diff --git a/applications/lofar2/model/pfir_coeff.m b/applications/lofar2/model/pfir_coeff.m
index aaad53b2b40ee985d793f23dff60e5a9a89676b3..af6c3ae340b7243fbd4535fd6523300922f976a2 100644
--- a/applications/lofar2/model/pfir_coeff.m
+++ b/applications/lofar2/model/pfir_coeff.m
@@ -64,11 +64,12 @@ elseif M2<=1024
 else
     Q = L;  % use interpolation to speed up calculation
     %Q = 1;  % no interpolation
-end 
+end
 % initial filter length
 M1=N*L/Q;
 
-% pass bandwidth
+% pass bandwidth, w_pb, is the normalized cutoff frequency in the range between 0 and 1 (where 1 corresponds to the
+% Nyquist frequency (as defined in fircls1)
 w_pb = Q * BWchan;
 
 % compute initial filter
@@ -97,7 +98,7 @@ else
     % 1b) Use DIY fourier interpolation method
     f1=fft(h_comp);
     f2=zeros(1, M2);
-    % copy the lower frequency half. 
+    % copy the lower frequency half.
     n=0:M1/2;
     f2(1+n)=f1(1+n);
     % to make the impulse response symmetric in time,
@@ -108,10 +109,10 @@ else
     f2(M2-n)=conj(f2(2+n));
     % back to time domain
     h_fourier = real(ifft(f2));
-    
+
     % 2) Use resample interpolation method
     h_resample = resample(h_comp, Q, 1);
-    
+
     % select FIR coefficients from either interpolation method (all are good, but resample causes peek gratings in stopband when N>64)
     if strcmp(config.interpolate, 'resample')
         h_fir = h_resample;
@@ -142,4 +143,4 @@ if nof_bits>0
 end;
 
 % output FIR coefficient
-coeff = h_fir;
\ No newline at end of file
+coeff = h_fir;