diff --git a/applications/lofar2/model/pfb_os/dsp.py b/applications/lofar2/model/pfb_os/dsp.py
index feab4c87e0aaa6f529f1c5c91866b4282dc3b977..e3a8a068fbdca7515552d76cb2d967bc3469920f 100644
--- a/applications/lofar2/model/pfb_os/dsp.py
+++ b/applications/lofar2/model/pfb_os/dsp.py
@@ -339,7 +339,7 @@ def plot_time_response(h, name='', markers=False):
     plt.grid(True)
 
 
-def plot_iir_filter_analysis(b, a, fs=1, whole=False, Ntime=100, step=False, show=[]):
+def plot_iir_filter_analysis(b, a, fs=1, whole=False, Ntime=100, step=False, log=False, show=[]):
     """Plot and print iir filter analysis results.
 
     Input:
@@ -362,21 +362,23 @@ def plot_iir_filter_analysis(b, a, fs=1, whole=False, Ntime=100, step=False, sho
         z, p, k = dsp_fpga_lib.zplane(b, a, plt_ax=ax1)  # uses np.roots(a), np.roots(b)
     else:
         z, p, k = dsp_fpga_lib.zplane(b, a)  # no plot, only calculate z, p, k
-    print('Zeros, poles and gain from b, a coefficients:')
-    if len(z) > 0:
-        print('. zeros:')
-        for zero in z:
-            print('  z = %s' % str(zero))
-    if len(p) > 0:
-        print('. poles:')
-        for pole in p:
-            print('  p = %s' % str(pole))
-    print('. gain: k = %.3f' % k)
-
-    # Derive b, a coefficients back from z, p, k
-    print('Coefficients back from z, p, k:')
-    print('  b = %s' % str(np.poly(z)))
-    print('  a = %s' % str(np.poly(p) / k))
+
+    if log:
+        print('Zeros, poles and gain from b, a coefficients:')
+        if len(z) > 0:
+            print('. zeros:')
+            for zero in z:
+                print('  z = %s' % str(zero))
+        if len(p) > 0:
+            print('. poles:')
+            for pole in p:
+                print('  p = %s' % str(pole))
+        print('. gain: k = %.3f' % k)
+
+        # Derive b, a coefficients back from z, p, k
+        print('Coefficients back from z, p, k:')
+        print('  b = %s' % str(np.poly(z)))
+        print('  a = %s' % str(np.poly(p) / k))
 
     # Plot transfer function H(f), is H(z) for z = exp(j w), so along the unit circle
     # . 0 Hz at 1 + 0j, fs / 4 at 0 + 1j, fNyquist = fs / 2 at -1 + 0j