From 69c6b23717d46e32e232bc6f20b612f6335d5ef8 Mon Sep 17 00:00:00 2001 From: Eric Kooistra <kooistra@astron.nl> Date: Thu, 3 Feb 2022 08:18:27 +0100 Subject: [PATCH] Clarified reading one WPFB unit into sp_subband_powers_arr2. Updated comments. No functional change. Improved release of pps_rst to reduce sim time. --- .../tb_lofar2_unb2b_sdp_station_fsub.vhd | 257 +++++++++++------- 1 file changed, 156 insertions(+), 101 deletions(-) diff --git a/applications/lofar2/designs/lofar2_unb2b_sdp_station/revisions/lofar2_unb2b_sdp_station_fsub/tb_lofar2_unb2b_sdp_station_fsub.vhd b/applications/lofar2/designs/lofar2_unb2b_sdp_station/revisions/lofar2_unb2b_sdp_station_fsub/tb_lofar2_unb2b_sdp_station_fsub.vhd index 89a6b269fc..49fb425c86 100644 --- a/applications/lofar2/designs/lofar2_unb2b_sdp_station/revisions/lofar2_unb2b_sdp_station_fsub/tb_lofar2_unb2b_sdp_station_fsub.vhd +++ b/applications/lofar2/designs/lofar2_unb2b_sdp_station/revisions/lofar2_unb2b_sdp_station_fsub/tb_lofar2_unb2b_sdp_station_fsub.vhd @@ -20,7 +20,7 @@ ------------------------------------------------------------------------------- -- --- Author: R. van der Walle +-- Author: R. van der Walle (original), E. Kooistra (updates) -- Purpose: Self-checking testbench for simulating lofar2_unb2b_sdp_station_fsub using WG data. -- -- Description: @@ -34,39 +34,46 @@ -- to trigger start of WG at BSN. -- -- 3) Read subband statistics (SST) via ram_st_sst and verify with --- c_exp_subband_power_sp_0 at c_subband_sp_0. --- View sp_subband_power_0 in Wave window +-- c_exp_subband_power at g_subband. +-- View sp_subband_power in Wave window -- -- -- Usage: -- > as 7 # default -- > as 12 # for detailed debugging --- > run -a +-- > run -a +-- # Takes about 40 m -- ------------------------------------------------------------------------------- LIBRARY IEEE, common_lib, unb2b_board_lib, i2c_lib, mm_lib, dp_lib, diag_lib, lofar2_sdp_lib, wpfb_lib, lofar2_unb2b_sdp_station_lib; USE IEEE.std_logic_1164.ALL; USE IEEE.numeric_std.ALL; -USE IEEE.MATH_REAL.ALL; +USE IEEE.math_real.ALL; USE common_lib.common_pkg.ALL; -USE unb2b_board_lib.unb2b_board_pkg.ALL; USE common_lib.tb_common_pkg.ALL; USE common_lib.common_str_pkg.ALL; USE mm_lib.mm_file_pkg.ALL; -USE dp_lib.dp_stream_pkg.ALL; USE mm_lib.mm_file_unb_pkg.ALL; +USE dp_lib.dp_stream_pkg.ALL; USE diag_lib.diag_pkg.ALL; USE wpfb_lib.wpfb_pkg.ALL; USE lofar2_sdp_lib.sdp_pkg.ALL; +USE unb2b_board_lib.unb2b_board_pkg.ALL; ENTITY tb_lofar2_unb2b_sdp_station_fsub IS + GENERIC ( + g_sp : NATURAL := 3; -- signal path index in range(S_pn = 12) + g_subband : NATURAL := 102 -- select subband at index 102 = 102/1024 * 200MHz = 19.921875 MHz + ); END tb_lofar2_unb2b_sdp_station_fsub; ARCHITECTURE tb OF tb_lofar2_unb2b_sdp_station_fsub IS CONSTANT c_sim : BOOLEAN := TRUE; CONSTANT c_unb_nr : NATURAL := 0; -- UniBoard 0 - CONSTANT c_node_nr : NATURAL := 0; + CONSTANT c_node_nr : NATURAL := 0; + CONSTANT c_init_bsn : NATURAL := 17; -- some recognizable value >= 0 + CONSTANT c_id : STD_LOGIC_VECTOR(7 DOWNTO 0) := "00000000"; CONSTANT c_version : STD_LOGIC_VECTOR(1 DOWNTO 0) := "00"; CONSTANT c_fw_version : t_unb2b_board_fw_version := (1, 0); @@ -81,32 +88,39 @@ ARCHITECTURE tb OF tb_lofar2_unb2b_sdp_station_fsub IS CONSTANT c_nof_clk_per_sync : NATURAL := c_nof_block_per_sync*c_sdp_N_fft - (c_sdp_N_fft/2); --15.5 block per sync CONSTANT c_pps_period : NATURAL := c_nof_clk_per_sync; CONSTANT c_wpfb_sim : t_wpfb := func_wpfb_set_nof_block_per_sync(c_sdp_wpfb_subbands, c_nof_block_per_sync); - + CONSTANT c_stat_data_sz : NATURAL := c_wpfb_sim.stat_data_sz; -- = 2 + CONSTANT c_percentage : REAL := 0.05; -- percentage that actual value may differ from expected value CONSTANT c_lo_factor : REAL := 1.0 - c_percentage; -- lower boundary CONSTANT c_hi_factor : REAL := 1.0 + c_percentage; -- higher boundary -- WG - CONSTANT c_full_scale_ampl : REAL := REAL(2**(14-1)-1); -- = full scale of WG - CONSTANT c_bsn_start_wg : NATURAL := 2; -- start WG at this BSN to instead of some BSN, to avoid mismatches in exact expected data values - CONSTANT c_ampl_sp_0 : NATURAL := 2**(c_sdp_W_adc-1)/1; -- in number of lsb + CONSTANT c_bsn_start_wg : NATURAL := c_init_bsn + 2; -- start WG at this BSN to instead of some BSN, to avoid mismatches in exact expected data values + -- .ampl + CONSTANT c_wg_ampl_full_scale : NATURAL := 2**(c_sdp_W_adc-1); -- full scale (FS) of WG, will just cause clipping of +FS to +FS-1 + CONSTANT c_wg_ampl_lsb : REAL := c_diag_wg_ampl_unit / REAL(c_wg_ampl_full_scale); -- amplitude in number of LSbit resolution steps + CONSTANT c_wg_ampl : NATURAL := c_wg_ampl_full_scale / 1; -- in number of lsb + CONSTANT c_exp_wg_power_sp : REAL := REAL(c_wg_ampl**2)/2.0 * REAL(c_nof_clk_per_sync); + -- . phase + CONSTANT c_wg_phase : REAL := 0.0; -- phase offset in degrees + -- . freq CONSTANT c_wg_subband_freq_unit : REAL := c_diag_wg_freq_unit/REAL(c_sdp_N_fft); -- subband freq = Fs/1024 = 200 MSps/1024 = 195312.5 Hz sinus - CONSTANT c_wg_freq_offset : REAL := 0.0/11.0; -- in freq_unit - CONSTANT c_subband_sp_0 : REAL := 102.0; -- Select subband at index 102 = 102/1024 * 200MHz = 19.921875 MHz - CONSTANT c_wg_ampl_lsb : REAL := c_diag_wg_ampl_unit / c_full_scale_ampl; -- amplitude in number of LSbit resolution steps - CONSTANT c_exp_wg_power_sp_0 : REAL := REAL(c_ampl_sp_0**2)/2.0 * REAL(c_nof_clk_per_sync); -- WPFB - CONSTANT c_nof_pfb : NATURAL := 1; -- Verifying 1 of c_sdp_P_pfb = 6 pfb to speed up simulation. - CONSTANT c_wb_leakage_bin : NATURAL := c_wpfb_sim.nof_points / c_wpfb_sim.wb_factor; -- = 256, leakage will occur in this bin if FIR wb_factor is reversed - CONSTANT c_exp_sp_subband_power_ratio : REAL := 1.0/8.0; -- depends on internal WPFB quantization and FIR coefficients - CONSTANT c_exp_sp_subband_power_sum_ratio : REAL := c_exp_sp_subband_power_ratio; -- because all sinus power is expected in one subband - CONSTANT c_exp_subband_power_sp_0 : REAL := c_exp_wg_power_sp_0 * c_exp_sp_subband_power_ratio; + CONSTANT c_pol_index : NATURAL := g_sp MOD c_sdp_Q_fft; + CONSTANT c_pfb_index : NATURAL := g_sp / c_sdp_Q_fft; -- only read used WPFB unit out of range(c_sdp_P_pfb = 6) + CONSTANT c_exp_subband_sp_power_ratio : REAL := 1.0/8.0; -- subband power / SP power, depends on internal WPFB quantization and FIR coefficients + CONSTANT c_exp_subband_power : REAL := c_exp_wg_power_sp * c_exp_subband_sp_power_ratio; TYPE t_real_arr IS ARRAY (INTEGER RANGE <>) OF REAL; - TyPE t_slv_64_subbands_arr IS ARRAY (INTEGER RANGE <>) OF t_slv_64_arr(0 TO c_sdp_N_sub); + TyPE t_slv_64_subbands_arr IS ARRAY (INTEGER RANGE <>) OF t_slv_64_arr(0 TO c_sdp_N_sub-1); -- MM + -- . Address widths of a single MM instance + CONSTANT c_addr_w_reg_diag_wg : NATURAL := 2; + -- . Address spans of a single MM instance + CONSTANT c_mm_span_reg_diag_wg : NATURAL := 2**c_addr_w_reg_diag_wg; + CONSTANT c_mm_file_reg_bsn_source_v2 : STRING := mmf_unb_file_prefix(c_unb_nr, c_node_nr) & "REG_BSN_SOURCE_V2"; CONSTANT c_mm_file_reg_bsn_scheduler_wg : STRING := mmf_unb_file_prefix(c_unb_nr, c_node_nr) & "REG_BSN_SCHEDULER"; CONSTANT c_mm_file_reg_diag_wg : STRING := mmf_unb_file_prefix(c_unb_nr, c_node_nr) & "REG_WG"; @@ -118,23 +132,28 @@ ARCHITECTURE tb OF tb_lofar2_unb2b_sdp_station_fsub IS SIGNAL tb_clk : STD_LOGIC := '0'; SIGNAL rd_data : STD_LOGIC_VECTOR(c_32-1 DOWNTO 0) := (OTHERS => '0'); + SIGNAL pps_rst : STD_LOGIC := '1'; + SIGNAL gen_pps : STD_LOGIC := '0'; + -- WG - SIGNAL current_bsn_wg : STD_LOGIC_VECTOR(c_dp_stream_bsn_w-1 DOWNTO 0); + SIGNAL current_bsn_wg : STD_LOGIC_VECTOR(c_dp_stream_bsn_w-1 DOWNTO 0); -- WPFB - SIGNAL sp_subband_powers_arr2 : t_slv_64_subbands_arr(c_nof_pfb*c_nof_complex-1 DOWNTO 0); -- [sp][sub] - SIGNAL sp_subband_power_0 : REAL; - SIGNAL sp_subband_power_sum : t_real_arr(c_nof_pfb*c_nof_complex-1 DOWNTO 0) := (OTHERS=>0.0); - SIGNAL sp_subband_power_sum_0 : REAL; - SIGNAL sp_subband_power_ratio_0 : REAL; - SIGNAL sp_subband_power_sum_ratio_0 : REAL; - SIGNAL sp_subband_power_leakage_sum_0 : REAL; - + SIGNAL sp_subband_powers_arr2 : t_slv_64_subbands_arr(c_sdp_N_pol-1 DOWNTO 0); -- [pol][sub] + SIGNAL sp_subband_power_sum_arr : t_real_arr(c_sdp_N_pol-1 DOWNTO 0) := (OTHERS => 0.0); + SIGNAL sp_subband_power : REAL := 0.0; + SIGNAL sp_subband_power_leakage : REAL := 0.0; + SIGNAL sp_subband_power_leakage_snr_dB : REAL := 0.0; -- signal to noise (leakage) ratio + SIGNAL sp_subband_power_crosstalk : REAL := 0.0; + SIGNAL sp_subband_power_crosstalk_snr_dB : REAL := 0.0; -- signal to noise (crosstalk) ration + + -- . expected limit values, obtained with print_str() for g_subband = 102 + CONSTANT c_exp_subband_power_leakage_snr_dB : REAL := 75.0; -- < 76.372 + CONSTANT c_exp_subband_power_crosstalk_snr_dB : REAL := 95.0; -- < 96.284 + -- DUT SIGNAL ext_clk : STD_LOGIC := '0'; - SIGNAL pps : STD_LOGIC := '0'; - SIGNAL ext_pps : STD_LOGIC := '0'; - SIGNAL pps_rst : STD_LOGIC := '0'; + SIGNAL ext_pps : STD_LOGIC := '0'; SIGNAL WDI : STD_LOGIC; SIGNAL INTA : STD_LOGIC; @@ -176,9 +195,9 @@ BEGIN ------------------------------------------------------------------------------ -- External PPS ------------------------------------------------------------------------------ - proc_common_gen_pulse(5, c_pps_period, '1', pps_rst, ext_clk, pps); - jesd204b_sysref <= pps; - ext_pps <= pps; + proc_common_gen_pulse(5, c_pps_period, '1', pps_rst, ext_clk, gen_pps); + jesd204b_sysref <= gen_pps; + ext_pps <= gen_pps; ------------------------------------------------------------------------------ -- DUT @@ -192,12 +211,12 @@ BEGIN g_sim_node_nr => c_node_nr, g_wpfb => c_wpfb_sim, g_bsn_nof_clk_per_sync => c_nof_clk_per_sync, - g_scope_selected_subband => NATURAL(c_subband_sp_0) + g_scope_selected_subband => g_subband ) PORT MAP ( -- GENERAL CLK => ext_clk, - PPS => pps, + PPS => ext_pps, WDI => WDI, INTA => INTA, INTB => INTB, @@ -238,36 +257,41 @@ BEGIN tb_clk <= NOT tb_clk AFTER c_tb_clk_period/2; -- Testbench MM clock p_mm_stimuli : PROCESS - VARIABLE v_bsn : NATURAL; - VARIABLE v_sp_subband_power : REAL; - VARIABLE v_W, v_T, v_U, v_S, v_B : NATURAL; -- array indicies + VARIABLE v_bsn : NATURAL; + VARIABLE v_data_lo, v_data_hi : STD_LOGIC_VECTOR(c_word_w-1 DOWNTO 0); + VARIABLE v_stat_data : STD_LOGIC_VECTOR(c_longword_w-1 DOWNTO 0); + VARIABLE v_len, v_span, v_offset, v_A : NATURAL; -- address ranges, indices + VARIABLE v_W, v_P, v_U, v_S, v_B : NATURAL; -- array indicies + VARIABLE v_power : REAL; BEGIN -- Wait for DUT power up after reset WAIT FOR 1 us; - -- wait for pps - proc_common_wait_until_hi_lo(ext_clk, ext_pps); - ---------------------------------------------------------------------------- -- Enable BSN ---------------------------------------------------------------------------- - mmf_mm_bus_wr(c_mm_file_reg_bsn_source_v2, 3, 0, tb_clk); - mmf_mm_bus_wr(c_mm_file_reg_bsn_source_v2, 2, 0, tb_clk); -- Init BSN = 0 - mmf_mm_bus_wr(c_mm_file_reg_bsn_source_v2, 1, c_nof_clk_per_sync, tb_clk); -- nof_block_per_sync - mmf_mm_bus_wr(c_mm_file_reg_bsn_source_v2, 0, 16#00000003#, tb_clk); -- Enable BSN at PPS - + mmf_mm_bus_wr(c_mm_file_reg_bsn_source_v2, 2, c_init_bsn, tb_clk); -- Init BSN + mmf_mm_bus_wr(c_mm_file_reg_bsn_source_v2, 3, 0, tb_clk); -- Write high part activates the init BSN + mmf_mm_bus_wr(c_mm_file_reg_bsn_source_v2, 1, c_nof_clk_per_sync, tb_clk); -- nof_block_per_sync + mmf_mm_bus_wr(c_mm_file_reg_bsn_source_v2, 0, 16#00000003#, tb_clk); -- Enable BSN at PPS + + -- Release PPS pulser, to get first PPS now and to start BSN source + WAIT FOR 1 us; + pps_rst <= '0'; + ---------------------------------------------------------------------------- - -- Enable WG + -- Enable and start WG ---------------------------------------------------------------------------- -- 0 : mode[7:0] --> off=0, calc=1, repeat=2, single=3) -- nof_samples[31:16] --> <= c_ram_wg_size=1024 -- 1 : phase[15:0] -- 2 : freq[30:0] -- 3 : ampl[16:0] - mmf_mm_bus_wr(c_mm_file_reg_diag_wg, 0, 1024*2**16 + 1, tb_clk); -- nof_samples, mode calc - mmf_mm_bus_wr(c_mm_file_reg_diag_wg, 1, INTEGER( 0.0 * c_diag_wg_phase_unit), tb_clk); -- phase offset in degrees - mmf_mm_bus_wr(c_mm_file_reg_diag_wg, 2, INTEGER((c_subband_sp_0+c_wg_freq_offset) * c_wg_subband_freq_unit), tb_clk); -- freq - mmf_mm_bus_wr(c_mm_file_reg_diag_wg, 3, INTEGER(REAL(c_ampl_sp_0) * c_wg_ampl_lsb), tb_clk); -- ampl + v_offset := g_sp * c_mm_span_reg_diag_wg; + mmf_mm_bus_wr(c_mm_file_reg_diag_wg, v_offset + 0, 1024*2**16 + 1, tb_clk); -- nof_samples, mode calc + mmf_mm_bus_wr(c_mm_file_reg_diag_wg, v_offset + 1, INTEGER(c_wg_phase * c_diag_wg_phase_unit), tb_clk); -- phase offset in degrees + mmf_mm_bus_wr(c_mm_file_reg_diag_wg, v_offset + 2, INTEGER(REAL(g_subband) * c_wg_subband_freq_unit), tb_clk); -- freq + mmf_mm_bus_wr(c_mm_file_reg_diag_wg, v_offset + 3, INTEGER(REAL(c_wg_ampl) * c_wg_ampl_lsb), tb_clk); -- ampl -- Read current BSN mmf_mm_bus_rd(c_mm_file_reg_bsn_scheduler_wg, 0, current_bsn_wg(31 DOWNTO 0), tb_clk); @@ -278,75 +302,106 @@ BEGIN v_bsn := TO_UINT(current_bsn_wg) + 2; ASSERT v_bsn <= c_bsn_start_wg REPORT "Too late to start WG: " & int_to_str(v_bsn) & " > " & int_to_str(c_bsn_start_wg) SEVERITY ERROR; mmf_mm_bus_wr(c_mm_file_reg_bsn_scheduler_wg, 0, c_bsn_start_wg, tb_clk); -- first write low then high part - mmf_mm_bus_wr(c_mm_file_reg_bsn_scheduler_wg, 1, 0, tb_clk); -- assume v_bsn < 2**31-1 + mmf_mm_bus_wr(c_mm_file_reg_bsn_scheduler_wg, 1, 0, tb_clk); -- assume v_bsn < 2**31-1 + ---------------------------------------------------------------------------- -- Wait for enough WG data and start of sync interval - - mmf_mm_wait_until_value(c_mm_file_reg_bsn_scheduler_wg, 0, -- read BSN low - "UNSIGNED", rd_data, ">=", c_nof_block_per_sync * 3, -- this is the wait until condition + ---------------------------------------------------------------------------- + mmf_mm_wait_until_value(c_mm_file_reg_bsn_scheduler_wg, 0, -- read BSN low + "UNSIGNED", rd_data, ">=", c_init_bsn + c_nof_block_per_sync * 3, -- this is the wait until condition c_sdp_T_sub, tb_clk); --------------------------------------------------------------------------- -- Read subband statistics --------------------------------------------------------------------------- - -- . the subband statistics are c_wpfb_sim.stat_data_sz = 2 word power values. - -- . there are c_sdp_N_sub = 512 subbands per signal path - -- . one complex WPFB can process two real inputs A, B + -- . the subband statistics are c_stat_data_sz = 2 word power values. + -- . there are c_sdp_S_pn = 12 signal inputs A, B, C, D, E, F, G, H, I, J, K, L + -- . there are c_sdp_N_sub = 512 subbands per signal input (SI, = signal path, SP) + -- . one complex WPFB can process two real inputs A, B, so there are c_sdp_P_pfb = 6 WPFB units, + -- but only read for the 1 WPFB unit of the selected g_sp, to speed up simulation + -- . the outputs for A, B are time multiplexed, c_sdp_Q_fft = 2, assume that they + -- correspond to the c_sdp_N_pol = 2 signal polarizations -- . the subbands are output alternately so A0 B0 A1 B1 ... A511 B511 for input A, B -- . the subband statistics multiple WPFB units appear in order in the ram_st_sst address map -- . the subband statistics are stored first lo word 0 then hi word 1 - - FOR I IN 0 TO c_nof_pfb*c_nof_complex*c_sdp_N_sub*c_wpfb_sim.stat_data_sz-1 LOOP - v_W := I MOD c_wpfb_sim.stat_data_sz; - v_T := (I / c_wpfb_sim.stat_data_sz) MOD c_nof_complex; - v_U := I / (c_nof_complex*c_wpfb_sim.stat_data_sz*c_sdp_N_sub); - v_S := v_T + v_U * c_nof_complex; - v_B := (I / (c_nof_complex*c_wpfb_sim.stat_data_sz)) MOD c_sdp_N_sub; - IF v_W=0 THEN + v_len := c_sdp_N_sub * c_sdp_N_pol * c_stat_data_sz; -- 2048 = 512 * 2 * 64/32 + v_span := true_log_pow2(v_len); -- = 2048 + FOR I IN 0 TO v_len - 1 LOOP + v_W := I MOD c_stat_data_sz; -- 0, 1 per statistics word, word index + v_P := (I / c_stat_data_sz) MOD c_sdp_N_pol; -- 0, 1 per SP pol, polarization index + v_B := I / (c_sdp_N_pol * c_stat_data_sz); -- subband index, range(N_sub = 512) per dual pol + v_A := I + c_pfb_index * v_span; -- MM address for WPFB unit of selected g_sp + IF v_W = 0 THEN -- low part - mmf_mm_bus_rd(c_mm_file_ram_st_sst, I, rd_data, tb_clk); - sp_subband_powers_arr2(v_S)(v_B)(31 DOWNTO 0) <= rd_data; - ELSE + mmf_mm_bus_rd(c_mm_file_ram_st_sst, v_A, rd_data, tb_clk); + v_data_lo := rd_data; + ELSE -- high part - mmf_mm_bus_rd(c_mm_file_ram_st_sst, I, rd_data, tb_clk); - sp_subband_powers_arr2(v_S)(v_B)(63 DOWNTO 32) <= rd_data; - - -- Convert STD_LOGIC_VECTOR to REAL - v_sp_subband_power := REAL(TO_UINT(rd_data(29 DOWNTO 0) & - sp_subband_powers_arr2(v_S)(v_B)(31 DOWNTO 30)))*2.0**30 + - REAL(TO_UINT(sp_subband_powers_arr2(v_S)(v_B)(29 DOWNTO 0))); - -- sum - sp_subband_power_sum(v_S) <= sp_subband_power_sum(v_S) + v_sp_subband_power; + mmf_mm_bus_rd(c_mm_file_ram_st_sst, v_A, rd_data, tb_clk); + v_data_hi := rd_data; + v_stat_data := v_data_hi & v_data_lo; + + sp_subband_powers_arr2(v_P)(v_B) <= v_stat_data; + + -- sum of all subband powers per pol + sp_subband_power_sum_arr(v_P) <= sp_subband_power_sum_arr(v_P) + TO_UREAL(v_stat_data); END IF; END LOOP; - -- sp_subband_power_sum is the sum of all subband powers per SP, this value will be close to sp_subband_power - -- because the input is a sinus, so most power will be in 1 subband. The sp_subband_power_leakage_sum shows - -- how much power from the input sinus at a specific subband has leaked into the 511 other subbands. - sp_subband_power_0 <= REAL(TO_UINT(sp_subband_powers_arr2(0)(INTEGER(ROUND(c_subband_sp_0)))(61 DOWNTO 30)))*2.0**30 + - REAL(TO_UINT(sp_subband_powers_arr2(0)(INTEGER(ROUND(c_subband_sp_0)))(29 DOWNTO 0))); + -- Subband power of g_subband in g_sp + -- . For the selected g_subband in g_sp the sp_subband_power will be close + -- to sp_subband_power_sum_arr(c_pol_index), because the input is a + -- sinus, so most power will be in 1 subband. + sp_subband_power <= TO_UREAL(sp_subband_powers_arr2(c_pol_index)(g_subband)); + proc_common_wait_some_cycles(tb_clk, 1); + + -- The sp_subband_power_leakage shows how much power from the input sinus at a specific + -- subband has leaked into the N_sub - 1 = 511 other subbands. The power ratio yields an + -- indication of the SNR, although that also depends on the SNR of the WG sinus. + v_power := sp_subband_power_sum_arr(c_pol_index) - sp_subband_power; + sp_subband_power_leakage <= v_power; + IF v_power > 0.0 THEN + sp_subband_power_leakage_snr_dB <= 10.0 * LOG10(sp_subband_power / v_power); + ELSE + REPORT "Wrong, zero leakage is unexpected for SP-" & NATURAL'IMAGE(g_sp) SEVERITY ERROR; + END IF; + + -- The sp_subband_power_crosstalk shows how much power from one WPFB input cross talks + -- into the other output, due to quantization cross talk in the complex FFT. The power + -- ration indicates the suppression, provided that the other input was zero. + v_power := sp_subband_power_sum_arr(not_int(c_pol_index)); + sp_subband_power_crosstalk <= v_power; + IF v_power > 0.0 THEN + sp_subband_power_crosstalk_snr_dB <= 10.0 * LOG10(sp_subband_power / v_power); + ELSE + REPORT "Wrong, zero crosstalk is unexpected for SP-" & NATURAL'IMAGE(g_sp) SEVERITY ERROR; + END IF; - sp_subband_power_sum_0 <= sp_subband_power_sum(0); - proc_common_wait_some_cycles(tb_clk, 1); + --------------------------------------------------------------------------- + -- Print subband statistics + --------------------------------------------------------------------------- + print_str("sp_subband_power = " & real_to_str(sp_subband_power, 20, 0)); + + -- WPFB details are allready verified in tb of wpfb_unit_dev.vhd, so here + -- quality indicators like leakage and crosstalk are also reported out of + -- interest. + print_str("sp_subband_power_leakage = " & real_to_str(sp_subband_power_leakage, 20, 0)); + print_str("sp_subband_power_leakage_snr_dB = " & real_to_str(sp_subband_power_leakage_snr_dB, 20, 3)); + print_str("sp_subband_power_crosstalk = " & real_to_str(sp_subband_power_crosstalk, 20, 0)); + print_str("sp_subband_power_crosstalk_snr_db = " & real_to_str(sp_subband_power_crosstalk_snr_db, 20, 3)); + --------------------------------------------------------------------------- -- Verify subband statistics --------------------------------------------------------------------------- -- verify expected subband power based on WG power - IF sp_subband_power_sum_0>0.0 THEN ASSERT sp_subband_power_0 > c_lo_factor * c_exp_subband_power_sp_0 REPORT "Wrong subband power for SP 0" SEVERITY ERROR; END IF; - IF sp_subband_power_sum_0>0.0 THEN ASSERT sp_subband_power_0 < c_hi_factor * c_exp_subband_power_sp_0 REPORT "Wrong subband power for SP 0" SEVERITY ERROR; END IF; - - -- view c_exp_sp_subband_power_ratio in Wave window - IF sp_subband_power_sum_0>0.0 THEN sp_subband_power_ratio_0 <= sp_subband_power_0/sp_subband_power_sum_0; END IF; - - -- view c_exp_sp_subband_power_sum_ratio in Wave window - -- The sp_subband_power_sum_ratio show similar information as sp_subband_power_leakage_sum, because when - -- sp_subband_power_leakage_sum is small then sp_subband_power_sum_ratio ~= sp_subband_power_ratio. - IF sp_subband_power_sum_0>0.0 THEN sp_subband_power_sum_ratio_0 <= sp_subband_power_sum_0/sp_subband_power_0; END IF; + ASSERT sp_subband_power > c_lo_factor * c_exp_subband_power REPORT "Wrong subband power for SP-" & NATURAL'IMAGE(g_sp) SEVERITY ERROR; + ASSERT sp_subband_power < c_hi_factor * c_exp_subband_power REPORT "Wrong subband power for SP-" & NATURAL'IMAGE(g_sp) SEVERITY ERROR; - -- View sp_subband_power_leakage_sum in Wave window - IF sp_subband_power_sum_0>0.0 THEN sp_subband_power_leakage_sum_0 <= sp_subband_power_sum_0 - sp_subband_power_0; END IF; + -- Verify expected SNR quality measures + ASSERT sp_subband_power_leakage_snr_dB > c_exp_subband_power_leakage_snr_dB REPORT "Wrong to much leakage for SP-" & NATURAL'IMAGE(g_sp) SEVERITY ERROR; + ASSERT sp_subband_power_crosstalk_snr_dB > c_exp_subband_power_crosstalk_snr_dB REPORT "Wrong to much crosstalk for SP-" & NATURAL'IMAGE(g_sp) SEVERITY ERROR; --------------------------------------------------------------------------- -- End Simulation -- GitLab