbD19yC)cfu$+ICJAs?HI#MGtM(_vE~
zQr^z($Lk?1MEH9B-hWB7Occ7TUH`BtdZ~}^%)-vi%|J?uODO1LGoVQnv9FyunvfZu
zpE2Rzlafjz`Atk#ycHxVmLrRapu6qu--DHL*sz)_ACWU~Mie51Vi6#P9p5`QPtYIS
zAK?3EDx?>9tsbfw72pTpUylm1@J@vS>-RH`v1D0W#U)W`06Ab=#lnog7CvUM7zyi=
z(J?jl-><gKbcoSsqT0;<iXE$yNl=infvBV+wlW>a@Cn~JNFRM=>X)g90eZ%4_-lOl
zsDCZR+m&Z6tn)wDe%0?@v&2SjG9n{}M&Sxi`gP2AvlI1`U?J)sM50Yq_svT&@nxgV
zoH$@E8;72aYcuygeURjCupVt)B2`b6X0T{_FOFby_OXC{pZxK#8S2~)pQ}i^hDhgX
z0@ksd<t*RFp^h5GZo<ys*59qq(zg`wg2Ux8P(5VeCrM&9Vxv9+-yX1xs;R=~NAt#O
zf0Dd$FgNSj)ilqIfR*a2oIkLKc3Kop4Lk%#J+U~^i?rr%1osvT4(ZPjM_n?Xn48S!
zKMq1Vm#;&%e@~1|wZzv!NXib4TPatQ6nT$+D2~ppuXPVoy%M>?Prcwo&fdcj{PwCN
z6EZyVhWq?pfFQyO4h>L~i*eXVvyCkI@1}0<rf`3SA!hgvgBbSH0O{d~ap8OS%ur8!
z6w%YDIaHfxS?!v!9r>$}BoUJrdaLwPQ?9*mBuq@xp5M*ub}a=39QwHm%FL{3PJcN0
zh_k#O!YDB=60A8zO56cmJQUqZ(0HaH<SbP1d9*(U_+_QPyNECQYV}uitR{?p1>=%8
zP#a1fql+TFfS(Xg>p@KO&<(FNDiOeKcu5z&enzUHevy3*)1ALfopu%j^4ouXV(GD|
z>K7F+tsrE}#PG|bEG#pqkvH${J{KY<tXMV(9LjsLB`<ViDbH?RX9WYB%lRaZK9*Ht
zGOnz;i7>x6L+y&%-EyT+8r@j~Q4m2aYw=&}LnJzOOGN~4b~O5y!Nv8cE7V<`o?`z3
zMNqEu8y=4Si%k8cXeZ6g=kS*Ji@ZXGg0s_<UxpuU8)btan`r7R6ehyd4_<8BpX}@e
z9y*Yuvm1p+_Oi*LHI;$|GM{M!65Kq7t0}jV<13V?tNv}W52@KJ(nx;Nq@lZQ_k^XG
zHo6C`{jQ;O(aFQOG10NO{$uv3XQZ<B!`eF)L}bWBXO@)RY;}M%cm%n|xC0AusiLO3
zfnSb<bpZPde`o0})FQFxNz?6Lq&Az^uAeKf$h_KpDh<UJ(I7jAEMk{K5)|nioX3g0
z9pP8&2WR{ihZ&JEe@}@&Q!0RBX!Ko93^FY=js)Es|8qjpSaBQhQdiiF`Kp?|JQfc|
zILivQnWaz-kl9>c1=gnr)bJ>c;!fB%<GwX2$1pOVcC-p%?6C6KxXbE3KcwswEa%-;
zN!NjMViB2k4=QE*E8ef``jX~0SIJMn)8OF-7khy5EQSL~?erDco%pn6NY>!w!lzgg
zNw=xdZZaTQ*RLbc&w+F}VAVPnI{L^1f|j<{lHRQY<v`-m-_?VI$`ocZ0SKXPX-~a4
zPJ6$-o1dU{nZ8zf)-NFwt$%m@w!zmYDdu!E<lJi3RcEsAC}1Y3ozfEp#<Kp5GhtH9
zbM#(Yj5oAsu>Dd~GOT|Wb7=Lw2Y^lKW6S}h@JpF@h=>7TsSS*On6<TS7_P#5fdnr(
zm0sAkBjRbZ_r0@3m(u?44{`B|F<uCtxIfNEslj6);K_v91N9@e<l!ooMX)03c;0JW
zWMo;QQ>iCLE+2i#g!av4;r_}}tk5BS*wIW0boQgPkr;mI^Bd-wyAXdrUEi>s{a7`p
zn)wN<K)Olr!jlO1!BPDrz^@;lov!=wc@;CVtMTh4MCU2O5;&VM>@4P1H9rVdVTyt)
zPUN4*B)ufaYrNyndDzoQ>wWXPmf0T)@8CZxYQ}VfmBdg@Vi7b)skZ;#-;^7u@i{ol
zbey|{Z*Y6Gz%|Pv)wOgBdF4zv-iz?7WYS)w39$7{00WJj6j3<YoMJVF>-*xI@eb!C
z@Nu5n2SGYYG41;1o8}#25L(0ed;8;QX}Cr{;}fg=O*uI47fu$t4CX-0y$LCvD;pu5
zHxIAt&WL3JRJGN)N~z43=?JThUu|ws+6qc!4mps2tN0OdqBl66oFG5YIq*Hv^a$&4
zX8zp9{*=5Pmz5q{wD_rt|6}gwfm(d*e0*&KyRjTKx2w01nBD9K@flnUd`*Vj9U+TO
zIa-gW3r%+^m9$4NZWliHb1~}8EV-&;Z@AL-oT6;;Cx*Xllaj2x_@Uk*NkT)xWL-)k
z4pWlVjBeQS02n|+9(;w)%%A(kL+tV8rFRBmhBX6wL-8lNawuM|r1aW>WF20w5VD_q
z6vz36_(qWJQbr4McXUgUWzIZ%YlSv*PL|rSRk3wr=uH&HDU;v+nCIo*s0P6hZt={u
zu3INOhh)6TgkJQc6lwocS-wW%wgGXIBulyD0s}c|a-r{-8UZa!U?{ypX&-0&eTPRx
zsh{ulix32aq*E34wst$rXuW9*{6txCl|7}x@MD2cQ2BQSI*H9b>o)_p>jzL$Z@`X-
z`Ar$<h{81{XziJ3LC(@h35w^<OL!kjvak+zCvo|&Ayqy-_FeV%#VgAfo#}t*HhfjQ
z5zbFdGV*lN^L_T!0}})e{-EJ*YshfCZ7?1N`){J6q3XDF4OYn62~ZVN<U$Oj>@+sA
z6sxyADuRWZUxxETsLe6-wf88lJe*3QL?Md&0iS*!b;(OZ%GRR8Aib;3vsY}Q71<p7
zk^%niXd7Qd&s#_L+?&=ATzanjnLN%0JQ?o}C_Zw3MV^@PYU$Jw)j-iu#woo{a%759
z%#y=hA;J%nB`O0mUsyd9K^#1mhnIs>A?`Qf^sl~AD7$241Jg6<t{4nO7{%pqqD2z<
zo~Ac+SmFj^tE2O6Fg;s=#v>T^@T+%uSi)>xv5ODtJ~045{_hLKz<$?lqwLkq%ia58
z#(|}fP||%#pRt1vle=^3L4hX>N3>y8f+$fRY{Ku_7#m+aK*X?Jy!H&;{mkNtIlVt!
z{`EMV@9v~Zy&|QFGy22(mJjV?L)h4Y62B3trA8heF!{l0ZN5PGDDS}UH1)v`Nh9eN
zk!hlSd+}MLdg8r~S-)Nl#d`7vklxmKXJkg2&MkiU$+H%X36&?e&Q-M=wb^w2$#?pf
zwY*pTROYdXn!F<29}VltZuPPWB4bE~*(zI4rg8glolxnQ+>DNd>)8kwy~wv8UFjHY
zG!Hk>1V2Fa&sHixc)AWJ8u7XKH}@D2RzFeGhIR3|L$`G3SfWTuML?z@5bam$^8Lgr
z<JA50?DW5frJJhg6p2{ugS+1-upuvo%dq>XE+y^ws3{x42^{8PYS0Qv8Pt6aUcHc-
z?okFOeD{@b(`Q3HBu$&nbq>xvCq9PQ{ILnE0l~j{nhU8ED3YMyrAaaM(^L$0(rMHM
zA`(;m$<wb}oE`cWh+Q(roP>0P&lg$aFT$ky==%Pvx6-K6B6ydv8XnFr1W3&!;gQI`
zJE-B^wiB)OE_e~%ft@Lj8}!&w06?tP-NBJ5!GmZ3ArN|-Uk4*dpai4HwxpkJJ$H1*
zbVctWGjwAk9P>6N?Cwu4_UzV!2R_8>kt_pt6-wFOvkXNexl#^3%D<#BuG{iPPswFz
z_JE2-xU}nih`kgnMvXRItiu{ul*krZiuD#j$I5GL25Fbgyi=1BWR`!JPUYGg>;H=6
zQ;Xbwd2iY{cXnT3+iW;0ecqA|U46(VESWCiSJ-)asy)DPMN=aDk3`ZA7|r6rhZtOM
zO=Wu)TfY-|dK}DBS_k$YYN|C_`A>cXS73JY+)u(Pp{>0`QxZPoBnZILr!Dk@lim?u
zL6A;(&JB3=eAL(*A6W{8y&hzQS+`%beij;l-<q=Ee#Uz2)HE%BA-+wFPxa#@p~uLs
zm?!4Pk(aRlJ?Xx=EEN}C#OQie7jky6WAd*ccP%##zN;QMS-NgzD-i*AR$gr6qZCA*
zP$Aft{pkZ{$4LI*VLl%G(bPu8_#5KRDf|b7WxngL%9(+L^k=kQsxSqC<^3j)uOo&^
zaB>(xVbP#iy)IjdAsmc1Msk(J=lDAJf)<Ho&f!leS6&>UIC&=Jr62D&#sn|9nflbS
z!Wm2?#Dtao+@GykLs=2^dXR4ZLA$w~h5;k`F#~9epn&^^7nW%)kY%B6v^hk{ZsT9*
zApVYXr5J~0a)zf1Y*h43YBPM4yovI=%pdiDj*Hh%f{*P+&z`648@%TiI0Tctr~`u2
zxD8#mlG<w7rysPmLSIwyw8<cXLwBZ6-MUw`+r|1E>%=<?i?)++sxg_xnkA6EZnknC
z7l<|s8@J6%!&tAHWOgxI^9f|$`eq4}%b8iU9E5DvMYkPag*I1fh}d_NAcb%T_J|q{
z)5Y<^SYZiVnY*(&O>i<~nBk?Z$xy$dLa8TW`;qb7MaTK}6an#{@C|m((ZFfcTGstq
z*<Zy7^imZcT>d?meM%gbHE5cg>6&&`xz$m+x0b(V-fsBOKTCn}Vo&#WPM_5=sr7h~
z@jJi$IE<8Fl<IZ}&pr{B$tAaf$|d4UN9R<xwPRgciv1%d>tO9Zwm#$9;pB3u)ULi&
zeAi&wbu)hpOAtL4hfN$U)lr&gebqZ~2C4D2Bf!Q-=AuI!?ocmE#yP}~DE))<6+Fc{
z0~pabk&dQz?EjM+T!)8Sj>cxzKxf14z*!XOBWu1StL?)J+($&E-zFgXvCZVMa}hFu
znhMp`-7mD`w{e{&L7+aGXXwsDH=6t@EQ#b`0;~1>1C`~_(&BE~?@)|0--c-Q4f#x)
zofTYG(?5l<1?V{w%LKU^i=fjpLiVrLWndrcfcOqL62o%cUNb<YH6^2xem5Ia&xiWC
z^7oI7v;*sI+a#H-jSt-n!p$mX@gInht^O;%Ix?K-*khR0Ln^3fvt98j7ms-43^JMd
zgby9mh5mbI3n(qHdR~|7VrY{^jO1nTVrwK2)5*_lWm3atp;OSQ2n>qJx;r1BU!v0M
z)8@o#h-9d(Tr*EIeayt<3d2ZkN3eyx3;8B{fyYud-UPX)pGd-(;YRD$PX)gTp<?yV
zG*N{D-rR@?EuIitxqK-e99peumW`%i>^(1G4tlXXxMgaXo`3@eL4g=gLVxUsQCy$y
zvHNUFg%uK!cCMT+xn=BokKOwp37&<ju#Iy%QVwc{4S!TqTS5z#?|AnH<Wcqh!NQL0
zuFgosYf-%yYClstwvlfttWF_%BmdW5<E84)tiqVC(*cegMZ>wYiv?MyNNrVYWf;^J
z|74_7?QNiFyB*>CEEQzuGNvG;qYhwC%|P-g=D*7}xvMhid*|-!FfX`)Txr^Q4&H^x
z>OaG13XOAuBPKnGh58X5z<qkN{CxS2{k|3cXe`%4JF*|~2P?xx#tR-g2u!dN;Sn~S
zx9@$}PPrCX6@8Be0QfH(P1(CC^$dOAPKdN-RBPKU?$2pja??W;K5<hq^K98LZ^@#d
zaZ<oJoyjiCaP!^(`@UbWx0RKVe*|=&j#A^#LLAR7<OwFc6!`S>DB+fa6xc2UnXF2O
z)JmtW0%sz37SYUx=YY0IzBTJ7B*&!{go7Z5F|_P==}i{htibBh8scUDZ5DV~E(kXr
z*YBfyp$~~Ut@Bc;27w||=k{?tpMBc9dQRX-B#4>swurGJ&@fEL2U1(uy;>;n(5){x
z^-QeDYKk`N{c;t^mejx2{>C(y_YEhC-$e~I2StV%>;PdiTZUsCpQz+sXkx5;qF)Yl
zA$C;5vvZk-9oTC1TD%RUTl_)dEmRF}Tj4vi2FC~Mw?Jb%2`Q)~!XI16N^w(ML=$T-
z3)U^p(5>T)@yC-Jm%T~oZHd5q-@Z@-Y-_10C&PbOl!uYIycqDsTb~$ZlNuc5Qeqx-
z*x2g*Wfx{{AYAPuQ$0|GLLGqrT9pp7tNw6zl|`kd00GHgoRA@HVfsAeDahKD=j<)2
z3>bsO`*Slw?|Z|33sDfVv^b)2_|U(s8LO`qzD?R4wEnAO1<8HkP_j}E^fWq$AAUxF
zJ;YJ2r@f$t|3p=SdH|6vL-~@9QJ|WC`cetJbO%Xd*k_l+lN!;5exeouR>JE@)K@E>
zeb4`q5OIW=mmatCT62G%8y&BHx%m-fJKU-SSvy>(d6o4Xh>quO`9}ffy?_qoOI}TH
z<_<w`rwJ3>br0I(Dz7xcW6~(_q!=*;J4Fi%R|(1AgjQKA`6l*n(|GD7YLqFnwVr8a
zOIS5Etm<ID5LaaqoJVL^C#XlWvbD0XlKUx_WU#Ok2P!ixqb-ArS(#b;Q4E(DQ4|@=
z5b|e+;KTPavS;d3Z63!u%bCEM+ssiL5DF)_Nb$6YKP=F)zlunKHzXe8{WrmV%{1|=
zHJ=xHw@2?`V}|Q>^r2C0HE?e>!@VYDyFCm43AGH)VX^l#k}!ISd?hJUpZxGO-Y`Fj
z=n1*bSiwEQq4Knwa_Mn43i9vQD36x$uPT@Fva{>~koP^<kdLbR&rG}Q)h}P};dg8h
z+7U$MEj^B^-NB=LGI%#(GU>JV+a`ww#!ZGiekV5!{!|Rm0V8;hXbILBud`~<e;*S5
z&aObjV##&2!fN(9j`*~ktC?4OTbz^D27ohM+DUgS?k2GkG>E_4R(~v8F&A?Pd!?&)
z)y-)>KQ#{vWjx2fHDeqMpU&JGG=4)o{mM3)xOyxbMs6`m@C^HmB*f6{w({jMI29=e
zJkK}KD&~Q@lQ$HVzE>|wMZ=QxsoHr|1!*tLwN8Nc?rCW)G9lK&uGiW#p987VeYF>A
zK%>h$D|r3kc^L_<m(z9x;*FR6=M>%4mhm=QInlzEsUetm#9O*?OngwQ9IyS<VfC6R
zqODbnYdlO=k@n2Sdp<z-N<Y~FqFM{|wN<XrhwXpYac$5YYSxt!GqKOfLs(ZLvwdc;
z?29%g68^eRrQ#5bnU%}pPRxTUs7Z_k$4QcZr2c;PhCJpov`y!r8KhBD=_fZ55AzpN
zNUpQ+S9mlLnbNDTv#FH|V|c_!inP)}@&gX1U{PqEyD(MF(W&uJ3>nwW_29qlydOu2
zqkX%87MI*BG-pWOQM=Z`s5>vNo*@3UC+~454WXIF5;;npxQ@F)%0TQ&xjOXQ!}OD1
z2{XFtHf6!L;VDqmMPuK(V<cg-)~T@eN#+E_gHd$#rr?q$e#;`X;N`To;}?Ek7K%LA
z_5Bu;LBz&iz)Oey;xH)eYw>9Vi&a2?nai$|($;8p>8*z9nB3FO%S|a~z$RoKTz_(<
z-E=~vELx$NWzrDcoOe<sO}bjF&Qp1erk-4B&`))8W3;$C%a-U0WLLY`BM+)*F%l`Y
zCeKH<^VrALIF(n52jKT387y)XV}4RsqWu7x{Eb&Dy!+C8b@5o*LcjLR8R8v?hRQ{F
zS>|q6_J(LO>_2j>Q+M0T>EXi4Q7rfki@>f0PqqF8D<)78Bw_OzY+%gJm5@C@x_4Ul
z*^83z+~*!cFWg5Uf%l{`)&#@{9IH|P5S6STV?yb6e$M1Rd;4%Nys3HC{7xRaz8k$0
zlw(#Hf?|J#@x+V6OsL!h<YHIiF4cd*6@(gGj}OH2UB^C;yTo(4H1PLsn&<zC@^W^d
zK^crd@+xGY+`fybwD0Ag)gWT}H8887t2*VcD_=@*xe*3SL1DUN`Miww=>p^OOg)C<
zus_SFY8CCIRNbeVo3xlEuA2z9f80l=RHLXhygF$<6KV#XTmdV0^u5|E+B0Ji$w|kS
zsF}mTq-K)wI^IYgC_3|%QQ4T8l`O!bj|xdw5_>CN&0eGpjvqd>d+@K(%^zxBolpGo
z!1%h&-xV~fKTc{5X}_$%ZdCfI><l@I);!bSvOU4eoiYb>*Iy=sXIbrK^~u-nAj$(v
z1lAe<7#OoWU>-wWS@A2BiSm!Sg4cg`UW(>0Z3U8?XmmzbX+OaTn$9rn`W$sec$qkO
zwe$oBvLP&-Fq`!AEl}XNnj8jl_x!+}@MAzV4AzNDUlcR84-)Lz^UGIuKK^+IAj4|P
zT>IA25$@y4QypI_a`h99i2R*0w;mpp)p1~Ef&*BP$=HgK<nG4c`F_mCeC;{!$-J(t
z4s_C=>2xT^coXG4gf(GP6us+}54yFt9fBS2Qmlx7b3rQ`A6g202>APGq6`VG=mFg|
zZf@_Vh0S@p6yKz{W7>xRu_<U-9GVN1j)P;~9RmIK>4Wr;NIP*vknV<1X%NLKs+(Z;
z>eu^i=XO6#g~`e*Pxk4?RLwQ=&XOG*s?`7(4iUt`_J-q|2*yFSXx74>D-qn}VO$hf
z7dp|h2!fv0lMR`gUVpsM3wd{x_wMFe8a-yFP=PxNsDsASDihw5Yjq=-8Yi>khg^n!
zgd+UWddYqp@|fG(T>u|lJ8dm!OI64#UT4Ww0;%^MfvQZ37HvRY4}~T9Vh{<31Gv$B
zWMa4Q&x!N40oe+~&8Ru6PC56BPL72PGymD;DKuJs)h(WSX?HGs^lQ3Dq&CO+D`!5a
zYzS@r>5(&XkAU@r)BT-pdf(!26F`2@;ZbcgHU8+mijj_yN$=SW=HR2oovArF;fqNP
zYo^n<&KTbaljD=**)4PHeFwJa)45r#h`tqXYey4n6|XH&4E3MOhf>J6kajp6jjC}r
zFOFp2yd`KSrk4$Z3<DtnlIgIYRXgr9be;WZO658{2PO#%xEuE+_CSq@Mx#G)2%H-N
z`yxkA8G~(+AVRxj!1y$K%NV1-wX$t<u^*e0665O+h4MOVWEzZ_9dJ^1DkfKe)9I`?
zFQ7|zwU_`t1b*nf|1IKF{$CM6AvB#Wvu`t`<SW(@lG+&g0l%=7+>YoxOlMEg&c3ZU
z9g@b!_F>@P*f6uv8=U|2N)CE_v<f8|qUV2CDI4utpPL_GAOSygr{i<Dw>+<Jpx^q|
zAB8M5{kCxgL6qhbcMYl%wbNs^5SGxB@Kf=#(mc6q{pZrwF{FA6mO1?xo)&kVe)S!L
z_iRv(7<l`fm-nf;R=Ktyb={}eO}D~SG8F0Pue?LNU6s`-76lc*ZBKpjsk)E6{vC1S
zIcIKqGyLekRgEmtPHtY(Jw3=$@>AkM>b_1S!=}GIYc)?jV5DJ7dbeHPu2yJYQ@qeH
zEd7mk#BJv^aR6p4;ABcQwXX0ecP#>dGgyVR)6BNfjokx&-lzmr&6#BL8yR^4ztwb;
zAvV^tbMBXxWu>YV#@G7aegW^`j$L4TqjI6hI0dzwiJRdi`*vlymY)-VZMG_noU^hA
zIMsd5z1X02h)~d0W?Mm^?4WTP=}f#81>M`#tk^lPnN53XvA^3hcdYBV#g7L(V-@ow
z5o%}+=}7TtIoQ%J#Z>5Eu<{H+18Kf+f<3q`sUuV;A3m;syQD>M)huu}){$ETm<uy&
zaca40l}!4sJ{TL>1HA(+OrGBNhFKQIz>Y+Uh+^`Qiso*i$M+7-4X74qyS*$w=lWrW
zTHZ=W4F7?r;Sq9H6k#v+78b0iPH`1Ne4a}Im&<kUfB$77rOExi&KCC?yoVe496SlA
zdF#uHf+BV4YnnN?wwV6)|6`hoI&|<)J!FtYkm)o!%QhWlyIgh92rT;AZWP^ibn;b0
z2$ewoEF|*%l_qBevkYnWgTHF3c=|%fF-s*%qDL%->Ib%@2n_dIUoOM5sfx2*#OAZ9
zX&Vvu=nm7Q$Ja@EX2jvm{wmMPPLgR1)Ef3hz!Z{&+SOd(9&KabR_S_|UMLS)vBb2t
zw@vXnB}i~^bl^p+dS+WtgS$p5qd4Ar1jsb1ks9EhKdy5>Jrnn<<Wxai4#<kWzfcMT
zpF@(RwrjRNTQv7ac5ug?Lat9`aPN!O6Vx$ha3+slwN$Fkw+9Q&kuRc<Ws8Wr-rC@p
z6Pee@Lb<V7{PFNr8s=VSS3YCq%XcTz`A->2L2}Kl)UFUz^1kt7N+E@qDyO4r9sqau
z)V95U?HnfVY0?O4n2p^ZyJBJc@3Q6C?2%!nAT^w?hcIHvmWLJdpNe>E12Fs_<-(ay
zunly+L-Sgw)v6ns+5A?WtA$lR{abT!lMAozz{`8+6&ZawSSbq@nay7#A(8!@8k>&N
zbTJ8%+5L{Jm00#8n|rh~y6ETZ@Rc*ut5mzuxR{q`>1DzQY?|os2h%5$87=0A1jrv%
zQ21%<F4E}XVG&=rxgEqR93wY^GZ;i74xBvNI+nydpIqC^eM!f?{Dq7&At<EiV>Kk3
zj%8&BHF;f9M&DGgu&XA$YQ1t5XxsWUp}Cl~j~*eh95o4<CCSx;{y9>A4-+{@)!f=i
z?`=48n<y5H3^F@XzMIaJy%v9}J>6X<(}O~K_?V81-TE-YbEPBW`Ur!garpk|8?~{w
z!gu{q>>s^>+3LwYzjWpghmO5fNpjGAe*A)zMj@4`a0rv5^Z-%fbz9%f-L)GrDCN^c
z!s2pOf9e;iWG%ArjRbA-?yo)h^sw4R2+#MUvQ#E79x=kF9s?|&S#2MwGJdg%gD0yO
zod!*xUq$@X2sOpo3iF|)c0ML6L3to!MlVWQ_SI=KYA&@(DSSy>B+14@yLnoO$jKqz
zwhTEh=(1kDOJZl2E7|fbTlC15*VnRBHqxH<!k$D64=&W9y?0vEv@V|XrJ!&eQA`Gw
zqbi;5_e)7xjSc^Ub+Hc7out6Mc&8ULMjS^-s)UqeTYHN#i<Gd$NqLrZp>;NYKjZBl
zCpDucDX-IjA|u)Hp1?x!mjW``Y67j1c|;+`fyMZ=x`A@Zj{<)A<7<~gz)|E<82a<0
zMr7~j^viviNO$#i>9|#dB<TB9QExVA<f@}5H_2JI{Y43<b%`CV4R5BytotXU7kveb
zxyrxdVA#}QHPeC#G{I07w2*jNgZ^X;2bpa=X$w+YU!H^p=B98lqEJaO?raS%3}`za
zLd*9Bs5Bn*5GIdr)Y131RY1AcCY0xn&U=$7I_jlyo$a)H=UP@d^mHIE-|-fQq>@6g
zji9jo^Uz=#>891s=aXvpV2Jr3tfO8s&O2H;ueAG$pHQeMa}EyWnfiHZURJgYHAJ35
zdsnZDFoh#KNm0D~=V7V`b_*nh^oTqtPn3TL3|=Kk@wm@;C*a%m{0e(_P<P~(_ycD1
z<Oey1Q$nrwOv~UMDUA2GgH$15RU9%x%o|*|<~FYAr@e4e5dmQiv8aK63rsL#jvL{f
zjMM%BKG(N;&2fetN&*`)A5||fM;8-~O1$XNVnnsl+rFxe8o^qYQ5qP;c=h*sR0?!q
z{Zm+X-EKa1l6w`5Vtf&OxEA+taVDeuaxR21j}#`xd@0nj-}c>gz;$$4J|-tB8Ac~_
zgvlKigW;hwme#mjn3DsL1G-`F+~Qkmo_|-$K?$kZyfngaf_pk|^$rq-RcNwdqOC$L
zY4a#wPBg;*xcfhjuEMYB{rz713IbOVkiN>LOJX1`q97n8JxWA!bd8=tNOyO~7(GT$
zML@bn4K`vlj2<=Ee*6CZg3oLFeBSTpJm;L}Jj6wh-`{jp7vqv<xuOf@ruuaJN|quR
zBmXmdW(w?};#PgC{_DkE-VfDp;zapw1X9aRQXi<62Y&?`qZN(5`7f$fh3HclM!xi>
z&JVW8TZ{iO9x>l7Os%;<sW`)>a9V{<-jNFi%^L^Cld9&IzAp#hHzRLB!sa08#sm6J
zL&$6Je~b_QRKq`JCiNOV*5n400%S}8R)0RV=>8SkalKfg=!P6@T9^u2Oi3s9z5D0y
zT8g*fA6f4QPu!MoXKD10N^{BF!6%=JwQfEvVVOj(4{3qk^mdC(PId1u|9!9b{aBX$
z+mV5#1NRkPw}r#IVx(It)Yb-><Qx2RS|_%k?8fi!{Z%HWdMT@>3G_(zNAeS*v-Cuo
zzONpt>CyL}T`=%KMK*ry>%``rMS|DqSK_{h62(txrz&>-T$-6JBkn0uCXL_q+{^bW
zjC&MbZ3~t}KVV(aqvc$4H`3&01tSAS*Ya0xnyo!G2Y+F`t#wb~OU>F+!|=OjX{7ai
zM0UCrWi0qiMa2yzT`Qm>em&9+{eCBYul#q!-fv3W4P!~C04-Hm^TMdyyRN$VtJoKR
zJyP8B8$m9$)-k$x0JEkJRtK(K+7^6-{nfb5Ti?Ty-`+Y0XlAUgW%)glwv@S2^}H&-
zTY2*BYyLRw`OKrUHts$PxfKq-f=_H`v-|PFqKlq3UX$|0>Ox5wZdX5_P(sP4^TK2j
zR9|Do#g<b6GN!4*jO~+JK3|p_c^WS{p<d3~Gd;Ju*B`{bKz7XV+R?DFFdS^7Z5Xs*
zIwA_<;v#%cQSr~cZ#Q|G3O+xnp!4?_GBq{j=jUgdm}2L14DvfHL^GOKYd<(9?lz0v
zYPumvZQRwiZ<ygsnLkulR=?*&n{yzTYLNOQWA>9{mBfrpi?4s~KD+OJaWN;M$s~BX
z2#&AHU&si;9n<H5Ti7W6Tn#2DW`QwillM3~`T4ye_7}h3j5B@dTUpJSBg|2JTY$1G
zDwQ{O!8~jytJKV;>;#H?f(@n=K)jsKMcu{UUUGM*xL8zW+H=C$0vMoCM*cifZgv(z
zVOCogt@=;(OdP-d_ewQ9o{ba0F*3Z~H2ghZOu@D7r=3Y)kV}ZZVw1Io!@$A8vIc(*
z_g*FXH~_u#{NadZmb9F;)EdpOuUCMJtk$E@3!f#WXJ4sr9N(n<GF4Ej(ZX)S)f-;%
zs%wz6cU+v`oqzW>O$M_Py|$d<zlu`-GIrhKy?Yk-$e+HLM^WK)3(qi*9K6sLNK$-p
z^s_b6D}7bipZA*md}mKa$>G&KA-U5@B?)Z%3(plUoBScyKjF#u4Q~Icb8KRb&WfI9
zs4cEMNxqrf`#L63GeLI{Wy=AQUw2LT@a7=inB*XKZ<zc648>dwmG;wVagI%eWEfWF
zlYfdZsVTPFHu0347Y@_qj@8O`JRFUOaAXCTlEgQQJZ^ZXsD!^N50i?RY^My6jmDm>
zLV-!`t5%L=3Y;BSHReDc{j<PyzTtp(a6tI<&5U;|OT2<^1AW9uVw9{a<Ln?uli4~t
z`;fPd&ho8z^@AO|-@|VoXoM=77Kwfd5vMd7?EK)Da^2%wIy@C0EoZc^$F1P-kE{#V
zJIS>XqyxR)2veH5J>T}gS&T7{<$dI(*oIp6;9X;H;@Euc9(aSBjO9-MeoXd}34#?&
zKPTq0e{o9m-IQ~GL78BU>$|#fY;V8>C=2#WS2cLHUg6;z+3NEh!<_zH*!4ug18wjE
zDte0StdtTSSZ;&1UI-NH{k)G-y*4Dzzm3U`mj1LUuJ-2}gYOQ<h#x}W@Q`%;XUU(g
zq_YF+$>eFCm^_hv>_Z7^D1S8QM$I86x3*3?WKto%j8+EYIcFi1S+ylkhS1-SH=`-p
zRn*x>v2iur>rYq`o<sf=A!s|+T=BkO)Bil&N6hYu2DtvRg2qmHh2-Ay&Cw{5loifZ
z3N;rh4^@0qZDQ*Q%z8b`MwKWj@UIkFNp?ci(`u?qK%XJ_uYLBGgY`tZk{$66FF(8P
z^Aa@gYkpDt%Vsidai0%;)2IuyNm-X@eA8j}t!C;)J2Xb?4I0HdrW|H!Gb7iMMPqlp
zB&d$6nCx-+g6ll8UTt3QidLTcYWXA76!F9TUb*d<ZJs-;_eIF7^_wHN@8+w=Cn$T#
zVqx8?8omXupZ(kR%_;tY<=|bcq_Q4%Kt8c}0)6|I=mRu`pnb0VgU!Ic;smkzMtBOz
zN;Ns0T8^I2<p(RuoT|_Ig%Bk`8dByQf$HA6Nw0-6S%MFr+Z3Pwc_d;#rK&^#SwGbh
zvEKU}0e+Im>!ju~vjIS#JW4$OxycL$@f!BVn3y*O`Tz9HazZbz1+>?Mgo=M0KF`+p
zetm@7;-YHiNLME_a%7eMV|4TPYe@?R%*1<-mpnI*&%(lccOGmql7xjm8Ga`Jm5nzl
zwhg+9S^r8HBS!#T3Ps)lPqhlxaS2PxQFS02dxs`|P0eXM6wAa#$j9m$@~674B`b8R
zctnS_mloDMcRj&=z*Aj|aqVCB&at0K?F@hPuw4D%viir2ON463LMKinOy+!N^EVv>
z?GqD2k-f~`-e{okykXVVQbj_E%)^IVk9r1DQgte{XiU8BUY56hVLNZYPF=nXdN1-b
zO)s+K*rh1jN%PL0j=NR2F2b;$6XHV@_)q^7!t))6DqPfXA>Y5xVhz78ud&=Y5x;eJ
z^o<f*o?0Z^n#~?6?ciYGT3z#w{djk)%dx(NqhxHO$vj3c>uYjCw{h3$Z!!YRd0;qo
zM(%4o%lq_5e3te0jT`k*D_FDnHYX_3DPp?0xj7Dvo`&Fc%|JU?2BxT+U;hnsdv$j%
zaDNrMK!hx^b@V2L-hLLIJafF<eJ?cIYxE*-^o)2Nq;!_!Mb~9AS3jf(t>2=vWw5e5
z-euiB|I3ja2yl&?M|`{Wk<HE6YIj9Q2$(HRyiiJ%vN2Iv3wv`<#km<0b{n$3!Rl7O
zU}dUM-uedD|0N;gN7?r8X*)HHLcmvC_}bAekx94a{4@I*7txj=cLeTN&Y$tLmE1WF
zkvm`X^i?e$mDwzuqtFQz>3unh0Q<=>+Y3E@Y75|w0JW6jBaVh@-0$4INA5ZcnOktv
z!ENyc;5H*_X2iwyFq&guoUBNUTC8yzu)^<nnFiy|o0|iSXBJDf%s%oXz~*FDTky4^
z<J{Hy`miFl_RgI$I2@DWsgB<|!_=*A7fpAkr~PjATVQ^1x^M}cQ30L4`Oomq>!G2!
zl~mv6K_9nIb|RSOD|>F(l%eY$J<x2_gXW}tJ2iMsZe~M-u3A{5`j0xOI@bMlzGh(r
z5y_J`Y0yO`a{Ko;hOGKgVY|R=J_$v5xND8*ojaXuk5*RJJ-&esd;mVmKM&*d?NDkW
zAp?3IP*IPI!BC#;wLnLDuu0Xm^C^$?Ou^|X_nn@nldiH?<2bJkIT2}1%cZ2}#f}6U
zNUYBMV-8~OE`DQXstwbzz`gu9y=qq)+p%(nh0z0r<MS_fmhKy0d-fxgsy)pODes05
zj=r25)~cc2LkzX}9QG<PGP-t%gLTZ!8ZkXSgB@~<^)sS_R&%>f@eR$3N=N8BPm6aJ
zy9fp8_Ob0|F5ApIzdjnT*Glpf{P3N393ED3ZMtYeS!SnXxq*j1iizZnZmj)oA+|LE
zoX<|%d`t|W*=FYL*HaQ?2B6ueAix-hXzgNH#B@La_eIZtQU<E1^srW<78Lr<`_Q}f
zf<8SSqL)v+P<d$GYYXELsWD<|&vG7qs<uD^NS<dVEP<SMAbN%_ULF{aek(*v^E;vb
z?~5n9MWHXWz75uxFt!}dMbmZ~tSpNS39d$lk%e4@f?fB$!f3+OhY9_FQe%{KiB@N;
z<LWQDG)z~|jD1r!Szo04+3u-^Xg;39mA=<1aHP!2G0W0OSA2H_zlD!YM?(Btpc_@Y
zLZA=3^Lf+cbAJ<a3vCzI@xKemqH&zpp@H9$iUj4KLG;_4K4lXi%U<9TWaGrBy_4n+
zKUOcK_xQXVyE&nY^>nbc2{bEhC&t!~$GW;Qm6<yP`FIxfByDW@TL*V@F&M@r9Toz}
zf1mivN}hjRJ?=BJI2r)=A)0w44Y&=~s-gkytuBX$*d08>2XHiP49KB!&e3h;;OL}r
z{@KFydowdeL*w5~W>ycVE{)$N^i27<>K}(rH%ouLiTc+f{EQFk^X95l#9pbP)_KN|
zGuU6$zQk=6(HCq6Vx%EFt+BLL&K0QyA!NH^mwyoBuGzr-k(nr<5FW>I-h#2SA|FeL
zoX>AC(73o^6hQ$=IHOyd?OM@Y@n^C|(*22~(O`Skk1dP+FFbah<eTQg-t={D#3*k0
zhU{ZIaeeXoIib3DZW-3OIrI7Z+hFyf;sD*d7k=_yxRcEO<t*|*_5l2RCZntE1A&W`
zW4s8s^F^<)c$xtw=)mVrYBLH4zw5H`8#}OV9c*xFaLsiGz59_K-vLKgE16w4qNmY=
zs+LBJM&yI=h|~{Z#86{|5o<Jdr_X$UW9#e+y8&N)!l_8A_m3x#@PXUoals&wctSkQ
z5p96<F^0T%;nrD7y70==q4o)yXnE!qmPP}B0eoEkhmyEd)S6Aq6a~+#Tk1_9o&VvJ
z)Dx4VSfU292E1RC_vUPGt!G+fU%O7Xt8%|GYq8#?Im`2`wLDn5yyvy!37-r7aXWhW
z{R|M%7*y_2sYelZMRl&%Vyq=-DIqyYovUltqKF_LQ;t;z)F;Pn^MU(^w5<UrQ)n^-
zf0>?W%c2?WzIgCF|G7)wO3*u<+8~9Xz)Qw$J|rK&&yZqzhDK;p#1`-;nWgGwdxelo
z+-3J=5dk6G4ogQI`<_k5v6~jYrBR=PsQ*-F;<0+N&h9m?G;Nm#7*eN!ESF`nk9uq)
z`qDW3JPnOnkTVov6481!sV1dZbX;n{|3l(mq@q=MEv7~W!?;Z^E9>lS9lTtA5jS`X
zV}WTG4j_f>?T>0Ij$RnUY(#_4CLaFe%9B4<FaBPc4Au1@?V&0vsczvEZ{{A_Gby&0
zdJlF&_YDI_BD0UruljO1L%QnD!jxPuY~tZE#_@7x3x)dCUaRZdzMtCtTl~*kh<rTl
zDHnFM*%#57$hWlWr1_{AB~iI2%$uDT>2b9*142-x<HM;hSPpWl!tPHRI+kT#N)v<j
zvkcAy@(a74Zzs`oO1ovW?|=RLu<>Sitw&>!$@yI3&(qBXwNV}4pyG;Ce58v`M-#cU
z8&Le&4}P&1g`wO8P6s22$mfpBzm};PrlO81!%b7I;#Crl5fsQRd$pam9nkl6aB8>*
z-_$Z0B0-dPnx|_}I$zsBq8@IwNS6F}kC*6oe&s@3jFIpp4-sowf>TL8>w^-pab+{_
zVlvJ>dRH2n(H_>teQ&fVF$Nf;Hm%_r%YxX7cu>Z~yoJK{_B;=^EO`1CcEUB2Sz^*p
z)!Id+zNbfcL1{pSvd1XZ8r0)Cyb1E22$X*XTR81lYx#$Z0A1WcO>a{CGako|NX}1t
zZ&T)3x`G@Y-<2Mw22o8re4jP!()7wyy&s17dSMp1`2JvD#GwMz><sc#_nI`mEYLBj
z06Vl}vL+A5zZMxJzw&U=cAQTKcR00x>Lj1&$Mh=Ll<9)UDoPbAM2bU}uSoDp(qSM=
zG}_$RvSzRQ$|gwuI%cJ-_}S|EMTA}LWUvjJblv<sT@a~{RYg7v$&#5TQWG7tGPqza
zCAoIySr;&=u9w`L?y`U6rFBW;LX#?-nhSZd%O2F7!Mc4c?JQ&o`7x-+6IBn4R*(-s
zdsat4vLnD=fzUSm?=d~6iK}&SfI+BR=&{MVU$_n;@Dgnv<V0-_bb`Ob;Bk%oLd|ni
zU3`w?hQ&4Sw5*no4n?tlzX(!mjmFJCT5xmp(Lo?~Pu(3)XzKzl{M-F|B&SrT(^CUl
zHvIhpT3U5zSmk8!ufX8Z@a9Xp$;EeW^5%2qk7YxQj*7HW1H}iyu@!$Z7ffow3(QK^
zwxCGurV*fZ@RuIf+<j)T5v7`6QylsMOVtx>kaj%h)1Pkl?x1Byc2oXD8l$gz_x%P-
z1=>f332uc?Ywr-we?twT0ezE$+aGrv=+hrE?wHcVdSz!zU)<|r&o)Av7xME9^Hq+Z
z4aRgc^aCqkHYcZzb6xso##?)&OC~el#(DjDp*?n=QduxKK5i|Z@cjspj!|r{^bhem
zE)NL-UC}N!wpJ8+l-F7%5|^0-Ma9>@-_8bg%`bb~hDz;i=WT7JIn)oiIfY37u-Y%m
zk9Ty@caYgLG)_Pu@)yTi`ji~zjYnH+hZ)hXf=5>aI%<gKQj_ZZ+qX?*<1FNYOl_dG
z#vjt)HNP+x^Fo9ZXWt9YhZ}B<v2`ZTVECs}*^m|I+Lo=Xe<fQt7+pr(+!|Wj?l#X`
zYP6h})3i%$(^>!*6EcFPL0S<&7|g>``LOifBrvOZexA(yC}rQj<+Ds-DS;(A&}lXU
z3_9)Fg`77mzK90&NI1YXliMwh5l{@_pgw<Q_FVbpXOE1_^2vFHiR*9FKsqbSRou$-
zgvVpd-Hv9{t-a}q@f$vm>y1F+>FG%(qF~YCt#0A8c_;{=MwS$B!cLc+Hn+CDbAik2
z8&uPD%6>e`H?NAjGSDT$3+lIq%F-;bdHI*bbeWm~FLl?(Pu?eT*UOj&*>piGzk0hf
z8zL!rn@Iw#<f?CBG{?j+#0Lt@j38FtP#-lv?b5V)GqT7-vhvf7GnS5T9P@8=8KPl@
zp1BDtT-h!hG7g%?4pXq|CR-(cj411c{0G$o+tKxzwfy#Tb8e+%GgxX3zBSK6+97nB
zt6V``$rrm-I|^@WTQD>{{^U?sYQtqIMchrBKJK+-l{;;inY1GF5mg46GAI5chi-@l
zlZ`<TLP(!sTNIg&CHUDW=^Ji)gh2Lly)K5((&1~UmK-XJ8E@WnX};v**?U{NME!9+
z#{Dp62xDN_-2SUO7^u1Pn^n;>G9T;UD8G+CmV7)Knd_yx!pw3?r(|U7KAUM(oFhN9
z2->-}$C4(d<ImEt2!|8=F?+fyDNyUQTk|xqwf*{o^1zvn&f%%M{i|}SyALn|8HH8#
z__Pgaw?XLmk{|JERj`crKMHTNSCoa2v}T21%~}y1mGVQ<LIcv<74bFuyO<#`Ac8rw
zbNbfVNXv|gACvUs{mKQefUB*(14DiwtDrRC6qb(8O!Db04jk2aKBXw%zF|82Nh$9X
zXK7hR&`}Qld15^&H|lSzWm~%oc>^LkkR68OI6nn{SOCc=23=LpnhtpSrr@9FdDyi`
z;wLDBW@n99Fe8AiKN&J~{{3)(V>ixvum&ey6M5`$HqO!o?=*Dlto6(%Rp053FS~Yd
zU05)@fGUoVsvF?CJEZ}G%lGC%7bnD4Bpn5Se8Aiq05*MXb6IiGV9du}G?8lceP^25
zQM<j@chJX;i?Z`hh;56q*IMJ8CoIC+H#=@NJvL3Kdr9As1r8p+JlXaxc9wqT7fL&D
z_@*cVbT2~5G>Z1f@~FGD?+V`on?8*ub)CLczy4J}u4AP%44ZkM1>95$Bpv^5=0)iy
zbMfY<2j$VOzMQ%d_H*{2{<5FHTYKwK8r28e11qfIxX14Pr!IYzuDA6-n0|5j_V3Ps
zB}2dwMt|QGaUOBcZ@(4|y^H)0|7gu+WU<Nxc70v82-QL<CWa&e4{rP4>GU~(#e1<M
z@)V@@>l>3tjJ&Qt^w6DTB^Gkka(Z1iH@Ilh$<&OrQ!vjW^I5L@qWksay*bX!n8#9&
zs}vyOc-~{#J+rw43xB)>tFv#qlBJ?v@Ytd6a2j*GkQ*Ew(&oO(PW@g2B(5ZXQrOUa
z8MiN{J0u@?+IauV{Vl^Ss=HxdNE8@3R=D*R&I?R*I=ou!BnvxU4M+!S$7J}8eE0J1
z_4yN}0>A|_A<Gp!x;|Kpw{4utOY^#p0E%nJmqka-YW|*S=No!_OX8#5P<(#Aes-}T
z$Slx|Vs`_+1v<U0G6GTHRc`j+3sWaEVO$_5AL{XC&xka&Lq4QyeS^gX`+`h^^Zm1v
zW{!Y<oMFCiFE2$FE55~o`RyMCU%G$3QrRu5e_8&r_NARzQ1D}H+@KF;A+}Dm#zpZu
z9*VLi`vw1L+@f=wU}jfrD}*f{{~C=wO4AcW`mDeZ+AUKV`;vr;cH1etTo$jY@M*e6
zrJzqZu3j~EmepF$!0YM^(<uDC8KraAG~Bq&c6qUi8YGDrsTXg=dyTJNblM)zZ**#~
z#F9NNE%MflXcTk9XTp<mMTI>oAxH-p4?B%=mTAmRP^^xT<jxj5fWyh6d~W$`3N;18
zP9zkG9rxBt^F;htD`Ijz79OF&s!7;mu^DCesKFw7&_`EY8|fP&(u(fDOytCQ^IUhf
z&++9O)B<&<jpa!L39#d$CBl+f{zhkV)^Ne3dbw>L3d7x6A^T4&0m@uN=B`#qOiF{~
zp^zp(byC8A`v<XxfrK`wss+5$xxMl0G&qDKBn#l3(b<8az%|aS<Al4N?Z#Nl+PB-d
zn>ix2U~>g01YT&-7XLy&z0{(t%rfa(*#(60@87^aKUE#RDQng1k4mZ1A4~5Gyccly
zc54d*uq)^iURL+@^2#MwAeBqyJ!j@|othTO4MB2L({yZV-*0`WZ+`VGE!}N!|AfEn
zl?S@cku_RcmX!?lf=KgwCcV0>WY^hRb^1*3Jf8SeFSS285ce0Y8=~`xm-efHUv`?4
zniqp4i{_e28*=I^hg}~_Q_6`N^`?IJ#6$J7)oN6ZjwcISs*zRup!29ZR7ba_6M(3n
zokK}P44)7VObriArMZ9oSVpv~q0LzHT}6kTpxdRUMX+f#Xts8%O<!-;H$;%9rrQl1
z6P)j&W9AHrKAEBuMP~b6997dDxx{e>pz-l)Lt2?$qk_zCA|vLz@}kyK>5uadhFwxe
z>hy5tIRS^8l+in+7vWedA|^?<8sZ#^0aQGb=>OPSSLosG9_7;u3#8{EdtltaQ*sT8
z5aW0zQ9qT*Nd%LX0gAMC2er+0rqzZ^vqb<}(B0_y9gKnyJIvee*H^({`s0Q)21<rC
zO}^eIkRe+LWf9juXA%C8CyP%0hu!<v-HmG#JcFa6e&gI8WxdJyunW@-S>kF%zbsDm
zFD3aMX{OkYp+mYk=ysL(J`CH?O!-nl1TL+^i@-&bG}5%aRf@(f`6~$fi_=;Hk-9n}
zqJhtNUpx@1_XX2%z&$$K&qB}G1+Tk|2AX|u-^c5dL}es>f=Tu})H58LFMPu;CkE4;
z?vjzE6mbZ%I;1X;r4il6O5b!?ae8WRN0M^9N*$mQ@!Q#DWSX~FE?@8*nT*Kaux;!-
z{>6;+^vOy259;FjK_fCktqaCq3$LoQ`PY!8+F4D{#avg3-)SPFPE5lhB~8$5@?hr=
zG`M&#&-bjNPH#I^<0|FaQt{}h+rMjgy(RfN*-D0^j^cF0{o3|5YY%~*mG()mrN;Ur
zO*#Tyfxn}rN3UkKs~3a)ma6N=M;BgnHr1?|K}gkwQ<p?dUULPm#I0<BCodUx>lihO
zm|DC^+u4DW3_#!qW=c=$1?2tEaCz+J7X7z2#zD^XGBdP`(hCK+DATkP4Ej!1j8ANV
z_i8rJA;Z)NsZhI~#P7ke=lZRY8z!|ga+C`sI~*=u^+$Cui0%d}Yep08u;n>ZPtL1=
zRZWj{S1L-B`1!UfXo{v%rl0da<<}@9>>&N!_K$bG08<KHxTdtz@T<!!bThhAPd}DA
zJq78MoBSlh;W1$wz1^JVoXafHI4Hs1G&|Pt8Y=42h*YaOCUqMlAWh}JCozOnGaUu)
zt(Gp!U^hMd8;BJMJ|~*-m{=~zbNbj*_JA>ZcxF(cb3iYHl|ib?N^`ob*%z{p<zR00
z*6C-jb=Hig@*|Zok1Hz%FHn**2I^xz#_~l^^yjk6%~y=`0Z{$;Bgev0Op;};qO5b%
zVL?$**1Be%xfyUKU<=jKS9^7os9NhbLYyP}3QFb?_hK%%*y+j)RY|IstVHN3*?oX6
z{;Kyr4*%G5Bp~4kGu)HS@MR!-^3`Nhb?y_H@r#w1?HEcs$t)((M%QWtf|e?D6t`4P
z>$eEtCAxyPf9nd$MC0ZtG30`$A}sZr2gSLcmDkgw!N`tr54HIEn_FzX_o`@{nh*|K
zrFyS4r!A$DDAfrYKmlX9)RWu6&?DnYeVzEcnx7>FT}y<M832=cil-jZ?)?UPK~{<7
z99hE!gzuEtn-ZumpQ#<J_H*bbnQg?4<v^c~wA3QYBi%gKKjQs^US3hK4$F1U8$6F@
zvT9*%(EPi;jeq=o{JZkHy7s#K3I6E(tm!PycbCc~i|O%;BejDN-ksc|vLhZ)a`>~p
zjprgYXtO>)Td=<%4yJRg=wq21fZqh|XM5!1`jzKNRm*zCIcSZ{@bG9mke8lHB4a1;
z3mqLx&Gq<)3OyjXBvNPCujh|oQy@|Bj2zszIK?9oKKz7Ukq62HGQJSeDoB3Ds}-Fm
zCF9vJ?wutGxJeAW1pT*Q)(W;cRK<6Pe!s7jOVY>B*F;%xZUpUijAKi26I+2gt;WgK
zVl1pobQ~O$P7MI+idK}vCCFBDEqsMWlTH|8(4cMuKh<yxuDdL-EW=0~-HyHRWg_yn
z=F7L@)WarkHF7*}uI@FE*uHWq8qZpMB9(gAfoCFwMIw;|DCV(wvlj*M&sQa?k=-wK
z9^14Jf|cOMm9w8`+sm=|9Kh>`?UjDXy=J)&;r&*MkPqOCxCre)?{`;18=#cVpag<)
zi(AVt!+qjbVSM`j`ONpv=bGh<4D5;%%%1I<2t(<#oTQc?nIR6f(~LD!W_;Qw`7FMe
z8Yb-A(ahLVXi6dz4Yk(k@d5P-l>yh2z?xeg2HLEeK9ArMS+^Nt3l$4xk?7;5H6-<@
zC0>?DX0w`ETJapUKNA`@t@84iJkL&f%7-@)NwI7`)?Mz6d|C<4y-sPaR)B;M^(oJ{
zlX~pe(zd8X{34M&3UjUM*yx0wB2tv3E^1_w-8|PV_CE<(rq=tt`hA|Q)5`lpPIoc^
zZDs9cw~}eaW8fQzMJrX>#ASjZ6%e%t8*aWqDkldrBl|Di5O8Guny9A4;`LAdv!Qoh
z@+f$T0PaEyg0+Pyj2)iD*fS~?Q_Sz!0Xbvr6jqP?zG4AD5b5zvcdeN_2!qpcRxHRV
zT4SqMy-?v1-!vpnDGOa!>|0dhBpbpOYsj#GSSdvw=NR#q!%I#H_Pz?miiD-zdva$E
zcq|2#Qg}a(y{cy4z~$z6pe6_ADC5=MmPEeP-aq92s{9I-V7HYs?+FPi>5k4r9kCl?
zi;Bekk<t7VgH2nP=H@&1sbwMmlybU?&gU^E*?rQ`Y)D@~^d9=)DYWGkDf4XSwf*#`
z5bw=mI=bKr`e368)0y~IOUwWON8jgltBU}_3F;cJ2UmUX3_d!Gr80oRJDdAg-1vj6
z=jhbbVzMFVYga|(kstaI;;yZmwr{JQYYdq5)pn9tImLd!W%j&JPh=A5qiC&zjcg-v
zt(MKGiXV>MDnvyZjH1$7*PCL*x{=i>N){q|79q-vJbHN%C>PDc9V$d3IZI1(B)w#K
zP(U>uIc!Ifr4O^sj+92LHy3=8eqGnda~BqM!K&(gj5N+K=xt(Ue>Hb(w_DEVS*@Md
z^-%8QZT&|8RkhoG#K89U_SQ?kwsO_GC&3j{e8|fW7vKLTum1VW0iuBqN9UR7PkxdC
z|ElAyG0Kx}p|URZ5oV<`%uQo?xV}F%nPS&8f8b8G>2e<UU_R@7b#WCb<`f%(iK^&W
z{$P3?+VUZn2h@(whc+sq^{;a0xJ0s9W@OgSm}a(2;)L$Xh};*dA`TwKtPwRk7chBk
zA=`-F2NZV_K!v;-%bw;-tX@6n6Uoo`XMJYODLBMpB<i}<QSZyK+MB8{D@+Qw4&`yS
z7C*}3gUb20vD(_qm4I4)s_}0M&DH63XCM`*HZ$>jGOYMjyPVpEq1Fb;M=LnmhLH5n
zI&noyBKg@>EDn=sr4O8`I#UQ2{kf|!XzEjUwMNq_I5{})a+>m%e6}YK)6CuLBI5&G
zyg~}%`%2FL;V!0DeS--?f2Tiyzi@)Ok?oVUf6^Q4DB1_T6OGU{pMONZ+bvC4%AT@=
z`}?=hysbs?p=|Xpm%k(h4C^Wc7aLjHPBKF*ZQ*l(NAtTPZdk>g7fMggdsC+nLYISC
z1HDpOBBEG%8()prh&%AE$Cyh%>|MV=Z;o5=M6!$ELZ;Pmau}D&RTmoq$~vD1?BtcH
z!S+CBCx?%dnlxpt@PWS^=B&^LRq)^qE@4NZi+_o?AUfp96>ZJG-<@AF_N#nCO(mwy
zAXEt_tp>r7gQPQyvV{+i`Gur3eYKh!zxtwt!RiE9FXDc#3BK94@0K-kHnuveno>NT
zkTc#Q|A?d;LonNBLJ*UHg66r)Kis%)vJJV@r$%_JUexQp=jI56Lep{~DgnjXhn;P`
zjwL?Lns*kh9?i{r>=aWp5NA}H9vgQ*iu&T{7#Q~3RtF}i2lU$+a_rXm{UKWqh*UtX
z|5C5dwf}O9+Xoq7KYHG>WR(v&2Q^Ui4lIXj-<<T+gEM4f-?>Ro0e;aN{kPgghNY#!
zygV=WueZ7uvWj&<V72A8p#i<_n~RI4DSFcf2vC{%bABUgLBM#;SF~talgK{C108z)
zfr+AfRD2~EI1dPb3<UCxr%uirzS$D2{C}k&(}@`w|6bP>w5hj-1Xa{B-UW#Z#4TvQ
z{(Sb!V?3Fjl8!I`HAq3f_~x@)9iS{BC~X?URFk<p_ejPliy4dpJ0PdWDq(<Opx@Q@
zRsGE9J7+jr>XWgntN|Q=0PaNPi?9J~Ue6N9*cL_N0eq9XPnC>E^Y=2S0Iyb!r7r^7
zcG!tsR8^q*6tJvhETfrc6{DLdYK0slHV)3;@*A5~QXIaL>=Y6ka{Cx`KuG|ge4Cen
z{y`13uLD`v_e(o9q7|>yXO4nPm4ZR#aoS#sTg62uf>T;9EMF;R&DcnB4c;skNUPr{
zxtZZMF+kDx;&)^3Yb2s^GmIcJa6Y9W`%+k<30pU}D@dENW+XMj_E1qo>d)}7p?_o+
z5NVr2&EzI{H8<bh)Sa#s3vshAWOUxpijjf5im`jG6(V=!)S-YG$^NH!(NJPfxC-jv
zfPeD9g6mf2ud7agnqnhQdsk1@`sH3ui4I+g3{u12SL6J8BbJ?>zQQW#Q$LAGdNrW6
z-9mwDxz|)3_>f(wauntyP~mDs&oCqF$~J~n4DLorsM5_MhJy0+4m+6;lFc%TSWX6Z
z6X0SI4}Po1Yx0?EX12Vj@T+SBy^<$mubQgrwfY#g_b<?8K>#?+=8<j*e_Ian$;t+0
zmCfwzKUM%oEiW^dWNxvA{U+4+cB{pDg<92(w&uAcv$@BcxI%fGPu@R{u5F1??BD{v
zw)N6CP6lJFm5H_aGFL_X^&^ARs6Rf#)Bjr0*(}sG&-*f>sufM@6`>Q0^VcI16J<1X
zQ~el2lX;XKyM$0h{qSY>*{Kt*w|2*hfq`Gm;0uG4@wM0Wi0ILiRy);S-Ap>Vbi)E}
zO>_A1FN!15fK7`4(U;}vC}gvYPDJwKy+zb?*U`(lydt!Os@nDXFAvofC>A_;Y?cCK
z&Yb+l6sI3CWyK1tCcuoMr=<9wzK$%A9gnwKYz=}`k}ey)RQW#>lCxAboxkg(LjhAS
z-oS;oxP7K#)9w@(=cIn@X~cqhNaE08DWN~SvVZJN>f&*9KNTs8&KeC&)a8#^1N1G?
zzmK_6pPrqjqT2Yr-RJm--Xbpg;XI@804@R;Z|U^uWqR<W6a$YcyD74(yiTONVf^qA
zim9pBCbOIUwAhCuE424Zx!#xXzn=Qc^1QusWZWZD)$|)yuNK9Bu(LN7^9uG%{^^kD
z?-?(MIwpKqpz|#TnZCow4#u0hbOy1u^^US%0J6QRn%r2Vb7J-9#;RV7ZyBi_A72hM
zxLfJvYS-%}jd=*q8CH*ogG=t7<A4fII=++!>LBL9?qbAk^puql7FKhDnNwF%2sA);
zU0UcJUargE*?>ztf+zJ0LCO8u?M>*5i&h&+dS?6O502Nj_V=cCixXc*tHf@rxo-5i
z?fM0pEq5d)1`I>9kL<W3kbcK8F8%=7^2vyZDnkZckc1$up=4Db|7vgFJ<yj8=Xw|a
zDV>_333LCmOfCQ$Y_RGaGDz#Re!k{!^ATxs?nr&P+z?#K6>%poi%n6A=Q+=;w8r)7
z_w!x(o13Gutx@is;sSsA{M2YX<~^YdE0oH}vJ87s>Du4`oCzxQ{eEyp+Vjd*k~7)c
z+N<JMwOMZm4>5D>)rK6dGxi0+76YyZ`hmLmq1x6BSgtHMD_$g@qt;?#+9?aoVcB5i
z70a?3<#@P#6ukAi*2QySu-Id(y1rW^>v5oyMoU@7J?uR66oqt3@V`jQ>?J{&%+K~?
ziP1Zfe|LBgt3B%D_I+eb(En_2Ff*LM&1)&==#ug;8SoruQ}=4CKVTo?&l%~FlcUlE
znMvyMDP;e{B%dLAJ(f}C{K?r_S4UL0t1!}2(-nSmcU+VAg_nG;hpnhA*NA7MoqrfK
zK&zG#d5G?tfiCL2o)8tFB`_{3DR6H_({(q|QBaEGU#MOG%ZfiZp&$e4X2%56=K@vf
z7=16tJ&uPD-TPBoLV`~#Lw|eR$%R`KL%oy$o>ez;gY~t7Hw5QB1=yt>1^B1_wp*<k
zF*Wqxsygu$rjexGyl4DQQ@3_^O$)HLW*{kGVK5@0!2iysI7E*tqq%@>sO8&hdRt$A
zn|F0OC?>hGtL<hc1RGzavF!DRAa5=}>au3WcM~BgETC*iDo%H#WDkM9=`HFdK+d~c
z6#!_p_GnJxi|ZrDLrQ~RT25b*4D}xG*_)6l-dQO0w#+jNbg*s1&GE?ok3_&YG|_>X
z$S1?OTI~E#BN~=YrR{TdC-0@n86Ch~m5m507I?}u3$fs*d~uU9zA{L)AE{c`edh$t
zSXzsYC^xdbw%)qYY2?_d`T-UmgBbGz?S?zl#Qc3Qk+<vnDb>o~Zl_!+)6M*S!QC16
z>oXmRY+?LNepUr4u~fnE`DX!>d<WV<J0D*o|8I{xIOz~)U<ScRFlpyb^2gZG=xJM{
zj#l`~Zp0%88n{L~C`;JluB~2p)#^OoyK}#`U`R-n<>l3-`L(VRMPZn9(t<qUWGYdw
zKd#-8chIXBfxd5C3XWD4?3`{Y@m3qu)R9IkRF(N=V@#LE45|RlryWI>wGFJvP+Tny
zjKkHnQtt*3=`sqP%d^5=!MK>`-lRi}RcmhlGSwLeiR3(n=9t|hVMm_fF!9xBKF92|
zC$eHs{eq3wYP8`oq0g;w8nV1vj!Zgn7R^X!h)3?RJ9-{ZVDI@};;w}6@KnYLOXe$h
zkDqh5N0axb@EBSj+3kVe=DfJ^IdqXNsz-kXyO6c`(c|hrnF%Ykd_(NKghr48CiYp%
z`u-OhnKf%V(YbQ|#o5EvzsYW++V4kB{8huWPi-ex2yx_V`3;!Mo!&xb|J1mqd01>T
z%><Q^Oz5l40mu9Haj~SyzOAiNf<kAzQ6VQ5U|hc2PR4W~Dr&sE_!DAw>omD`svQfV
zPedq{F<IcWj3;~>FZIcgg?B`KF6O40di<erX`SrtutS=19t$~%r+})y2onGTE{HMi
zdoOood!fvJmhwBHq0Pviuga?A^<6%B6fIG9J8v7bd;@#GuxlU`^*WEkRfCUW-!l+2
z3j-m<ij70S+DUEU;@UoWnOwgfKd5!xUcZ<_cTN9C!3sVc|1`Y>P}x(_!GpZ(;){%L
zz0%WaWKn~-pZ+cEF_q`E4D+8-V376EmHm_}x1sa+!9aQLyxzhHJ98o6Tha%J8y&uX
zex8bQcQNknq%txT{8VN}X4P~Q!b_Ur4fRu`H?J{XrxlHTG=eZUJ+t7Z^4IsE(i1<+
z-rN&eG|sXZpXEmBFhBGiX|blqeKRgi4{mAy?Gf>Hsw}K@`hMg4UjWIi4**n0hnP;W
zZE*A(;o86cz;@SJC8ml+^I2;57&(?og+UkPnE4C~!g|`($Ud~<c^YQ`mzxea_fBpW
zrQVE8OF7YxeAz^;x^wEBWtB<6ZudT*W?^RE+*)>WK?urN)+66}G`KrAP1B*FWW-fL
zniv&Y{qQH=m-uDnGPuWQ<foCF_b`7XQFEJeTx4$n#`;t?E{po>f!fBBO_ZQUZ@0)1
z!r3}^JR9Tr5|J450(J00LS}bJY~1U8H)7QQq*u5Om*F7W#M2S<PitdAO)(D+CSDYi
zK3;89{M~nZSUYm8;H+F{B35-$$NR3&dz5m~*A4*DAx%$pV{hFT=oC7wec4!Kz*Qw%
zmJQuWhBiDt?!|61A?55thwGiaB56)zsR@Q$Anr1Le(nhfs_tb^Hg@nlGTap&uBwg$
zZ^XweBv@>*JsD-A2Z$-Y{&qTW(lBys>twkQEsgIe`?kDHLQBK1DAzn8>1;2jxDmM&
z4{g%wDHprx@a_dSWh4_wFjle16$6O>%l}J<rpR(jzA*|qEHgC{pBv&m{YR$q;Wq7A
zM=MBQd#0Rg>yGr0#zZS$m5b3iY`DtVp}s0UCiZ^Yc1ox&q!tOu@~CSn^g>V(jwhmH
z_x|DBCg#qmzX1s6?+WVi`lzP7dJEMB?3*D*yU4j1Icld^D+9k7xJhn%05&v(&X>Uq
z>A(hWz5I2uY@L-M3;9#Bm@Bp5VH&}6RxkE*Tsb1Wol?g4Aoe;GGfr${GF4SJhglZ3
zG?>x?Fhm5vkm)wg<4feeLEfs?y^!DtuQWEs)#B2lMaALS1Pj{-AGc|N0z2$Jaf)+h
zS!Pq4YkM_YTs*(Qei>G}YU;p7Rf7VZnBt6mli}@_v_1au`iiZ`8{50dD=Og;L`S96
z(T)!O{hw!NED9qT8jNw#MnaCB<F%{C01I($Qq)#lJB#tIC??Ac_R?^Y-#hu&^;EF<
zAWO>Yu!}(GWNa*r=X46-Wo2<^XQ#WCYOCz`^+~tbxQ1D_LWaHl;7_qC)<|Sah=ozu
ziV;rLJ7Lu2IEm|KN9>-i38tF9<jdZn?L9d<MJnR{u;x}rhjBUagMB@%Kyed^LOLrc
zf=XT)Os?2(twlk6EZNIP^y+HMM|><A->3y(hJI7p4PVB0sT?U&@OSDDras%4v(`B1
zsW`r^mmzs|^qzYwcXD;u6jFR*?=cP@p=$3lj>oXGNn|Maw8?h}Kq>BTx+{I(BcVUt
z)hxBNZHs{>xW>j~$GYIla7VNlVex+uE=O0%fThe)Q!_Z1+QrlcQ>u>xKp1AEK!3j<
ztZ4PtE~llNdRtmH{V-SV>3ZCqN*4PVs_$hpXJAIhm(z(=`a6Uu**h*xhd<vX#J4rx
z{BbU%VX+<w<rVaswm0r-5Yy>yIJS|Y`Ip5lwL2$`@vz&iG?s(00>6ttH+kcQQ2o;%
z`E(nDUQc{u{pJsX+^8O`izKZ2==%tePaVtb*zoZ@FKoJW8$o+gz0Z8yJHz6P*<GwW
zV7@BD(2SXb`B`+0p2brI3QWIOlV$)x-S>=3K#b~)|2U6N&7`!Sl1U)lDeubukH*Te
zU*)A{%ljv4Jl-Q~m;?z`PR`T>@Z-T8mC#0{6+mHmK>yL>dKSA|9T>pH_U<NfyR4a9
zGwdH|_QmUk&z9e`hNDZgn1Itsi)X-Bl8?Gtxdh{#tc*w9SBO=kEzFd8@1JVUDnbrx
zX5!;AJ5=VieB&$s?-P*|ZAN!Kzd8{el<;24k|lU)9j0r?5*@((@r$$8zvEX{M<m`a
zqJah4RSMoi8r?S;JXy>_NT)R}{&B|@HpagyulxBx4)7)@)Tux>Lq_Q#DoQ1=bnf6@
zc{$0;C+$7$b<ij8&tkn*(vHubha33}AuSb5CzY+WCdti=AsvX<xDwURoI-C6k%891
zt{Z|69yhTpGy(8PwDPyn-nfRDTTC%i-enwz8#=V4VB0b;?vFuNAMlcbmDwQ4X;%l`
zsgA4lGdrJ}V8IgU4TDOpyQ`j#|L=Y*d>ibf>FT52N28ndS`IQcj*s9Slzjx^UIP|6
zut=yn4<8QXG;ai7U`*7PLl7gHUEUg3gREZUx|7d|Ac13Do<c&n=YTYVBcx=<CS3>h
zyOqMIS=74hcND$w{JFrSp@Wgl{m70AOSa+di@37KKgCh8!!}*Bk`1O%Ws)nCCk?xC
zzY?aUq=#5)l;k*z?OGg1zUK?Gq#Dna7*zM5YbxP2bC=6|D<jcn!^81b0Mlp$1U4d7
zbr;y_P*^mrYbImNblEE243ja8b-@I2=QjskoSX+T#)*sE&;{|u&gvULe;e-%@!x;S
z5bFXQV(pK3&&TbuS5u>*<HMLDQUTwW=fdxLjPLL91^5m>wcU=llvTd}<@9Pi{!}nR
zLYz)(83^=iYZWNPW*Ng`W1?s$UbD`45b~!buG^N1kWE$Qxq5|7`!VBsn2@E)&g=a)
z6*uP*u$12S{PG5FfVQno_A7&nSfhA-dX*iZ5Njj!MCUT{FtS4Y*GW=9r)s6y_x$u<
zFCBN9<@*|r`*+H6B`B-8)N_jsD9>Ba+bT19p^@Emlfu=#vsW|I_pNC%!_N)sIi#<b
zymq()4O$z9U8r8|%%tkF+|gb0iZ>U>`oFQZ62j<TbsK}9Y`mow&b?FoeZguYhE-}v
zZw7?29M+5;`$+mpcj_xLm`4HWZZq%3&91H|-<9G5)JkFKi@!MI*QK%>Hwyq8`y#mq
zTcinNsWoQyvCIzN!jZH`%muU?@A`5NJKPuQzW*g^gVzJj6e+zR{zCmu0NMRV;d@Hq
zMTyrSxzo5(O$gnb-aT(HK%+Ak`c}=zFZH9-+xq5txPbefx*Jy{A|gIL&_8%5(eMqs
zTP3cQ!#AuR*lYSrF3HoX6epWKokyn?Q9!6lR3HY*40y3vAc8!E?e|kiEN7QKawYGS
ziry6~80SE9a|JnbgZpOK*~Iu9*9u}cyp0JvqU;8UZ<h8{_hBtf8e3N?l&FB5)Dpu4
z32~zK&ih<`8tPuFjo27@fXuGwptx*A{bh77y)c^GeyXdpVLyIutz)4yT<`4<9;L{G
zv6tx{v8jhQX{sbt9Xif*p-#GZ^Qy6b!E-3T9;AmgoD@Kac}=5lh79oZp$chs@b<CE
z)=rbH4TyS3nar8mlv3on**UlkltsY8Jz&X#Ea<ir0)RtS>83wrbc#~u-~VMrI+5L2
zDrj!A-TNE=LoJYY^fNFxS5e^oWRu6wuU>|}qjSYg<Y)wwuYdaTa>#~Gj2_?rSS8Io
z()FZ13U!&va8Dx^j2a;mviP0aK>2fH7hZR+SM#OcweLgPa}o=*@#iAe#Poat%06?m
zKz6<b*=^8ioFGqJkZnRd4*QNm^yfF(TtabKiF*!FDAhJLM+EA#(+$Fk3PY?#uh@n^
z$}~et-r&%yphXedp-dgP#vA2=6WAR&bjJ_<_AzA$q}q`so5xDHeF~+uQj%soVEK?L
z$KR}kwy5s$-AF?PI{NOsU)uDQ)r>ocr#;eZu+Cw@!^FSr9)%ax?iucT>oz8J<GO<w
zIyGLk<<OQs({h;>8TR{GGD{(Rut>l7n<luVSFdhWddxRW9aip$#YxH9I`I*r759)V
z6ndcX*k?_ZYe*~FB)D$nkLl<i)c|w~@O{6@#|-3G<&DE-Zeq@@Fj7@_^}h9Xrr0xQ
zWbq$cp9>bgt?Nk!dWHux*MYdi$}qcn{iIjCJrR5nGkk}nk)mQ(-PnIvS9aFd+u93y
z{aw09JLY4?Z~4}Cf;f14?tz31^R5=!*lf7Acjb;i9K;u$_~<X%_T*GEJAn@5@#3)R
zfp_F>TO>R9Rf~iCVv;_Fs9PX4Q(|Sbczsg1=d~C5g!^K<5z$pwdR*oz<MNx*43bI3
zx5%Wcgu`TL8Sk!8#a7Y=Tc!`+-6XDCl7GDYskAnP7a=5*jTOzx7I86HWC&y~6jkvu
z7CWGqjYc#0c|28Q=j`I>%FFH3*S%9rb+_unx9CT|hZ^p}{*okDx^*F;=cD;0prdvd
z*M{jIBN}~qzktHG)=R>5zEk@)ljY{AIV~H=IfvtP7Lr*1_RKOtZhsACcvBqhkr8+%
z#{xT6m18K8&+}wW+O?);fQ69!SD#hq$x6&b0Jpo%$FC_|0*l*@ZmF|d;9M|<ReW$;
zLW9+=T=faX%+y~AY#u!<l>!1s)g#A7+hME%YKwWsos9)X{b-7VDt3R-Jl(XOLXJ}e
zoL@-4mnL3jL<+2i|Ew2Nmd;-{5pZk(FB~r8YuH{vrWu=#ZEU{T{TIeg7`&0fyem?n
z6?MSMxH`F(N!_WFkY%c*pj&pe-fP;OODC#dwx`JFR!N!Kz2$8;Ri)f__PYkn6Wu(0
zF|QY|!TV;A?oRWoH_+lxUF7$dqNR%SvaYz?+(#5Dcy`Y9p5~6yoLSM2>|~Z@T+82o
z-p`Gd`JlxXpbY@Tb~lE*oF^hbjivCDfm}h3VXk0%k#hf5M#f7Yv9(Dm;zCt#bwlsO
zW!kB4yKldfm$`YdHh5=Y_0Z#|THd7+#PfM^wIwyHiz(>2eZ>=m(hE`U=Zf+W7yZ2W
z^!BzAkHBKtT*i$kLo1!L-Kbtn7{KYh+E!n;mXd+hq$P7$28CgBbLFp_!#m|4dMImD
z#>dzThsIFhzKdRdQ1(eiKj&YtiY*(i5`|X6S@Z2vi~-I3OFmR7<xV~>E{L5}3RUi8
z&q)W)eT?I}ey&v8E7jKn8!$?hqqvW^y+JpM7bo27MH=5D0TMD-IfvajXO)$sc4^Yp
zvsTUCI)|i>*Px7P8;VxYv4A;=qtH^Y(W(W%iV2ehhs=N(#6(lrK)6v)?`Foo#kNg}
zae<F8DKZe>y4^Jze=|=gs~Jp|%PHZ{Uv99kB6)1!z28rYhf0Dcb;}$K%>CQiw>lh{
ztMx#XrtD7Ybhj)!MW1sr#C`pm6V(e~UPGtg(6M$qT`RJkmbk)Knl2>RxSs5(l8{1y
z!F(z1YZwK^S2{aSoiFX}$u{HCba2dZ0mU2B>kb}8v$}s#K>FeF(b&iilhu3<LaK4X
z<nh)41l)hSr$1j&U9{SD`U9c3QI%zepYmg?n$bySrH#HlC!rF3ulen~i@XG~Cp5P`
z1+yg`pdQ|qO;Di0y^DY<ZU#CEPfLiPJiBYF>ESSYekaJ$Ngnt{tqMFIIjL@(K9{4v
z){%8i0T2{c$EhOHBaUtsZt8Ls$-ul#tEya5r;3~}`Jp?z$?hWn4?jHiUO?ruuow7^
z(ZNe3UAM<k$BS?oAkM-k3Kz#3+X=DC+`{ikiHMje<vf9$_vTYXrFJSOmFteCfbr#u
zLsoP(+Q6@m{;#iHEf*GEMnLZ$tD(BNV>EMyvZ}E6O;2{%wtL{iQPwWXG|(3Dy>Qa*
zhl{EcaeVitwX)L{1qgK3b1T(WRhIP^B@@m-<=!FQWpN&BU&LW?-V=a?9BE2Qb7myf
z19+-xwsiC33S&zNE<KpjkSP@qP<^TSvBk=uApZ22Fnj?V*sisYXI<|g0BRc?`}aP=
z$>0q(5<1NY6zJ<;T+H$bAt?XY@A6y7*_4+5%rIL>&xs$-7Tq$E`|9nt!jPHslGkd9
zmcUy2@-KS1Z|w`cwl=bu?>oWMrPm#eAzcn9F30b4$SGD+O^6ED_pj;>{j+%%IFa>@
z)m=T4!!CZIi&iyR)ujbE*=pXIEii*Ko%wU^<Mp@>7WVOWIqKK|#0XqF-`8BCy7!+u
z)_vfT7S{BHCLaOzve%bZ;@tno-dhGo(lmc!VrFJ$X~oRUE2b4QGcz;eikX?2nVFfH
zR?J$@^StM{zrz={<HB)Y?EcVGGt<?bRhjv#tjg>xIi5uaMcL|%rMFs`7Q$RMrNI&e
zr^S34{HLA*Zv1eJQyjiW+F4)UF{)n61#Q+HhyIWawe~PMTb(FXEx8C7s!FSERfR>9
z^y*csF-=Z(PZ#lFT3n|%O{diys`a@Q))w!!&NUC0cHf$0sck*8i-B>63+a)@<)!lG
zRtaDILdD08^oYU&(B-I@${d#twk~teg{gznV_l`yf@*5(CX-@vn1PuT>L;~p{|84!
zm%rtM_^thwK4@VVt+uvd52qcb62+>}S}O6a1v1sE?JWhVpGQ>*sj@MCuG9IgEhjvP
zdhncF{Gxo4MujJ&hZri&Z`TYqF1i>+Ocx0<BUY4tZ!@;dK?N_TQ6p6Mxq7*UZVp?x
zxMzi-85vjwfEQczs#S=2`z{|96*o3Z1tyh(c~-+c?~VbBfKE>mPqAr8dhjPOZfqF`
z)kQ7ECF_nWX=jl1Se4K(tG72gUEK;ni$kw_Z={7aJZy@TiaO$?ak{*I#zov?GPsU0
z*H(TD1t3khgM*)}KdmocwW~|x>?wvJ1w7A(cDs64%P44_Z?)q$R(5if=Zh5OfUA5<
zdrImhLAUjOo0%K0AXN~l_*<0Chj;W8zMNNCRLxlzv??=NvG(X2UY!?`u;sOCY_b7U
z6If<$vWo8VGl-!UkKn;GpdR2m)jPS*yT7I$L$Xm#|BPDtH8;uXX+FU&juOQEM99w_
zueXhMbBlj;Ilp$1)(-G5TxeC-;1d>Yvzi4%Xpo{L6PVY)J-p=b^QtVyxIO{Aj~nBa
zW@P5pDu~ORcG|3^ieC%m4mf<QW9G6eou3C=OyagBz}iVYy5&{krPe~D)8_(SR;!m<
zc<NP^ggR~)_AXk}{uz_euPRvr-t({U>nSh<*J*NdDfqkn)f@`|hukJp?RnTgvm4^-
zD%0Tr=BKlSd0?C=T<*{=Y|;Tr*N*DfZTt|o?iP{JqSj6y-$>*v?ozj&hU+As;+Gu0
zix!V@9Am)5_9pHb?Gk7ZpU^j0N5HAAqfbC!($mT+AXe;0Vg6tnvkYw%rMfBl3M=hP
zo4I3F!P!GJj7!1ol-xxkAvgWR!$Z-S7<x1fR#_nY5APmeeL-^*jb+6;+<3b+h4;$i
zUlux(78b}~9fAvO)gMD}RyYEyCaRV~UQ_bOD+V~2L{#}4mYtgGmI-rj0mn1y7rP%W
z+L|4e<nQ;>y(TU{2ybbhT-|ug2I`EcyaAzu_|45pb~N)i8l|<He68zvtv%vko^HO*
zk9o^WraJYz4xpN*9)t3ju?tFbXRvJ3Hr)dA<)iUuWy+kB$ush7fOU`}G02j~Pahu3
z*2qw`AJOPuy7(_$ZnnDDN~7D4Ee8Gk$iO=ivFMS0FARoKkj>6<hwS@>{J=j+<y}2Q
zY)zEi{Z|3lIg=?8qpYpHiFb2*eR`dvdr*eE!lorL3KkoUU~S!uvC4fhaN#o}B>vIs
z?zJ!BC0#-ms?9^n)D%{G%rxNp*0YexW4p`qgYBS08TGVC6bsh+u>Fv|b24k`4}IL<
zOJ)sxs&d*YTlxwcDY%ElC^k>iWVWhVM_#(xTajEG8z;G^odV73H>=Dasq#^7zL$ZA
z$gl9#VH3D)2+?t{7te1I8(M7oI#FVioyn4Zh3C;>Vk6HiujuT6Xp-ZnSO&i|ucoit
zL_f<W#K*g{;`V4IM=_(zGy@@>9Q9(6xd4DIfwA0lq{eov%1(oIUy(sU8T|PkSiez{
zahCGaqrWEyFkkt~;P<&|GhX<9^66Lc8kMl+^I3dZWn%AX;j&W_9$S(_yjsk<|DG`%
zuD-)#Dui3Lba6f<m6!07k;#Dh>e>nm`*4Fs`5B(wD;Qw{TNW5Vg9Y@@ffXsIfgVlS
z2mJ51zR$A2|G)IVq7Qh@LE!SHretyc)7_8T(6kf^;Ddr4uLn^UVE;0M5z0Y=?B5d5
zRNQ}K*MBX|F59*)!eA}<^es0(=$#`I-2;;l{<qW52&?}8RMq!Y`CnS9aqY}j`_H5O
z+Z}%VN6P*y+5e-a{J;I%Y!F4C!pX&j=MmzyE6<OhB);f4fwXh{JQ3tK&UMN_-w^u#
zxcu}tq&K1%Y)ky16aoZ@a9{>PpdjMVI4;12jK5aTjD}F&7%xTbm*&V{nU)N5#zu+a
zP6H}V8%WN+=gv0u+YC;EA_m?2ScJKu<T`5RQ#Hu%nT#K>0|`r}ykmP`WsVMU;ZA^S
zH4@NVMx6Tl@>t?SAohw7e7T`QmvAD+Mv<aj0|`aQ_PqY0lMq(fhdJKvwd?n#vR#pO
z*82{e3UIa$w54*DzqsFgk>Dr^!j*3&jE#=tHu)gx0G=`K{hsptZvzf4O=`dg;|WNw
z@I5Dp0+L9;uTVy|N1pFaQ@3s7Ws!q;Vae{9z>?B;%pm`%=m)`gO?+>#vNONyPC#;L
zQlYO8*y#c>{h84m^tJ3kVVAOkpI;$Mnn~_=2T(#BG0Md#FEY|6quv_fCTLu^w|7wb
zXT6W1!@$9M)xWi4hMK~X91rlwHcMrr^Vb{0z0<7eiC&plm5E3QcO~Kcex`pqj6BT!
zVo(MLWuamW#`8mv*zG5ZyRhSJ1d~h$A|d2lKU^Qu@u$I>yCugE3<eEi@%%`sM}EU<
zFk<UR<VF_cMO>c|Lx($qApG`!g$(!B4;Q5a@UZ=!^1i=_k+m}pavuapHr^k4ML3v)
z3UZEAe`2XPE`@>q31kja8x~?g)PJnhZ@&of7PWVe@}6l-!hID1OdwS9Pp*F**}cJm
zFKf{NAi6%3gdZRLOz59>x6Kg08pQ6eK0)b8Y@q;1v50OD$^~d5TuKV!INlV_&Jg=t
z?Ku$R3rLO!upomwJr+>i2{4r1o-zD~EkjcNFk`YJ2<RMa4LGPjalHl!DOe@Ge)y1p
z3lm(zmZ_jFoPJq83<S`LJSsJ6Ulp>PwNdz)Q8O$Scl)%WUx+4_zwJK=kjDGdI6XMO
z3kf8YBIffE6RvqHG!63KMwu$>j}=Ee5~Z1D&u#%9<nBTC?=H^9u{cL~!>yCo0jRa=
zXH=n(DPe-^kGLMHN@!bw3*ycF$gnK{NJR1?4GwS+%V*C@R_<6>MCU@hCW8||W78Tj
z1ZyCGfTmLSf%@+9U?3O|2ZHxKdC3_M2%X9O_W-@`@6K-W0-zlae|2f^DC5sNZoMcc
z)@A^4^B(bQe;p#ytVoN~oi-!f_Etg!Qi(Q*&vw8xWGU7s*UIW05hDp<5b<|!0w>uk
z6WAa?u@p4e;MSj*R|5l@QJn~;SkmE_w3lCW1=+AgSR??<X#hv;M<mGwsEoW(=!|DN
z4Hgzf?7hedZx-FW7jON>C<A7xI9w7ys3*YX^%4Opc%pUsLarU*9Y0d1ds4#4=-|6<
z_g27{Mg-0q`j)r@?Bo`|1DY}xmd>2+3;v@&E{Xf}93@7SUp99<H_e>@20s|^42Rfa
zU7)OJr&Gnk3<MBm*Z4vR8h~76P63p`ZDX-k{yW?o?mnKM>5do86Vgr8(EMDT!DIjw
zKNtZ7Ky6qA>F>R;H^Ux=Ua_MfDFdn(1c06*xh#=z=zvnX01?VtFY@R&AUIm@(n%c+
zf}sNc14^GrZ;U1sep##bPaHWvw}b#=HE=jIVxAk2D1WHu5XvW`5cob8$?q}9qydFX
zqW_NWyqIwR!QB%H^#3oEPK8kaX|Kfb#l^;3EnwJTKbO&(R{-+w5Bg`c<jj{j=rOvB
z7Q!9ehA?Y&*m+^RDbIX7?v8!akrQNC<XK1s1_}am69oa><ZG@rW2QdEKTHJ`7|4DA
z;N}7R=*hxL`-_zbsL%U97J-iooI2N2F@$jsH*#taFc1WB4lF=TGzdWX4!BDKEXBF`
zf%b4moAm*80SBW%g+Aaz@CD)m7u~BjZ>lOa)5U_mrUDem`>>4^1qdkXF;-jWMXCDC
zm6~4x(F;fA#rsLcnKLK*N?kd3&j&!m8NMnb5Rkni=Y2(%ua4$IYLvsfM&P-L^2{~f
z6HbAzj`7kiZDQ<$ey2}oPRn|2iPQOms^Sbh!RE3Cs0;k+-5Cl5A0O5wC+NrJjk%A&
zS`RCrxw~{X;Q$+hvKW{yz{Pi6QIBh^_qLWHY;HFjug{b#^fy;%=LJN?7o-Ta4V9Y~
z5D*03KV<X`bk^1q9$CEt^DY4Uz1Y>A_w-+=`t4>2;{pNc(f;S2-80QW^vl0{c)Ks%
z>2ofQtL5u@cr7l+Rv(=+cbHh4WpeG_dA?B{64jz&x14HXK!El{3jiPp)DxiDr>M6$
z$~>CDaM>-pcx@Wz?W{<6NvET``0>yv*Oh}~mPhdE%p2!@aW3lYb@2WqF49=T>M!Aw
zC7%rnq|bO5D+%bU2Asal=~#o~-O0l~d2i*%%Szn1eaE6ht~H}q&2eDsLA%e2`fp#@
zfHzN))LsA=5&vORU)Fo)+Rdt_Pdp|a#KR5#X3x{z6`X#^u@#MC_7z*6QJDn@5TpCQ
zf<al_|GDLmv<&|4Qame#Pj+Q_OBDbNB<K3C2Es*v_eR_fUOZDj1v%|P{8`EsogKTq
z*Jd%Ag?z?)>ZXo;^PvV@F6;lViS`~g{CCgVb&=Q93aJ1L0*DdvU#a<`2L}3byx&p1
z5Qc^W(kJ;>&Fvk}j<Me;)r;@RHngMxRI}{21J3%AoH@lG{sO}ma|G0-A7p&zdZ_>W
zo3yV9;F|w;KIc9B#j#_Zkne(51tI)K$HMAT%hEhR4v7AJ7G<kl1tY8bbIj?1-}X;W
zUU->htpB~OB5ta7fiDA6Hue}-5Oo0h`tpSTL6@|}gs5j=Iyrdv?8;Plf<Z6%6Xq@d
zUClAl%{3<=p!e{9R1iz}U5Uxz+J1>fP(Jg*NU<c&B*bWEgNg9mpC{CZC#M^y&vSZJ
z@x9(}S!!P5pFWfgy8TBoOO~%!Kd}X{<7tN<X|r3Mve1j^d0aoA%KwqP)$5)opV6KK
z2Ky_=j-Tb5YS%K#FH6k44e&sWW&bkBbVa%S2+NYHdua(`j>*m*D9)KNH>9u!nF$e~
z)dTnm0Dd1qT>o$c)os9@V#`Zv;ure`59rQ+Mq{9<+TP}9UEST(pHE-c5Uy7Adc3X^
zcxL;ew$*X3&$EXX^wN<){&v2$hU@@c67ewcovM5UnBt4d-LW0VJFU;t1m_XFu%k{e
zJtaW}$s&uuKvOInOt=6`zwWy<fh&_02dMAyUjP82B#fj30?O<C55RPvD;XZ1>r05m
zpa3y)D*gjPeNrbwtNCSz04{?Nu>LbyfN0;D)TQhZE&j@<Uy)!%1JeHk7@`4uPFjPe
zZBUrbuLfu~&%eqDxZ3~iKeri=w2B2_(e9n-Kgb3+(g;`o|Eb>p&2;x$;PUm(7skZa
z*vZ+^#K7jClAWO?3=<a-BhfzvUS0-q3u|W+M+R|g17{Oa6C*og69!omTQg^KA|^&g
zE`ENP|5nv~qgrFraf1=b=T_Z)19QxO?!vM(HB43}bEfGhcUK5+ygn7aEwORp<0Y-u
zSd|0Fz;iqnu2r0R=cQ8-{0#_H*_&Wq`deZDH67<Acs4z(e`2^e(xdo^FHd`-;vB9n
z+dKS@WeYhfJibFp&IE)4#ryP$%dOX+;#6TJlAv9^#>M4V6MZRY@ZTW0vp=p<f~avA
ze`lRkrFr^rVg}PD;QIP>xG>+@T6Y;SyUcq;*Jf{m3`!Fzjp1E&9y`~!<ZI9q94_C8
zMD}nY4M(V86nQ12BPV>7(%UfT!4(~F<;8^&)(RJ-&-|KBH6bKa0wJCZNEoCKUZ6nz
zwJk99UeecLf)8xkQ2Nl%$#n(Im?AHFe(FROyiAJH$A+wQG-ZqV&`W{w^HB}|GI}Kh
z<-vjCC<LqKpudUDJ!32NDI{H;DcIgGg#ez$+#t~2Jy5o60PJJBa&hH+cHUgaGc<vI
zs!rJ@H0yo<&I%|7=D{p%aD@1F)Wvea^n{Xl`iG=;j3p7Xatn}xd<18PNSa_}Aa{pI
z9_6=lSk(ke4K;fYDs8U%X0ozl<a9|ClY&S)CT@X6=|GX=8(#H6XG4yqLHUmYQEELG
zN8}wGRVZ|%Vf2yv@Z_l574tfrsZobsMO~anTcR?F5wP7D(MlMZ0EkH?t*#00#B<r~
zG`ZlGv?+;>0_`Gc32Kzz>@6Dn9m40fp_5S@g_az5_=uQ5bmK&rI4LUAQr0o;(~qrk
zvg5H;=oC-3v9!jt=>6Ik@-*^NVx8zf$?tY_{xAb&<bRHvoWVK4hwTZ#F3brtV<-;8
zQu62a9hE!+VjO5|QJ8H<%C;!ih(c5`t<RHLleEZ+U5r6wj{#eq%Mvvjw{FOrbgTMS
z|F&36KnQ^PA!X31YsH;D8ke;HE`Odnmq0jD-80Up&prsX9A5xA*v5z0a>cQ07dc3+
zt%L_ie8hMQSvtB3!R(cRV0%EVdxpg@?P={K***Ss@95yaHis1Gt0gN=ZQVLKx~8K%
zg?RV*yw0BR9z(eMy&tQR0%>a4<;MI$gR*XNl~;Bxw>*U~ppv~Lp$^3CRnrcF<a~|p
zU&pX8vPtnV*w~Sn`@`;K#%LA=V{@Ne93-PjLRnyI*vdy~PO5qB$7XF<vqT)4)+?*j
z-K$}$^DH;$x=$MXN<@n+C5JJ-K(*8?p0$>9-CK#gr}Ll$hXd;Z$>&i{<F)8RIKXmX
zq#<sX<6gLta}-Ur;X#4#f_2A29xp>!WRhh<QKET+&C7nk2Fu0lFMh*YtPK@iEOr~@
zZaN5<)`g}&Y6fNJ!%_AzFi#KS>73;F3)}@vY5jkO4Q7`A4jalYhRz=LCJZWo6O+jQ
z1&S~O0v`V>ie#&Jsi3Xm=cJ5ABQqInWo;KWEV44upgj#)PWQk1?yHr<fO!vrL!=G%
zY~lB*&L1};d;qpG5K_pA0uxff_yZ0DaS572L-BJ{!={KLqvA<4&eJnhcE;jXzp(ka
zHiz#tXZ>w^_vNGK*4N2IRG)}AX*_w-=s>ON7cz1yH?dmbvZWGN&^u-&Ja>%B=bQi_
z8X@(KG8pOm53;YSzaBP~FICIe-kX8J99SS${pk;jZEkVRq}?IfJ9=GlemK%VaU^CE
z$&&;h;!avGZa&Km2FiWpBvKL*Oq^&8)YP1QmPNDKoM|$xG(Yt;v8r^LRTk7c5%x+p
zESIXBIK!1Xx<Ru#S)5Xn^pHwJ)YMw-30ch!=Gb2o7r&CkCx=YQt=iGVr;F=6S$NW=
zSkkbr9|UA0g>onEvV`nn4No$$;f>fEsPSwKTLCV@a-?yrUrDhnnRhIM>FLf%;<JtA
zaCZ8fK9TISsyK1GrPz<WMy%NOI$^X}G%NZi)6^6*V=V55R|Vv=T=&>Gx*1j{_UTMT
z``P88$#hcFQ8=~xkEWq!t$!A>jDJfVPl;EL1fCjF6-MBe#G9Nvo->q6FjKJW7)dWT
zoET`2r=-58{Z*)D!fF1!uRHjs2J?YyXUcN1KsTrVuNzI<&?g$E__U<QeD8ZKk#QkO
zgat5cIJqbsvWz(tp8-h&6zt5H`N0p8=)8#fq1lL+2q;7DdVdYED&m6(GQ;TPOk^+-
ztOy2^C=)*d2S!0$d+I+)eP%+!b#!f!pG0Uj!bV3U-ZF}x&jalxX}h8-n&_h!-}hC8
zy>A`NOAJS^q2{?)eMA+6aDvMsQO5^M<_^*3$^o1Wz6A{9sm?R@*i>kD=$^RO;-P7!
z2Vg1WBHw?;jO!JS)(}hNq<o{nl6QPB17HrJe~91C@$4`b;TCO!e(QR8Fed8RbK>m*
z6_2LdsePFf6Zc!jpsql{;7g4bP+<y!UxoP0S(ctX^SKh@H7frw4z#MKtp)K+`R+8X
z;R)3$%KS~Oh|#6h{mrvFIQP}r)Y&1_^9$rxh|mU5Yb!8NBx>YkJ{}E|WxG?Z<OciN
zu->gO6P4WEAF0V-uc#qoT)mj*e?sDulakw1@oG7dx?YT*LRv<E6?XV>Ih4U4SRaOo
zn1T~!xkGDO3Kjwwolh@|ydDoxeKSAx?XTM-SH4$t6?C~!YjZFwb&F_#DviR7Iz{SP
zdYZ}#OJ=sgq~CX{Z(c2KtF<wTH-N@fJ4_#X@Zq(5t)`ThYUyNN$a3nPF`5Q{zG|(m
z2do&eW!uAaIK`H7WLUm63~i%*y`CKZPMVY0PT!@32xbV0(ORh<%!;4uBb0wC2;)EE
zs<46<5kj1sxlQHGw^4iCo?~t=Ljh_T#JCDAb5!JR_{rH^S%g%OB5)xkNjo<2V<W3{
zPwE~2@^r>i0-rwsW-aI|u6~CO;%b|4&(dafzvr;W>JPa0Z>MM*!_4+=LJ!XgTvv`&
z#YdQe5Bo#tv*I3Aw<wi1PSq~*(!*+rtj>IdQxk1Jl!r!gONV4>#ID7o{LdHAbB7^c
z`Je|Rg}<CB-<8;vD^dLw)pejva&%|W$#_eCc=){Z<Je#RIRQ;)C0*<52WNo-!bu95
zdZtQkMnRf^Azm74KU6^52oyW?wF3F{#&%Wnn$WO<kMn?M`njl&$hD-c@O|dsPa_d9
zyfu#+faQl@CELz!YR+UGFYq$`>uD1sS^9#L4(DWayBR!|e`KL;fhVdvkcn=>utQyj
zHg=TFo;y7rbcb}$ncmWl5bK<7>@}qH!<$fb{Giar=H4O^AteMmim*Cn8!moU)AIXB
zATXI7?k)w6DfuK!vLDoOU0A+WYKn&qrjzs+W#qx&)=T${%1Wt}hvpE84XbU!pcej$
z3)|-MgYsFq+rn3Q2+xUV60w`~F@coUtUnwI85%pMU1m{PuiI{Kuj19YE3aO-8BT$o
zy~&U7ojpgjNP)lC596EWU#%Hs*8Y`vgq?UqpD#nT3H<O^>pn4;Z1X$JxVP@%lUsIb
zHVc}^8JB#wX!-1Y)p2u*i2EMqo9N}B=gHQ*$xYg)T&~eb9s7}L9tP#-QdWQYIvBOu
z@3>i&q4*Ej7lJAQRb5Y%<d=QP466;YC}BK1&29qIy~cDW%fpyInq>|t9n_B$IJB#j
zmFp^bO3WMbWqI3|R^?Vz+*)s{;BpJ_<Fvg8O0gVQn?lI~l02V^fmv#Lj$C;VEZo`=
zs($qP;^Xu))b4w3(r6L|30AXF0s9v5I%ziPo!WQsQmaR)-dWl4xOzpbO-T|mFsYS8
zbSO*0#OhrRYj{s=W=V(sU>-mjSF2<Rxa4C>XX*uT4VRX)#Q`%zaRVY>6$WxcdQ7FI
zK}~aee(E~}pEO6I24g0A+%G&hOh>@A&IvKdp$r2tHHMhlss$cL!-b_@16q0ft=vf!
zh&wUDRmHziV5wZ<+kb2}nYJH5OVR57L3k3_@SqmL;oHT1{vv8XSYY%0(|Es{GEG8E
zyV~~vA!2GvW9*-AsHJ1;vM+R2q`>j^{%wwe;nmb!;?og(eafWgf{9mcZHd=b1=Q`6
zS(j5l3R$<Ws&wu$c=tlz0zWo)zIk7TU=>ts1|F$~wtQ8QXnP&m03i{kJTEKP@3!`P
zpT{~fiaEY{IA(yrN;MQ^e5m52`1oW)l)RVON$tWDBYCq=siiq`1KB!9JyqSN67(1-
z%lz^c!slRC0q?7(rhI;x&OqE~%H|ak>4(7$gDri{RG2n78pi4EM4_-#m&jyS|GpiV
zO4rM5d_oTggv8s#mThY#8JTh2kTNziPW#9=Y?PY)&;Nn(!uCI5ys&XFGX7WNB}M~M
zLuIvvUxdp^Mf8Z%l<@?wpk7-m`iCW}VgVIZ29dNOuwnuNGl&T8g?}GTh2(9w6r(Ho
zZ++~gp?dKo^GK|pva;UeK9^*fA3k=7Vq=rt9(H>?EM7DGR<+$Lz28r_2~4J@(XtfE
zHJT?4GxIJNmXxJ=eR-><a&FI$Fi$TE*tgS3y2eHI%;)5&Qj960jkfBBuY6~S*>5s%
zq>Ir->L+o?BbPq3hfnaH*dMzq(e1J$w$F$WS!_lpQ(ShC*O3Zu?jB)lGZ|b?&yVMi
z9eu7^!PVPvS`u;BzCst<zWgl&0X)|DW}MS?I;ce@dhcs;2ry0CC+FAuy^HMTrPWcV
zUM-iaKiqW9ItM(i-`!Tej7I)GxA=8YNTToU%Xj1Q$ENdomRn;R*>!AKXHTW94_O=V
zhQ1;yW->=pvjk&Lz!}k{?MIWd1lAjhGq1qSMjN6{nV*1*kFPNrrD3MmPsv30g->ys
z^0EY^56PN-_sbfTu&|`5r>9R@P2ri+v*i97>Kb2TvSXP{JC5dS4E#0D$rw9DGZOJ@
zu*zh|V8<jY-6a~fF=xH6YqV?Dx~OL@osoGYT5imwCmwtPVbYhmp4nsBxKk>M+Ngr5
zk$Exg%d}_n6QwioEA30fmSHwt@7TKSiukvPD_lF%lFeC=fpVCb=2Sx&?hL}N0oTHU
z+t3;E4CzAkh$gwlHo@D?80bo&M-Jrohay2?1$t~`>^w!`p}2sL!6B>wjXI6|MpdH+
zGlkU@i*@}F!(Ff}O7Uc5G%CNB5fL89A@de&c&8F(HnJKbTfAxo?f#he*82+!okMxQ
zilauYKZ%X0D1ZICCF}-JM*l3N!VuFg`suN;FmfwLJ1=LvHMw*mEfBWrXY<O-?Ao@j
zI=r@x+MDh?iU4EUft|Y$FsJpT$ZZ_^mi9tDE~jcDw_@-auZ<ea3}pieGbWzFf*eUA
zrkVICC4~rUYFc%TMPGH<kaj-`DL+#Rdtohzw4sx-OGP63kN%J`ZH1Flv?D?6RA~53
zaKk58&*~dg^Sbd63_ZO+Kaq$OPU8t=(`2N7+R~T@D36MYMj_>-s^p2S^GFYLp;pF7
zfizDOK=D%LEypbFu|h&MNdfKt#xT#%w3PfHYgW5$Z2ZiS&{5&O0<Y=HYYM-qde4Ac
zUX?AD?C4ap3r8R0#G5@4schwNUz~SmmLrf6@N5<C2|pZjX9t*5TKQ~xeRrI4Ir0LL
zzx_!~+OR1z4i<4jd`H7>Hbp=_d2v;K2(urZIW81tvr7!$M94=-La<@#p#56-yrRp1
z;+vG&nN97PL7;QV{z^JeC~<F9p2twQJT1R}*<Hul^3E$Mm#Ry4{pOca#L+3h5EjDC
zMiaUDJE>b9BMmBfL=s6d86rJKJwf01(Ys0O6zKxw#We}Yf~C&zG3HOGWDj=W0bY~t
z&wzw#$Q}_*9BVwyau1S`w?4}Wfe-${3!Z)@8A`8v6)xhyEXT^*?eef8Fh<so@|ajm
z@MD=-w&eE;D@}&0NHU``jX_jCg&<T|(b|#5tVfN*ez~HBK{?V;xpY!gFf(Ve&m+)k
zw|xn(CC4k|l3+r3y0s!aYovH4wdducP8l;8&MVsZ-}nMGU5FI^9V7y>c(C8C9rhRF
z*QAhK-*?5ahpGFp2tO!xD1IBC6@Wjuu8gLrsH7~x#^-9s$16L3iY|`!ZFe@Bv_MUA
z^jz)<2ae;I2pcLfn{)ofp~85j^B%g_mXWh<lq3y0Pjx8Vc{g9(s0pOUvs|;?11&~s
zQto@2#>B(n;V%<_G;7y#%|+p=*XSAFX%$!A>C`t^=t+()DY=Y?-CB<8+7g8df8IgA
zz^syfl6Kiag-05DQ(r`nYy9jfEmiC3G~K>PKX7$tVR#i)Q<Gy)c3R#)u85yA@BJmv
z6Gi$bq?VA6eFO`;`w=DPt~z!GL75tv<0;gG>3gKb{N)`==*m`7E=n=U{yvPE7($79
z#M`O)Cx|KXNCZCA-9!!&E+IyCeETM@z2RyR5e<gw>(o};UkbjN<w*i8#+Z^N!ff>3
zt~XR{8uy@1S1qcrnX(jtR$-c7dNzT%k`qVBNDFky!lo-bJ}%Q?(zA<sgpE$#M(Z1^
z!$ca*9A}4BRoz_9QSijW2J^tsJSTq5c+>Vri(%$8SgCC1qK$Ied9D0TKI^A#r%vji
ze!};IPcX)2Zpf(p=-Q;)E$9c6ySrXMANid0wCO#GM1h++6*bk=3>MZe+&m!zZgALg
zTavsP>wM_1VN@UIv`t9Y60<J$zFPLd_}7*`-Y%YOXpY&K0`FIoEVQXGzdr_w9z53-
z2e~>9k<R7p+{b;`%Q-<%0v-b9?B_)Y5b{5?@~d?FP=3>qSNe?66H#PAcx%Z>-{S<+
zSr49@m-Z^?X5`3SzxYeVX;G!Y(L+=fVESq@B-`@nYG~exZP&YUj&5hVrNWV7)G}yN
z`9Ivf2q2!kUdjxpb%V;ZQOB7bN;dgE?nxN%6R2?Vv~NOtM`bV8$1dVi3iNu}CRJ)k
z@~f=zRAn;!nR&qHhI@ZV?eTK9eaavpV>laP$B_qB+tqQ+{u?9y5DAhLUT%QHl+BqN
z8sWnjl{ja?spEL1z+11$>p?^2pGsfF$wEtuE8TVxey^Xx&D>Y(j2&Bm#vka}sHovB
zvEQ)c@jU>ayYv3+ISRiIwG@U{$(3WZlYomb$w_LIKL}(cW$IV_!?FLWR^|DxJAIUQ
z?JHT{`XVjo7-iW|r%w2<TWo^twB&+$VHL!BHGZxr(`1b9US+{wQ#);Vj!5{)k_;YP
z;9mJtB{aMO(vtqktUp28C0b}v6Ae);K8loIEbed*%IRdsBn!#4wSVi0eFR-LdnFf;
zl3R&g%FRI?QCF@@QFjbW&imE9{YWktXKhr|BlY>)Kk~ldWuriKpxjb7ExF5gg#aGm
zamRIp`&fieCzcANt>SJCb*=yC^@D&6L0Xu>L9>vOo!F#)SeV}U494k>z*hal6!)vd
zVEJ!Fs;=7Ph5a?EwiOLIn^NcahhbwPvoJBvn0>i+y1iiGLzrNAAecOJSEq1!0FtD1
zjEr<-7#4jVhIFu*wFTP`JvR3U)!vLl-WJQQ_S6g|QMTmB*|kJXQcAj!7c|jv-@x1q
zTxcrUI9t!lTR1G6HRHWFDTCKg5V*`5I=W76k4IK#M~>Ak(h?A8KqLi{evxW@jaFk+
zjFMt!^N4*>y*E^b-c<)}PiPq0<|keWRBaw^tnnL<o;vqiBs$tCu3Hz21QBm&e&4;R
z9>+%elQU?HuIsFSaT7b~pDK{ksbT6NaiY!lYRrg~?TonqWLu-V5J>YVCyVtY;@d>z
zrRMU)6X>WD{Gm{L@yau+&s08^J&i#oOKx##rLANR^6LlW4he)c%k!02ga%$Ce?gsj
z%+ZETq6!xQmEX{DADSvl>;cimt<3Co-QJ3dJ0f<CPwpxVJo<f_9cdWNkt6!y7-Nj=
znqr{hoq_IYG32JW9Ckpq`&wgrWLe+Ce%t6;`%03~1`DK(MpgkV8K{cMFV3rslCe?G
zceY!)N5FXX?jc>0cw-lO5%378v;F%c_cZiqOWim7Bpxp4tP!(G)E_JUJ4-1|Jvr5h
ztZbl}xL4}%Cdzis9}nB7e8nYNg*ZzFq3}~m^Squ(jLZJTJ)K`t!}c9LEIPfEDA7ei
zp+5@FSYpK-{bSgL%PFs9TSFOxMj$;;_*zL>^ikN*eI)0}8Ny&Pz+KYx<rB$%hIQ4|
z?Cx~|b8L37@j!|vf^TkqT3BP8)oa-K)EHTfV&ZfD?zvM{q5#B^e1b`l+STMS9i6gQ
zl#O1R-@lln1gfKOm{h3?>njnZj*R4{#k`fT-!0S30kzhc-IDC?=>bm*w~F6jLVT0t
znrN%Ft>VIcFX|rlb9?Oko*W`)F}0HnF#FBU!=#sq2(HlPW@jM&yqcEn7rN*I*(i?6
zXA3}`Z?u_Fd@S+ffR<jrZeC6)Aq%=+KZ=K1M9r>1GSPz?tfqD!<^>>&<zW`;+d6oP
z`#L$RF|2VOSP;UMTw}W20PCjf27TN(9(IMnym)HzS>eiS^p3%JHESVqZ5<5=h_KJ?
zF!q5a4wr{3;9=8&>v<L7UsTU%-mrusl-kogy7u|he+jliSAt0}>HS#f0@%bG2A4f$
z=O=wx^)2PKbPL?O9*GlR$&7)ZW41H=g^tUy`s9IXN{#}zro-Z>VXfCJ1ytR!mA}XN
zxeR;rXT2^L)$!md;izzUYyW(!T+pfXnbZ!}gKr|-O#IUBs8cylxLt>#Y*W6btcB%7
zi!3qwFbh5*PkF&CXlO+$e~*-fTU+Vi-;Kd2I8PLN5Y_P5+W)pqzE!#xdy;xtW(;%M
zexD&BhGI9ht$irlbmFXLttP8pLgciAQjQX(jssC8MZa7RX`hA!eN;>h5V;u%s`-BO
zwR9K#D_eXdB>F^hnVEJ*yD^@tJdNFSzS1@UDQ$aBG*W<Gf+s5zp(hpKdC8lV<nNSW
zkMLJx!wf909uE^91o2X?M@qZU<tHp4`(YBj-AIhZI<zXW3e8Xu&Vh(>Q|9=IF=eFh
zm^AHTj!TMlO3<2N0+Y@+@KZeP#TxGR@yTa4-L2(VDRVpCbBftf)^OTXP*&`;Gmi|3
zb2(Rq=2(7fC2{2wgpGxVi+I=c>R<kx-yM<Sg5CM@c|SjVc;#?KWe~azAN4AazSr+Q
zz@5)3<9f{49^pRf!wz0lyXOlRAqQBm^$y3Igp9)Yr6m_S&+a;QGICN1;Jn*Zwu;WE
zeG$WFrKk4h^n883)Q?iCQTyogNGdd`0^hZDaIconCl+B{z()%E%u2sfBaA&@u<!U~
zk6$@IWMXH7+0Ul9=7;WNXujl2@PTT25>a4(ed@t%)C{_c+It767iB7XaocSE&4;?)
zZQ2i(jqM0(eKg-uMqd}75b*<#O?z6L9H6j|`g3<WSMTQJ3R?Z5;l^GW%D4eJVHGSw
zAc2xW-C!*6?a%uox_lBpmEqafUa5_`*ZzB|SnKrq1ZqU}=FEfxzO8doWg~)F%!h~!
zS`jI?LX~nj*iIK_tE;uv$E|_j_|<SYES~71Ym#-jPgOmcbqf#C)_7c#*_FNi)fYsw
zu<dVYVviue$7dVU%sIHDAII{FMcq2S2E`VbnLPbH?7$rLWV5E$m4cCCeZe{q<qc8q
z$$6YB42f4$X}9;vrklq_wPhS-6+NFBP)qx|;$r)-tKIVKxte69UZZ2HcWStWp#6D8
z61$-F&{>54wV6M`FNRC-zVjYTG{GsuANd|SsBA5U-9+4ZLCKr}m&qLwjr7KD_%<o3
zl6OBeh+}{qs~peV^5-NZt`>NiuVPExv#dfnj+A;p4cGT`Ma40GhK9ZeSkbPl-6Xco
zAhF9#WJLNs#90n+X}AJ%&632m;FyR^D@Xs<7ba#PXA8gjSatX*kUXL-TxQnC8+o?_
z%YMFN-@C1U-Jce||MUfGhi_JkNvWksMJ0rz8uLKkXaj>VmT*G!*dx^j*!I1FJUPDQ
z_bWz-Q&)6Elr&Tb&>wo0;}OTM70YtmDt}Jf8#}AA5yB^}(^Zh(C5#Oce$QHZiqXP*
zw!Pnt5lEmB=kxJk^&xly^z=21)hIyBi?A#&CPf5L7LYgd)3`b$0#?wh6s)2v>PPBk
z7-tP`sunN6>PjiQM2RUwD*IPAHyt~NL)Zbmi7q#1^NVJPb~{8wBH;r*<1120zwx+e
z1TAcxoIHLy&~Jg&z)l<3${Y1;AbMfKd}wbZs3rq%F=c!mcaug1r|g}e63pyp_yzgK
zd=O!CXZ~Ov$>OK$ICOkI)q<4EriRm`MS6<e;a$cy`+1vA{%rcZGP`p2(3l;tDwFv>
zG{M=m8l}c;tH3`kMTyN{hMRq*O8qIzELWkj6s86N9uf)xt{S?ss;-8kj8jv()HB)E
zH%_ne-L=*CA#HjCGu{)IXIej-A5_>`+K2?5)4$Wn`$a7UCT#8L+(8ezKpa+yNDU1O
z9Rr8<8r<p|D8ji9+SEq(r_gyJ$*=K-=;?U5^n2{=`~6a{iBhw${6+~52N4PZ2NTn?
z>8j6Q#IHw(<_uX%7lc9?I`oQ;7^r0!>^gjhP~`&F7b$NYf8tKBguQ|ogtK?2OtlY^
z<UH9c<Z1Xz$WBOsg`_6_;aVq54zGeH+8HfeoM0z6Ytt{|kwY0`>q-coulbX5?N6vF
z)yB8k#rY@h(jWN0khY%Ck6FN0(M;@)k7L;K5!g(bOzF{NpNNZdU_X7`16KllVhuwV
z6N_cCZ3Vt>CQ>dr=y_%UZ<3wgsgfRfc?(zyYJt{%(yl(p<0`@O{e^pe|9ke#{%qHl
z+e)DSw`bYz+ypX4Kr>DHBSMBjnqAs#eMecYsI;!qK&zU?#IzAQIXz<eMR`uN3ubha
zrh@aJ)gd0lqwv<O<ky0E$ioOY>~C&euh+AT{iw~+9cQGRQ>aqhxg{XI2bN+gi?jmX
z=Re;2d>ZKc4H=sZr?-!Wi^h2(ep1|+2p6j%L2?KsBg)6LyL#?{gW%gYC@%2!DaXSu
zUl#58qe|W7N3o>ne`pm|UQMdU)FDi3#=;QWH%>|jgFh6o;*qPOWaF$aP(4F^vs)#S
zDqL#q!|XfmID|3WBmP|2CB(5_N9YapLD-(k?WPZyYNVESWNLR%GPKEW{ya}{ZC9w8
zw6l8QPSTW5Vyt}o9w&&aSx_qS$`u3cCa6X)R@lGJ#K52~;^G<&1A3vzszGJ~K1F<=
zxB2ewVGS-10S9c!Hwl_JAlH52^01OB(Gk28yUEqIEsof<=?n6Kdg7ze^VJ+u?;Dj@
z{Hw2`*O7YMq!h<>7Y(65-^b<&ulLufI&g8{lZ*Z&U+zA2cNG?gPh6&KF`Y$Vfdhvq
zl<183RY`h9Aai}TPi_{oywS_j2wof?ngccYZ05w6eRv_WBM<U(S$VYcu=2@ucdt^g
zVB6YXcW|+Jv4s@uL}VW%YXo6&+wz{1fEvca#K=*)Rd!}F7AAp)Wa&}%F{+uWu5g`+
zk;onq26$0?TQd5#J2)S$7~D6W#Fn_3)<$Er88HmXOhRKwglG}ZJ5^|xgM|pYFGF1!
zwhYD3r!DB4%C{go1oET^^mMD9>|?7Ozc>-k&Gx&#7x>sS64I$4;g4}|$yu6$deAB%
zE4K}e$Cc(+{$C!5*LOa?(a9v;3ldWz5Q4h1JwLq-T`9!Ozsiy1>1E31eoqTt>sS9Q
z6<EFgNf%4nYc?VR;}7qD@q~qL^AbR>TRv}rXMBti{+XB&u9VV8xQ>pEd{yt~)%nVT
zCt_ks&_iRR#EwAW^{W#YQ863>Unwh905X@dJoymax|XUmrfkU6k181U$l*5Mc(O0Q
z2xIa12*v_YxwKfYC`O(<8F~S#g*lS|D3WusjraVTS34^;eH2DyT04*~^hg5^Jj&ob
zKhyv+ve9KkUCqO^B}B|h%+oZsMz;0VdXhhCU+K8)FYvEB^rQd5!ZgSK#KJTaC&&N6
ztFEKsrJ!<(-U~aqO{);&O?N@&>qcn-FYB)#EPlbt1Xb`VjN~1xk-B;_&=J+i>xzy7
z17*-VDS{UNCo!zcz`!a9iQAGgqI?2Ns;lMa+7LTxrkV-!yl?B*XW=eAmif(0R(j*h
zmXq%(AVbs`R(n>$xN)WH&~=Qoq^HGcjgEMbgW1h{T|8AGKOpgL>Oy1mW0tJuC9#nF
zxZd{>(%X?h$zNBGY7?yV7ir6MFIw&A85a7^2psy=xP(b#YiZXV+I$0peXVFNwIsR1
zY1M8Nj22?D;0;MtKt@6Iib&;B6I|G-b?%gn_?k%AZS;x_8@fEd3zY!zAR0E2$`!MU
z==2I7Y)BQU2qx%=inU-qsk;cFe1ZOsGbQav1@Rv;FLO+u?c<Bm2G#lnX+LD)8dD-n
z4$^d{Y)uhSXRl09(tTu6lBVzsKY6jRNzHWi-%YHHOHB}YQFupqeg9Y|RUY*w>^^MV
zK844a)lwDwnR5(Yov>%ty^QGXDDR42u2elebG8r(P1t>bLmWJ&9IhtGLHpuQ1Lsn@
zOk1!;s+#kUtdObXs#5d*?VMW0^9cw>z3iyss{@B$hP`z%uj{~;E0j`p;q@pCd?hQ?
zM?jO%i}L}Km>YFL?Z#W%%66)EL~{_)QFYB3nx;+w|J4A)rBKO}FJ2tJnYzv~P<Yq-
zeCV$kThQl+^q2a5nP=X*2o-ZC(D~fPTHzqY08!-+lr-%GvlFMb0fUun&^#SfBbIe~
zhOZW^ouATJ2KWOwR1JLI;!oiZjh4bDM2EG*{oXnOLhL$&(VI5&uhc_(afjpkqc9GJ
zQCrP3&n;CzGzIckKx;9?#;4*w=aOW|m2mbjU}0t1&6M4gDApYe9F-igVtm3&=x?a9
zc~y67CMaN2+0sb-@Jxfv_h7{w>jB(k{UgB(E2hn)60_cR-=`6YLrBC9nnRP;df8+t
zoGF^HW?}3p5pr~L4{$qt8n%2J^UaTyO*{hAPM$eVHETafHRRnqmm}<kgActupwF!%
zx6?PME;%W=hUr!MpP$e_^JqQb_qQC$48vYElJ~0{a~9;zL64u*E2|QEeVzDt8*~kr
zR4iG2TGYO^4xo&xC2TULd@uGfTAKCh;t0^Iys=#Mxi%Lhw(<H0P~Wh;u9a*EtEjoH
z@I<xE<S&r~^o~TXj>D9haBskJCBr0AYGw_fa&ic916civSF-<l9S{-7k4jE{&FI8J
z8h}YZO#myqxwecK&EBxXBe=RD3TNmlEh5Bn@fFi$tWs$Z-FZwvLhF!$eef!x-jaXY
zw4{*e0b!B8e>s@mtZc!hC2okPi2T-sAHo=Jm+qoN!%-BkC%$yooAL5A7Ub%kZg$+8
zY(R+87t7j#=c}yFqOTUouTM6!fG~fqU0)&S=XWkp8$A38!}v7(=T&1f9W^2z3;m5<
zhHK)4wYvr5_04<h?yZeMd_-bXepUkg6KnY@@<I>hiEsw3bmT1tm9ywQq@;PR?>nBC
z02)<Mvu1rDz^3J<VZ?c8KATmE;=^W|_jO4QPxGQvLh#G&Zj$cI!r{&$56sem?BjYm
zAz~atnVGDk5ay*$`+AS4Wj)59{?J6xbvU9@2h{Bx9!!8tcZilV9_YaDFZopj-|g-w
zkZqN+IN8w92*p;%$MSL|M~T4B1C6%aBZ;rt5a#yJsUEh<%weHM{inaw9L-ddLjk#)
z+%h<<wyzKzpBMyiYq@JpGFaZ}HV(HV67-MGAX;nnRrL+I(%2w-N-Vu9)6Vg#hM}<F
z2+jw8Akl;qnq=4SW`-bMDK@m)`~+5ufM{M&$~EfNEz6ef^B5XeS0K#7Ni&*p$_UCv
z4?D#8y25{9ycTw*e#fR;B8X=4RG-eewIH;yc}ufK`sPNq34`4!(I6-kj2f$&sa<!h
zERV_^v*yVmlyO6L^n~g^oR*DiXVapoV9t5D3!PmY*(ovFq;zXmd@dwLD!Itu6m&v<
z%j(WX&HbS|QtWpVJ2W}qIb$qcJP}=>CMcWD=2}<WDU;Byn6^F<LBr_R4|^&D&&JPK
zl2?76V-kb=wwahd7o*9?%uXwH(-+V!<_+suI%jtRZX(C08<*H(XLX1j_2AUlPmH$O
zbw~Nc-ZZ$BD;#&)|GkQKLw;Et`31{01F<vF=4AE^2t8;#&ok-~QfD8AhAH-Zndb#&
zqkl?eFBv3<+mwQVE%AK<$m7b&CalB5;=|V=%%&6<E~nEK0-l(WStt)@ypox1Yjb<8
zIYW2BWQ2t$Pw0Z~{Otf9R*Ln)1FS@Vi4Iu@mz620q%x81J@+L2^We<ofXiLSuPTx_
z+Q<i^$cGg)<1?opl4a$!;<pY&r3`-oVNv58crAqOV5f6vy2^|GK}GnLoftDx4na-z
zz;@PU7W(<E-nsK`zp`sN?w^pmv-y*<*#a-iZ7R8rFTE<IkuJ(seZ@HsKUm5K|N1@q
z-1Gkr2I>D2G5h~G^o^B;jpM(1kE_)^RFqdc1ei|Tv&sY?aGLlawMr|OEg`M!YHM3#
zm${?R(S;P!iJ^#zjX{_n$jOL<!BB{zfw70u)f|d4D%AToHqKj?-#2;?DqAa?Kbl6H
zcQ%24G`&3c_z@UnH#;`GwEFGde)tTYAQwuY@)F!8sO#xsc6w}Pv01G~HV(s{%<7O!
zP04QJzn=@NQ-gg_#rasH$vpfrW%aRQ6FB#yi0&xefA{l!!Hn8t3f!}SMdTah3(g(N
zmdZbkdL_P!B?99mz)nq|^z+>Le4C|5KOJ*gR8k_Jm!Hl3JGIsR`X=n0$m==Yb+#PQ
z$uiW?72R|;bj3Gc3CO#P*)2ym$go&o7SULk1jyZKN+A)IRA}@(B5t?d<-K@vmXf(*
zw_f)q|KJPx-oNT{uvIlA3rBkZZODE{W(QoK=APag_)loq3Nmi^Pf@r8NfRi?H)i1(
z((w5qcS90naZx1JJI*^WrkFIjsUe<I6nSLWaI^5!aPlD~L+tu24WTMB-F{a!BN?mu
z>Zi30aYL4t))4oYaPk&Zp739VPz3BA0jV=q`#Sh+PAV&9TA$gUFA@Sg?~!}RLOFXp
zj+bfmMv-Op$;t1|Rn}MA4km}C(E>aMheLG{>juh$5CkavOKcW1MX39*0|K#7q9eRh
z68Hwb)SkXT(^!JACSCHscyjstTVOktghWQ;Pv_wJe=Tf->%58~lTsjlos~hrau!%7
z^J8a2a;MiD<6@F$yoL4h%3CfFu{FbPO?fbfW)g=Jvy}%i(4?z1h$iwPva0mR>xgg&
zd&Erpz=%ckd<4A^Cf&%L8MZMtNn<gyIU(s|9muQ~GZSQt)f_d-CDR7eRClj2-Tp+*
zaL!-9{u9VEVNsDVr%Clg^}OxRa)BJ0Ep;PzK3#?IZOQ_6-Xtq}L_6br;A95Ok2E4_
zniMH)1+HlNFZD|??V(WK7&+h!s_MeJSb9iW6)wdgbVY8C{xT3y!Q>L*>q4EmE2>+l
zJo|aS?hAScfBb?^Uq5`*k(eYBh>!;b?u-eEv*0>AJDru8tRh(pml1=F*z1&ELt3cD
z>zdu|f{04eTErG-Li>c<#e)imK!{@X4{ukB&ctXLBpID|{wvZD+gJtUaDi8^Q36Z%
zYt{Gzf(T{jVq_={^ikUveGc{MIKxdSkDAq{$5~i~YufrN6GA^N@FFofU}BS>Tz_`9
z3bKZ&oCtQbf%C#OBrH$Q^#|uygZdHf`AlQnuOqI7BY}WV`$$y07=mRJgS|-3`bHC_
zdnv7@U<A6wshA-QJTRZ}EI8Ri?H~%dRz#2fHgNyYC)DX@hv_(q4_YPx7vnzdTBV~2
z#$!x7>QI6PB1aHp`{Fx?7lho2AAS5L5`>j{K$TvDgm6mU$XoS~MBxa+ti5m6FWVAr
z5*v$<WQEshPKNoDE{P+0Cq$sd-)EMo7>HD3cNtmRrSzhRbfaK*-SLNPx?J+O=YxJV
zL3@oag~$dBnj7WkJIr0LK8!*XBfIGx>LY6d<}j=Rrw6W@Rl3cV@BV_i+K;?;$p%Cz
z@H3`+k<|?!Sq;T_7YGl5$A|UV_2L2B$I_3;%BA;v3vjGQu?iIUG`5MRSiT*6L5HZe
zkSzlG9N127P(|~V)UyN@HXL<+WiXgIDdo2L#v^RO?z)%3xOtgy@kvDuJ@o|~2;&o_
zIpy{0y}a(d`rnXc@n|Y*7LzXgAM895?mXx*#}o_N@A0MZb2D)7>3m0KL`P<L5jkRw
z3d|cLbhK!Wja-3R<6`qpl4v6pV0ua6w?`Dk!2{t7B7b?G%~}M{{tg*7{to&<Lo^cD
ziOD2u@_>}mDS^in_t<m*Fnwh~JTQu3=g=0aSg3>~(AQx%&ww=Wb68C1C6bm+Djit^
zv+pfv9?q>9t=KlHZDBkpn#QGZ?xT|WL?cA#R|Siw=U*!)-PRC8f;8Gh1~tB!f<tgw
zK&FHmaA+x#DW{@|3Fp&<yr)2whnIybtKnlt89~<bN{997>7{73$q$@GaOvSsM)RO;
z_v_AA@)uD;XU!-RIhpsWe1RTLC4?D8xVT-+^^7FDjBZV!rN^JDcGjvxQjpjJd3NKc
zqYX0M!p7;y<~iAA^obdE7E_P4k|l^H#8!fEvpyVv|3p3`c5q{Lun8Ft)GYVlE18u1
zQ9Ae;o5yurw;q}wlqkVSj%O+@+!MP3HAjZ>^9}mvYs4=a%o^?I1Lt>#dlF{on?yqA
zAsfQql3+aTy)AyjPh*7Zhr7X!x-yl5@Eg1~E!=v*DiQ0t!-6r*4Hr$9=D)~Q2G5h(
z8=tyw{<p%eGZ+rX+eY+GqJ#*d#Se>Bmmunj5M7igQ5F#_mgr@5t0qdK#flz6l+~71
zB3MK((XG{@Mvt;QZ{CMD|M#Eyzi)Tu-cR?#nLFpsImZb4-DGp^95XG|u(s$K)}74v
zu&`9GS9l`x!UHEdV{crFSBawT(sn{*ZS;yky%$a-h0QP?I|n9uquS)CBbl?2tH>^L
z#_P<}Aw)=8nlhuaBqWq26VY+0?Bk=4^B51j7Et~C(D*(W8Q@<y7*lxM+jf&Q5W7Hm
zz~GZO#0egYtRL-`s*p$pXG28v-7|>zh21>Fm+F>>n2q^sOk&tcO-lYSjY<p)>hQCX
zkGhdIzGX1-?3RG(y0!Ejb=-t=i=vAk{uVh>{mxiYQeUvi0rG^aBvUs5hhXF9B=gcw
z?gWK*+iX`Nl1pO3xQV(CHl+DF__dQ~BCj7DHvI5r=PMsQO!~~Kp%xs;UI^hV8^my>
zD|s=V#>o&nAd|8<=lmXg5G4|AqiO9FTInrmG7z>)hjOZiKXyK9&tGf3zd>&OWHNcQ
ztzF~nL4FnTg$gTN7b=Ba`EBRU^frj`GSYAH$}hf*C~xHJC>sKmqPaR=MsT|-CU$zu
zVbw?3MBz@=GyH9&4Xt?CyE`^aX64c6)zbHds~u4UZe)i4vrA|b1l#}myV!WPZoB{B
z(Ww_K=2y~r=&L|428~x{-cLr4uOE_&-Qvj-$*?Gn;0S9FqB~dG5NRU`*;I8Mx+BVQ
z!G(R^voOVv+TNO;CMFNvB2f1NEKeHO<mBVG1Fm=O1}po>FfC)cm`SDwxvA(60+cit
zg9e?dsx>2H#^kM$CGY?Umd>hq-lpzd0K{w<`aZky6f*ZQXZrD<9AdKgNf($|KQhau
zAI9vceG2K}VztR%gct0gEn0gl6$d|QZ?KN+;H1oSW{6icT{$&t=Y1&zUuu`VBPtjP
zTc_80ZmR|>XiKFdQWGN^LA~lig={2Wl3&c(JzTEMjxpwvE)9?qGy(f};|dQHD$ap9
zVexAlnXIyNujG-lW7C3bBs>KIcrgxo*`GXubryXh5D>c$qIr%(D`c&_0S8KSY>$E}
zmi!}ot^qoh)BTo~l#|ZABNye@FkHITy6_X7X;X9;uCyh#lUzq%{)jxmMGby{%1H=9
zN;#Iqz@L3<o-OSa6V6&tRt4$J$8K3@L*a#UsuKoBAD+B7rpIc`5i2NVb=>1WT;2!X
zN+Q!7Q<2)@vxs?$Z00!gr|J3uy9wPady2NU)mI@xwelV(RwaMFE=A`(+nbA1-n`1V
z>OD0(rbrPgDE9cin;?Qr>pPGq>no=N5q7u`>|z1*_6nHNF*KcPCMNEFb|nfsvmx*e
zy*-h*$9XzIWP%qJbwGBR8M;_>@yF4)q|!Nzzv(d=3R;ZmMvc82q1=}2Tnpd4%(=AG
zQZWf>Uo;$J>HO{jgzTNP&4eD5KfQ)NHDX%<Lplx|EKd*J+;mm~muf$#Qd=g`x_<RS
zi`t;32S3r81+xf>0Hia=`F{wd82O_R=hm}P#hkC#b>%thZ&)Oh<O{=;s;0O>f~VHG
zVzu;==i^QK0w;|JYqJ)y1v~_#c-k_ere1bur6D)=?IQV*nmOp<A?MN{X+(GFs5YeE
zm#ApbdJ?;oxnNhW%7-S%_Q2@r^RDICg7+W=x9gC}79oo3N2l}7HLSB$wv=;$4M%bp
z9<6)rQ)zd6^Cw=75Ra=C)Go{#1y)|&IWi<@!PVvI-k(BB*n&uV>|V(_V5v-si^C-p
zS0Yp#g=T&Nn25rf_#TCt$Y?H8x_ql9X<sgtpZa_3pB748N|vpV2lvKmgVP-}oYPMh
zD-3%|h5!kY+T!bCR<~Z(wsssNjcbQa4nw(~O}u?gHQBbX;sIRpM5Rs1-A^i@0I69m
z1o}P5y@g)IV*BvebpI5pi^2nMjbazcH2nyRH&GJ4{>X}%`$t5p^-L~o!)fe4XI3rI
z&VsJvgrILzje3&{t}PQG*wE4~V=;Z7-S^&P%XgbR`_x-GhLQ}0Dgj^D`!AU2Q5n4<
zg*~K;h({;r^7E^{#Px1ZBRNOw#REN$z^qt-0=A=PbD#VUn?}TbJk!kq7qlt2_}-Ye
z%tZC;yE7<CJD1dO5yBN4^4)Pxo~9YNlx@a%7=Ov~SC^-emenpcD$$$Lf&oiu6FW2@
zb_FNGy<+~U_AqS1d?y}mm?lv{C*|b#3Gqk|`IQBBu`tFE6^nM3K{%=gAKKI>y8II#
zNLJqd{7|5ox23+qp0Y9~`&B>q`06Ob54pDDC7JM0ght>OzO-tia+~s&iGdT7B$B+=
zpy~Y^Mz-__`vHpZmmb+ojG&3Rv5;@9$z?GEK4$?DVCtrbY11*>E+Ku|G-4y2J1@Q9
zx9VS4@bes4t#A{EMgHd&)c2`1MGDc<@VBL=o8HAdg2kg2w3W>no4h6X=1(idB?Eee
zDu&fn8Z$hHnU&?ITVhP#tp$xCg;*o1_d3&l@(FN`Q1i?lYNfvN*8_&dHzAS{oPeEn
zv&EX6EzsoXIT^=&*PW?w=LeXRy$)IQd-CN0V*BbBqKVp1b=rOOHYvoHZk2yMm-xaI
zEZ23R|724+)y*U#xafsBe~&4RRZ<gQW;TG`Ky%@d4Nji4TJw%5zCNt;c3aIKooi?b
zWxBOp%0E+h6&=Vy^B$K!vosy8tIQXzHDkPwe6@K)e4u&ZheD6BYbxWc`l3X*%sS5A
zSp?JhxI-;hn{NBlhc3#Zi1$=sKkX0CMP<mo752FW&<@_Uuf}-n8UJAUr3H}B9o6(z
zEpZBcSyZ9r#XzTKq-~PgHXBU$p-5jbK1CyFo;=uj2{6Zz6>=v)UJvPn%sc4(t?1RH
z3XT~3(!egf@|Vm#tkF10La?x$U#sycbnJnvBNEdxfvXC7P?4?~Y^qV8h0s+9eewDW
zQymG7Aq*=cYVD8$@k+G|v!HHOB0KqT(f=k38Y?u*q2yemWMx0$m{CkjE1(?`k2T*E
zigHb1i$~OIAJm<l-?l`cNVBAVX*_Ss3{6wI<+iZ)9Wbl6$-YG8oeSM4P>tyDRiQB8
zf`fxcd;kZ0XbZq)bgqIrbUZlVxT&#Cgb@O}YuNbc6PeItP(=p(1hIQETj}UaK5np{
zYH@dcd!-Y$SNn3UI<Q<1<&Edt|Aj!@6O?%!4@-6W@>W^lc)Tb<=^W%eK3g%GDa=yY
zP8`*pUv*-t#(RsI&9!sBif^RO9lx*0`dW%bN#osdp6%qtNH#&Co(;g%?6Z(_k!x1N
z_acYLOJDBrOHB(^dAG&O_5I7>TR6(~V<H-W_gGI(77cqDk10JkhtlOki=iRlt1kKG
z?<q&8-k=%wV!1+!WOQJt5j95C<Tru6ZHCHSEy>T+>lxVMt&8J}$$B@f?EDlVFQ)qC
zK*ap6_eGY4@R$AbXThyCDh5@Xx2O`EqdAoZBAHEU%D0`X(F3ZZcyLebqXa;nIGsQO
zebN@!qLCXVVOk_z_ac&V9Uy~d4h7Wy?R%u-u*G#{W1}2A^6$(FQ2c-2AO9^T6w|YF
zG4gg3)8&=`-pC5QVBXw7DVhHuFa!dn{)J^hz1V`yfEcb9+Ef>_bfPQyp0vy64*UUC
z@~wELSbBY5i2zcS0$HlJ1%BHsrn|K>r1I`C(@$C~tV4ZKClvex4>|ccD2D`CaMlsx
zV38i)0e+eFNJ%?cj?OszI3;goKgI4OV6G-E2HK>3ufan@E8D*djBQpEF`izcQ&HOV
zu)7D+@Ly@zXJnol@py2Sph(R&ytY0xY+_)?A{D<&i;T~Jb*kbLz8TQO;q4m}OvIV6
z6rzu<8t)8I9<5y&*But6i?yQhc>2<V6T3?j60kosY0x|>si-48SC!BgbviSxX*<mt
ztxQPBg%1lQ66eQ#C~FHar)X3sYx%+ROlNZ-<UXN8Q?ak2<&NWE$ml>NQ_twM-kfk;
zRim^-VXs?9S<Z$*#$BVZ>Gwq!bc0>$=YV4ci44o=AM5+7dXHH`J}*aLLiydXsXC4h
z(O>XpbE#2W3dkrm;!QqU^&k&n8dkyzuFCTxwKlWQr8<ZA)l!;d-#4(;<rr_DlHvKj
zcmu4O!9Y@cpecSh9c#tXo|#3_IJwO8T$RmM!Q8liqZTw9vK-@r$O6v+fgk(xv#%RO
zWr_Jxz2?GeM9K$L+*Gge0sV-vCGFNvM$UDUGJ8r19J^^}&+V^^L(QK6=6(0KGm0E`
ze9UJ9dH#|PnwAnU<ufr7w=aIwkG{ZN6qC$%HuM#^6uvHkqW7Shm$0VUoe3e|extse
zHF2GuIDhfSH0~>WnXe_u4hy&^wF1|Ay6W@ySf%hZR|&VJ-;FSles(Ne-E3NY^X~Uf
zu4NvbUUDV5?1zwh=XcA_QShvb%!#C76%kfHOr~uXZ7glo<lcU)c@U$QymsuCr}Jie
zPP@-;I1cEYD0}bd5662I$*kyb{d)p-SM;xc4bu|J1l)^jA%oNGFe_eL#%L#=eb+6~
z!0Gh-cD=|;5-Ee5QzA_H=Ll|(=LM372%8%2z(P#~*yyCR45w%8O6lykEnc0=i_e8a
zqZ*0*0;&Dp5c^@s|CHpG<FG#suD5kG5F<0nI%C7hHn_o)?%Znr-DpdE(ylRXH-Ncu
zmX24NdfoZ~EneJ9*27oEGgQZfM*z>j;<yyOtb{H5^_Q3;CblRfOylDwk0yxSiRX4s
zvf*>(7|bV=)g8`9kLUWKx9ft)0GNCo7Cv<lPT#bYXYNyf4pr17H>c5)$g<2*o@jwJ
zOvLmxHAb2K+=Fc01D-A(DclJ6Oh`57%j~&fzG&<zUftfftz%1e2ct>>6X7DI_Uqyq
zO?mZDu|u+@{nSuy=jnRL#EN@E^~HjWlHwU!x>0oC^sYCus1sXmx7=o_Gw{{juDs@>
ztBAl%yIrTAmy7@XAI6I!#h(Rq$h<BglxO_At7MgQ{!iNP&+crspo6p58@`85oeiq^
zlQtfQ`a%<@^Ga6_b_6QNB>q^B{79tv`&INr2A({6X4Yk)Tj100?p^--XA4@#6jh6n
zQ1nS6L~?y(etxL`uDN6<x{QP&|D0$lXjJXru}xCy|6rS$A;eM45DLA)w408hn3lUE
zlw0C|O7)itKsz7^1e67Wq-<>+Wn`ow4zjXxk`59Q(stq?2_R7E|DUiDGkP5Wp^}sq
zGkpo<mgJVO`j620F9r_)Y%629^1Vphyiv&NlDcbT7hQsu8<D(t&67LPy}c|Hl#FjN
zE1AA;iC)cer0}N4DQJla`=`s^W=4`(&AiNuTS19Y%-haR>#{M@hi>l;iT32R>UK-;
zmY{d!&T_wstw@-$uCP~VvpE3n%U_dRS+md%|NGWp-nL%eeqInqDxjp4l&m-vKfi_^
HnCia(Ql2T1

literal 0
HcmV?d00001

diff --git a/applications/lofar2/model/pfb_pk/PFB.py b/applications/lofar2/model/pfb_pk/PFB.py
new file mode 100644
index 0000000000..566bc05a59
--- /dev/null
+++ b/applications/lofar2/model/pfb_pk/PFB.py
@@ -0,0 +1,98 @@
+#!/usr/bin/env python
+# coding: utf-8
+
+# In[1]:
+
+
+import numpy as np
+import matplotlib.pyplot as plt
+
+
+# In[8]:
+
+
+#Calculate the weight of the filter bank
+def GetW(Nfft,P=4):
+    M=Nfft*P
+    W=np.arange(0,M,1)
+    flt=np.zeros([M])
+    #P=P-1
+    flt[0:P-2]=1;
+    flt[P-2]=0.5;
+    flt[-P+3:]=1;
+    flt[-P+2]=0.5;
+    W=np.fft.ifft(flt).real #Imag part should be zero
+    W=np.roll(W,M//2)
+    return W*Nfft
+
+#Apply the PFB to data
+def fftw(A,W,P=4):
+  Nfft=A.shape[-1]
+  Dx=A[:,:-P,:]*W[:Nfft]
+  for i in range(P-1):
+    S=(i+1)*Nfft
+    Dx+=A[:,i+1:-P+i+1,:]*W[S:S+Nfft]
+  return (np.fft.fft(Dx,axis=2))
+
+
+# In[11]:
+
+
+P=4
+Nfft=1024; #FFT length
+W=GetW(Nfft,P=P)
+plt.plot(W);
+plt.title("PFB coefficients");
+
+
+# In[22]:
+
+
+#Load Data
+Nc=3; #Number of channels
+
+A=np.array(np.load("../LabTest8/D6b.npy")) #Raw ADC data
+A-=65536*(A>65536//2)
+print(A.shape)
+[n1,n2,n3]=A.shape
+
+A=A.reshape([n1,n3//Nfft,Nfft])
+print(A.shape) #Channels*seconds, blocks, fft length
+
+
+# In[ ]:
+
+
+
+
+
+# In[23]:
+
+
+#Do FFT
+F=fftw(A,W,P=P)
+[n1,n2,n3]=F.shape
+F=F.reshape([n1//Nc,Nc,n2,n3])
+F=F.swapaxes(0,1)
+F=F.reshape([Nc,n1//Nc*n2,n3])
+print(F.shape) #channels, blocks, ffts
+
+
+# In[26]:
+
+
+#plot power
+FP=np.sum((F*F.conj()).real,axis=1)[:,:Nfft//2]
+FP=10*np.log10(FP)
+freq=np.arange(0,Nfft//2,1)/(Nfft//2)*100
+plt.figure(dpi=300)
+plt.plot(freq,FP.T,linewidth=0.5);
+plt.xlabel("Frequency (MHz)")
+plt.ylabel("Power (dB)")
+
+
+# In[ ]:
+
+
+
+
diff --git a/applications/lofar2/model/pfb_pk/readme.txt b/applications/lofar2/model/pfb_pk/readme.txt
new file mode 100644
index 0000000000..2f70e46afb
--- /dev/null
+++ b/applications/lofar2/model/pfb_pk/readme.txt
@@ -0,0 +1,3 @@
+2021-01-20 Paulus Kruger script for offline analysis of LTS raw data and comparison with SST data.
+Use Jupyter notebook: https://jupyter.org/
+LTS results: https://support.astron.nl/confluence/display/RCU/2020-11-23+Stati+measurement+vs+raw+data
-- 
GitLab