diff --git a/applications/lofar2/designs/lofar2_unb2b_sdp_station/revisions/lofar2_unb2b_sdp_station_bf/tb_lofar2_unb2b_sdp_station_bf.vhd b/applications/lofar2/designs/lofar2_unb2b_sdp_station/revisions/lofar2_unb2b_sdp_station_bf/tb_lofar2_unb2b_sdp_station_bf.vhd index 2b9e09d55bfe81c3aae5997800502880565943f2..e3e43cffafd9f1a47c3b9982cd52cf96cee78734 100644 --- a/applications/lofar2/designs/lofar2_unb2b_sdp_station/revisions/lofar2_unb2b_sdp_station_bf/tb_lofar2_unb2b_sdp_station_bf.vhd +++ b/applications/lofar2/designs/lofar2_unb2b_sdp_station/revisions/lofar2_unb2b_sdp_station_bf/tb_lofar2_unb2b_sdp_station_bf.vhd @@ -20,39 +20,49 @@ ------------------------------------------------------------------------------- -- --- Author: R. van der Walle, E. Kooistra +-- Author: R. van der Walle (original), E. Kooistra (updates) -- Purpose: Self-checking testbench for simulating lofar2_unb2b_sdp_station_bf using WG data. -- -- Description: -- MM control actions: -- --- 1) Enable calc mode for WG via reg_diag_wg with: --- freq = 19.921875MHz --- ampl = 0.5 * 2**13 +-- 1) Enable calc mode for WG on signal input g_sp via reg_diag_wg with: +-- g_subband = 102 --> WG freq = 19.921875MHz +-- g_ampl = 1.0 --> WG ampl = 2**13 -- -- 2) Read current BSN from reg_bsn_scheduler_wg and write reg_bsn_scheduler_wg -- to trigger start of WG at BSN. -- -- 3) Read subband statistics (SST) -- --- 4) Read beamlet statistics (BST) via ram_st_bst and verify with --- c_exp_beamlet_power_sp_0 at c_sdp_N_sub-1 - c_subband_sp_0. --- View pol_beamlet_power_0 in Wave window --- 5) Compare SST with BST. --- 6) Verify 10GbE output. +-- 4) Select subband g_subband for beamlet g_beamlet +-- +-- 5) Apply BF weight (g_bf_gain, g_bf_phase) to g_beamlet X beam and Y beam +-- +-- 6) Read beamlet statistics (BST) via MM and verify with +-- View sp_subband_sst in Wave window +-- View pol_beamlet_bst in Wave window +-- +-- 7) Compare SST with BST. +-- +-- 8) Verify 10GbE output header and output payload for g_beamlet. -- -- -- Usage: -- > as 7 # default -- > as 12 # for detailed debugging +-- > add wave -position insertpoint \ +-- sim:/tb_lofar2_unb2b_sdp_station_bf/sp_subband_ssts_arr2 \ +-- sim:/tb_lofar2_unb2b_sdp_station_bf/pol_beamlet_bsts_arr2 -- > run -a --- Takes about 40 m +-- Takes about 40 m when g_read_all_* = FALSE +-- Takes about 1h 5 m when g_read_all_* = TRUE -- ------------------------------------------------------------------------------- LIBRARY IEEE, common_lib, unb2b_board_lib, i2c_lib, mm_lib, dp_lib, diag_lib, lofar2_sdp_lib, wpfb_lib, tech_pll_lib, tr_10GbE_lib, lofar2_unb2b_sdp_station_lib; USE IEEE.std_logic_1164.ALL; USE IEEE.numeric_std.ALL; -USE IEEE.MATH_REAL.ALL; +USE IEEE.math_real.ALL; USE common_lib.common_pkg.ALL; USE common_lib.common_mem_pkg.ALL; USE common_lib.common_field_pkg.ALL; @@ -70,6 +80,17 @@ USE lofar2_sdp_lib.tb_sdp_pkg.ALL; USE tech_pll_lib.tech_pll_component_pkg.ALL; ENTITY tb_lofar2_unb2b_sdp_station_bf IS + GENERIC ( + g_sp : NATURAL := 0; -- WG signal path index in range(S_pn = 12) + g_wg_ampl : REAL := 1.0; -- WG normalized amplitude + g_subband : NATURAL := 102; -- select g_subband at index 102 = 102/1024 * 200MHz = 19.921875 MHz + g_beamlet : NATURAL := 10; -- map g_subband to g_beamlet index in beamset in range(c_sdp_S_sub_bf = 488) + g_beamlet_scale : REAL := 1.0 / 2.0**9; -- g_beamlet output scale factor + g_bf_gain : REAL := 1.0; -- g_beamlet BF weight normalized gain + g_bf_phase : REAL := 30.0; -- g_beamlet BF weight phase rotation in degrees + g_read_all_SST : BOOLEAN := FALSE; -- when FALSE only read SST for g_subband, to save sim time + g_read_all_BST : BOOLEAN := FALSE -- when FALSE only read BST for g_beamlet, to save sim time + ); END tb_lofar2_unb2b_sdp_station_bf; ARCHITECTURE tb OF tb_lofar2_unb2b_sdp_station_bf IS @@ -95,16 +116,19 @@ ARCHITECTURE tb OF tb_lofar2_unb2b_sdp_station_bf IS CONSTANT c_sa_clk_period : TIME := tech_pll_clk_644_period; -- 644MHz CONSTANT c_tb_clk_period : TIME := 100 ps; -- use fast tb_clk to speed up M&C + CONSTANT c_cross_clock_domain_latency : NATURAL := 20; CONSTANT c_nof_block_per_sync : NATURAL := 16; - CONSTANT c_nof_clk_per_sync : NATURAL := c_nof_block_per_sync*c_sdp_N_fft; + CONSTANT c_nof_clk_per_sync : NATURAL := c_nof_block_per_sync * c_sdp_N_fft; CONSTANT c_pps_period : NATURAL := c_nof_clk_per_sync; CONSTANT c_wpfb_sim : t_wpfb := func_wpfb_set_nof_block_per_sync(c_sdp_wpfb_subbands, c_nof_block_per_sync); - CONSTANT c_stat_data_sz : NATURAL := c_longword_sz/c_word_sz; -- = 2 - - CONSTANT c_percentage : REAL := 0.05; -- percentage that actual value may differ from expected value - CONSTANT c_lo_factor : REAL := 1.0 - c_percentage; -- lower boundary - CONSTANT c_hi_factor : REAL := 1.0 + c_percentage; -- higher boundary + CONSTANT c_stat_data_sz : NATURAL := c_wpfb_sim.stat_data_sz; -- = 2 + + CONSTANT c_stat_percentage : REAL := 0.05; -- +-percentage margin that actual value may differ from expected value + CONSTANT c_stat_lo_factor : REAL := 1.0 - c_stat_percentage; -- lower boundary + CONSTANT c_stat_hi_factor : REAL := 1.0 + c_stat_percentage; -- higher boundary + + CONSTANT c_beamlet_output_delta : INTEGER := 2; -- +-delta margin -- header fields CONSTANT c_cep_eth_dst_mac : STD_LOGIC_VECTOR(47 DOWNTO 0) := c_sdp_cep_eth_dst_mac; -- 00074306C700 = DOP36-eth0 @@ -117,7 +141,7 @@ ARCHITECTURE tb OF tb_lofar2_unb2b_sdp_station_bf IS CONSTANT c_exp_ip_header_checksum : NATURAL := 16#5BDE#; -- value obtained from rx_sdp_cep_header.ip.header_checksum in wave window - CONSTANT c_exp_beamlet_scale : NATURAL := 2**15; + CONSTANT c_exp_beamlet_scale : NATURAL := NATURAL(g_beamlet_scale * REAL(c_sdp_unit_beamlet_scale)); -- c_sdp_unit_beamlet_scale = 2**15; CONSTANT c_exp_sdp_info : t_sdp_info := ( TO_UVEC(601, 16), -- station_id @@ -136,41 +160,71 @@ ARCHITECTURE tb OF tb_lofar2_unb2b_sdp_station_bf IS -- WG CONSTANT c_bsn_start_wg : NATURAL := c_init_bsn + 2; -- start WG at this BSN to instead of some BSN, to avoid mismatches in exact expected data values - -- . ampl + -- .ampl CONSTANT c_wg_ampl_full_scale : NATURAL := 2**(c_sdp_W_adc-1); -- full scale (FS) of WG, will just cause clipping of +FS to +FS-1 CONSTANT c_wg_ampl_lsb : REAL := c_diag_wg_ampl_unit / REAL(c_wg_ampl_full_scale); -- amplitude in number of LSbit resolution steps - CONSTANT c_ampl_sp_0 : NATURAL := c_wg_ampl_full_scale / 2; -- in number of lsb - CONSTANT c_exp_wg_power_sp_0 : REAL := REAL(c_ampl_sp_0**2)/2.0 * REAL(c_nof_clk_per_sync); + CONSTANT c_wg_ampl : NATURAL := NATURAL(g_wg_ampl * REAL(c_wg_ampl_full_scale)); -- in number of lsb + CONSTANT c_exp_sp_power : REAL := REAL(c_wg_ampl**2) / 2.0; + CONSTANT c_exp_sp_ast : REAL := c_exp_sp_power * REAL(c_nof_clk_per_sync); -- . phase - CONSTANT c_phase_sp_0 : REAL := 0.0; -- phase offset in degrees + CONSTANT c_subband_phase : REAL := 0.0; -- wanted subband phase in degrees = WG phase at sop + CONSTANT c_subband_freq : REAL := REAL(g_subband) / REAL(c_sdp_N_fft); -- normalized by fs = f_adc = 200 MHz = dp_clk rate + CONSTANT c_wg_latency : INTEGER := c_diag_wg_latency - 0; -- -0 to account for BSN scheduler start trigger latency + CONSTANT c_wg_phase_offset : REAL := 360.0 * REAL(c_wg_latency) * c_subband_freq; -- c_diag_wg_latency is in dp_clk cycles + CONSTANT c_wg_phase : REAL := c_subband_phase + c_wg_phase_offset; -- WG phase in degrees -- . freq - CONSTANT c_wg_subband_freq_unit : REAL := c_diag_wg_freq_unit / REAL(c_sdp_N_fft); -- subband freq = Fs/1024 = 200 MSps/1024 = 195312.5 Hz sinus - CONSTANT c_subband_sp_0 : NATURAL := 102; -- Select subband at index 102 = 102/1024 * 200MHz = 19.921875 MHz + CONSTANT c_wg_subband_freq_unit : REAL := c_diag_wg_freq_unit/REAL(c_sdp_N_fft); -- subband freq = Fs/1024 = 200 MSps/1024 = 195312.5 Hz sinus -- WPFB - CONSTANT c_wb_leakage_bin : NATURAL := c_wpfb_sim.nof_points / c_wpfb_sim.wb_factor; -- = 256, leakage will occur in this bin if FIR wb_factor is reversed - CONSTANT c_exp_pol_beamlet_power_ratio : REAL := 1.0/8.0; -- depends on internal WPFB quantization and FIR coefficients - CONSTANT c_exp_pol_beamlet_power_sum_ratio : REAL := c_exp_pol_beamlet_power_ratio; -- because all sinus power is expected in one subband - CONSTANT c_exp_beamlet_power_sp_0 : REAL := c_exp_wg_power_sp_0 * c_exp_pol_beamlet_power_ratio; + CONSTANT c_pol_index : NATURAL := g_sp MOD c_sdp_Q_fft; + CONSTANT c_pfb_index : NATURAL := g_sp / c_sdp_Q_fft; -- only read used WPFB unit out of range(c_sdp_P_pfb = 6) + CONSTANT c_subband_phase_offset : REAL := -90.0; -- WG with zero phase sinues yields subband with -90 degrees phase (negative Im, zero Re) + CONSTANT c_subband_weight_gain : REAL := 1.0; -- use default unit subband weights + CONSTANT c_subband_weight_phase : REAL := 0.0; -- use default unit subband weights + CONSTANT c_exp_subband_sp_ampl_ratio : REAL := 7.96; -- ~= 8 for unit FIR DC gain, depends on internal WPFB quantization and FIR coefficients + CONSTANT c_exp_subband_ampl : REAL := REAL(c_wg_ampl) * c_exp_subband_sp_ampl_ratio * c_subband_weight_gain; + CONSTANT c_exp_subband_power : REAL := c_exp_subband_ampl**2.0; -- complex, so no divide by 2 + CONSTANT c_exp_subband_sst : REAL := c_exp_subband_power * REAL(c_nof_block_per_sync); TYPE t_real_arr IS ARRAY (INTEGER RANGE <>) OF REAL; - TYPE t_slv_64_subbands_arr IS ARRAY (INTEGER RANGE <>) OF t_slv_64_arr(0 TO c_sdp_N_sub); - TYPE t_slv_64_beamlets_arr IS ARRAY (INTEGER RANGE <>) OF t_slv_64_arr(0 TO c_sdp_S_sub_bf); + TYPE t_slv_64_subbands_arr IS ARRAY (INTEGER RANGE <>) OF t_slv_64_arr(0 TO c_sdp_N_sub-1); -- 512 + TYPE t_slv_64_beamlets_arr IS ARRAY (INTEGER RANGE <>) OF t_slv_64_arr(0 TO c_sdp_N_beamlets_sdp-1); -- 2*488 = 976 -- BF - CONSTANT c_exp_beamlet_index : NATURAL := c_subband_sp_0 * c_sdp_N_pol_bf; - CONSTANT c_exp_beamlet_re : STD_LOGIC_VECTOR(7 DOWNTO 0) := x"81"; -- = -127, derived from simulation - CONSTANT c_exp_beamlet_im : STD_LOGIC_VECTOR(7 DOWNTO 0) := x"7F"; -- = +127, derived from simulation + -- . select + CONSTANT c_exp_beamlet_index : NATURAL := g_beamlet * c_sdp_N_pol_bf; -- in beamset 0 + -- . Beamlet weights for selected g_sp + CONSTANT c_bf_weight_re : INTEGER := INTEGER(g_bf_gain * REAL(c_sdp_unit_bf_weight) * COS(g_bf_phase * MATH_2_PI / 360.0)); + CONSTANT c_bf_weight_im : INTEGER := INTEGER(g_bf_gain * REAL(c_sdp_unit_bf_weight) * SIN(g_bf_phase * MATH_2_PI / 360.0)); + -- . Beamlet internal + CONSTANT c_exp_beamlet_ampl : REAL := c_exp_subband_ampl * g_bf_gain; + CONSTANT c_exp_beamlet_phase : REAL := c_subband_phase_offset + c_subband_weight_phase + g_bf_phase; + CONSTANT c_exp_beamlet_re : REAL := c_exp_beamlet_ampl * COS(c_exp_beamlet_phase * MATH_2_PI / 360.0); + CONSTANT c_exp_beamlet_im : REAL := c_exp_beamlet_ampl * SIN(c_exp_beamlet_phase * MATH_2_PI / 360.0); + -- . BST + CONSTANT c_exp_beamlet_power : REAL := c_exp_beamlet_ampl**2.0; -- complex, so no divide by 2 + CONSTANT c_exp_beamlet_bst : REAL := c_exp_subband_sst * g_bf_gain**2.0; -- = c_exp_beamlet_power * REAL(c_nof_block_per_sync) + -- . Beamlet output + CONSTANT c_exp_beamlet_output_ampl : REAL := c_exp_beamlet_ampl * g_beamlet_scale; + CONSTANT c_exp_beamlet_output_phase : REAL := c_exp_beamlet_phase; + CONSTANT c_exp_beamlet_output_re : REAL := c_exp_beamlet_re * g_beamlet_scale; + CONSTANT c_exp_beamlet_output_im : REAL := c_exp_beamlet_im * g_beamlet_scale; - -- MM + -- MM -- . Address widths of a single MM instance - CONSTANT c_addr_w_ram_ss_ss_wide : NATURAL := ceil_log2(c_sdp_P_pfb * c_sdp_S_sub_bf * c_sdp_Q_fft); - CONSTANT c_addr_w_ram_bf_weights : NATURAL := ceil_log2(c_sdp_N_pol * c_sdp_P_pfb * c_sdp_S_sub_bf * c_sdp_Q_fft); - CONSTANT c_addr_w_reg_bf_scale : NATURAL := 1; - CONSTANT c_addr_w_reg_hdr_dat : NATURAL := ceil_log2(field_nof_words(c_sdp_cep_hdr_field_arr, c_word_w)); - CONSTANT c_addr_w_reg_dp_xonoff : NATURAL := 1; - CONSTANT c_addr_w_ram_st_bst : NATURAL := ceil_log2(c_sdp_S_sub_bf*c_sdp_N_pol*(c_longword_sz/c_word_sz)); + -- . c_sdp_S_pn = 12 instances + CONSTANT c_addr_w_reg_diag_wg : NATURAL := 2; + -- . c_sdp_N_beamsets = 2 instances + CONSTANT c_addr_w_ram_ss_ss_wide : NATURAL := ceil_log2( c_sdp_P_pfb * c_sdp_S_sub_bf * c_sdp_Q_fft); + CONSTANT c_addr_w_ram_bf_weights : NATURAL := ceil_log2(c_sdp_N_pol_bf * c_sdp_P_pfb * c_sdp_S_sub_bf * c_sdp_Q_fft); + CONSTANT c_addr_w_reg_bf_scale : NATURAL := 1; + CONSTANT c_addr_w_reg_hdr_dat : NATURAL := ceil_log2(field_nof_words(c_sdp_cep_hdr_field_arr, c_word_w)); + CONSTANT c_addr_w_reg_dp_xonoff : NATURAL := 1; + CONSTANT c_addr_w_ram_st_bst : NATURAL := ceil_log2(c_sdp_S_sub_bf*c_sdp_N_pol_bf*c_stat_data_sz); -- . Address spans of a single MM instance + -- . c_sdp_S_pn = 12 instances + CONSTANT c_mm_span_reg_diag_wg : NATURAL := 2**c_addr_w_reg_diag_wg; + -- . c_sdp_N_beamsets = 2 instances CONSTANT c_mm_span_ram_ss_ss_wide : NATURAL := 2**c_addr_w_ram_ss_ss_wide; CONSTANT c_mm_span_ram_bf_weights : NATURAL := 2**c_addr_w_ram_bf_weights; CONSTANT c_mm_span_reg_bf_scale : NATURAL := 2**c_addr_w_reg_bf_scale; @@ -182,11 +236,15 @@ ARCHITECTURE tb OF tb_lofar2_unb2b_sdp_station_bf IS CONSTANT c_mm_file_reg_bsn_source_v2 : STRING := mmf_unb_file_prefix(c_unb_nr, c_node_nr) & "REG_BSN_SOURCE_V2"; CONSTANT c_mm_file_reg_bsn_scheduler_wg : STRING := mmf_unb_file_prefix(c_unb_nr, c_node_nr) & "REG_BSN_SCHEDULER"; CONSTANT c_mm_file_reg_diag_wg : STRING := mmf_unb_file_prefix(c_unb_nr, c_node_nr) & "REG_WG"; + CONSTANT c_mm_file_ram_equalizer_gains : STRING := mmf_unb_file_prefix(c_unb_nr, c_node_nr) & "RAM_EQUALIZER_GAINS"; + CONSTANT c_mm_file_reg_dp_selector : STRING := mmf_unb_file_prefix(c_unb_nr, c_node_nr) & "REG_DP_SELECTOR"; + CONSTANT c_mm_file_ram_st_sst : STRING := mmf_unb_file_prefix(c_unb_nr, c_node_nr) & "RAM_ST_SST"; CONSTANT c_mm_file_ram_st_bst : STRING := mmf_unb_file_prefix(c_unb_nr, c_node_nr) & "RAM_ST_BST"; CONSTANT c_mm_file_reg_dp_xonoff : STRING := mmf_unb_file_prefix(c_unb_nr, c_node_nr) & "REG_DP_XONOFF"; - CONSTANT c_mm_file_ram_st_sst : STRING := mmf_unb_file_prefix(c_unb_nr, c_node_nr) & "RAM_ST_SST"; - CONSTANT c_mm_file_reg_sdp_info : STRING := mmf_unb_file_prefix(c_unb_nr, c_node_nr) & "REG_SDP_INFO"; + CONSTANT c_mm_file_ram_ss_ss_wide : STRING := mmf_unb_file_prefix(c_unb_nr, c_node_nr) & "RAM_SS_SS_WIDE"; + CONSTANT c_mm_file_ram_bf_weights : STRING := mmf_unb_file_prefix(c_unb_nr, c_node_nr) & "RAM_BF_WEIGHTS"; CONSTANT c_mm_file_reg_bf_scale : STRING := mmf_unb_file_prefix(c_unb_nr, c_node_nr) & "REG_BF_SCALE"; + CONSTANT c_mm_file_reg_sdp_info : STRING := mmf_unb_file_prefix(c_unb_nr, c_node_nr) & "REG_SDP_INFO"; CONSTANT c_mm_file_reg_hdr_dat : STRING := mmf_unb_file_prefix(c_unb_nr, c_node_nr) & "REG_HDR_DAT"; -- c_sdp_N_beamsets = 2 beamsets -- Tb @@ -212,37 +270,49 @@ ARCHITECTURE tb OF tb_lofar2_unb2b_sdp_station_bf IS SIGNAL rd_cep_udp_dst_port : STD_LOGIC_VECTOR(15 DOWNTO 0); -- WG - SIGNAL current_bsn_wg : STD_LOGIC_VECTOR(c_dp_stream_bsn_w-1 DOWNTO 0); + SIGNAL current_bsn_wg : STD_LOGIC_VECTOR(c_dp_stream_bsn_w-1 DOWNTO 0); - -- WPFB - -- . Read sp_subband_powers_arr2 = SST for both sp 0 and 1, because these - -- are processed by the same PFB, to see the quantization crosstalk of - -- the separate function in the PFB. No need to also read the SST for - -- sp 2 : 11. - SIGNAL sp_subband_powers_arr2 : t_slv_64_subbands_arr(c_sdp_N_pol-1 DOWNTO 0); -- [pol][sub], for X,Y pair of sp0, sp1 - - SIGNAL pol_beamlet_powers_arr2 : t_slv_64_beamlets_arr(c_sdp_N_beamsets*c_sdp_N_pol_bf-1 DOWNTO 0); -- [bset*pol][blet] - SIGNAL pol_beamlet_power_0 : REAL; - SIGNAL pol_beamlet_power_sum : t_real_arr(c_sdp_N_beamsets*c_sdp_N_pol_bf-1 DOWNTO 0) := (OTHERS=>0.0); - SIGNAL pol_beamlet_power_sum_0 : REAL; - SIGNAL pol_beamlet_power_ratio_0 : REAL; - SIGNAL pol_beamlet_power_sum_ratio_0 : REAL; - SIGNAL pol_beamlet_power_leakage_sum_0 : REAL; + -- FSUB + -- . Read sp_subband_ssts_arr2 = SST for one WPFB unit that processes g_sp + SIGNAL sp_subband_ssts_arr2 : t_slv_64_subbands_arr(c_sdp_N_pol-1 DOWNTO 0); -- [pol][sub], for X,Y pair of A, B + SIGNAL sp_subband_sst : REAL := 0.0; + SIGNAL stat_data : STD_LOGIC_VECTOR(c_longword_w-1 DOWNTO 0); + + -- . Selector + SIGNAL sst_offload_weighted_subbands : STD_LOGIC; + + -- . Subband equalizer + SIGNAL sp_subband_weight_re : INTEGER := 0; + SIGNAL sp_subband_weight_im : INTEGER := 0; + SIGNAL sp_subband_weight_gain : REAL := 0.0; + SIGNAL sp_subband_weight_phase : REAL := 0.0; + + -- BF + SIGNAL sp_subband_select : NATURAL := 0; + SIGNAL sp_subband_select_arr : t_natural_arr(0 TO c_sdp_S_sub_bf * c_sdp_N_pol-1) := (OTHERS => 0); -- Q_fft = N_pol = 2 + SIGNAL sp_bf_weights_re_arr : t_integer_arr(0 TO c_sdp_S_pn-1) := (OTHERS => 0); + SIGNAL sp_bf_weights_im_arr : t_integer_arr(0 TO c_sdp_S_pn-1) := (OTHERS => 0); + SIGNAL sp_bf_weights_gain_arr : t_real_arr(0 TO c_sdp_S_pn-1) := (OTHERS => 0.0); + SIGNAL sp_bf_weights_phase_arr : t_real_arr(0 TO c_sdp_S_pn-1) := (OTHERS => 0.0); + + SIGNAL pol_beamlet_bsts_arr2 : t_slv_64_beamlets_arr(c_sdp_N_pol_bf-1 DOWNTO 0); -- [pol_bf][blet] + SIGNAL pol_beamlet_bst_X_arr : t_real_arr(0 TO c_sdp_N_beamsets-1) := (OTHERS => 0.0); -- [bset] + SIGNAL pol_beamlet_bst_Y_arr : t_real_arr(0 TO c_sdp_N_beamsets-1) := (OTHERS => 0.0); -- [bset] -- 10GbE - SIGNAL rx_beamlet_arr_re : t_slv_8_arr(c_sdp_cep_nof_blocks_per_packet-1 DOWNTO 0); -- [3:0] - SIGNAL rx_beamlet_arr_im : t_slv_8_arr(c_sdp_cep_nof_blocks_per_packet-1 DOWNTO 0); -- [3:0] - SIGNAL rx_beamlet_cnt : NATURAL; - SIGNAL rx_beamlet_valid : STD_LOGIC; + SIGNAL rx_beamlet_arr_re : t_slv_8_arr(c_sdp_cep_nof_blocks_per_packet-1 DOWNTO 0); -- [3:0] + SIGNAL rx_beamlet_arr_im : t_slv_8_arr(c_sdp_cep_nof_blocks_per_packet-1 DOWNTO 0); -- [3:0] + SIGNAL rx_beamlet_cnt : NATURAL; + SIGNAL rx_beamlet_valid : STD_LOGIC; - SIGNAL rx_beamlet_list_re : t_slv_8_arr(c_sdp_cep_nof_beamlets_per_block * c_sdp_N_pol_bf-1 DOWNTO 0); -- [488 * 2-1:0] = [975:0] - SIGNAL rx_beamlet_list_im : t_slv_8_arr(c_sdp_cep_nof_beamlets_per_block * c_sdp_N_pol_bf-1 DOWNTO 0); -- [488 * 2-1:0] = [975:0] + SIGNAL rx_beamlet_list_re : t_slv_8_arr(c_sdp_cep_nof_beamlets_per_block * c_sdp_N_pol_bf-1 DOWNTO 0); -- [488 * 2-1:0] = [975:0] + SIGNAL rx_beamlet_list_im : t_slv_8_arr(c_sdp_cep_nof_beamlets_per_block * c_sdp_N_pol_bf-1 DOWNTO 0); -- [488 * 2-1:0] = [975:0] - SIGNAL tr_10GbE_src_out : t_dp_sosi; - SIGNAL tr_10GbE_src_in : t_dp_siso; - SIGNAL tr_ref_clk_312 : STD_LOGIC := '0'; - SIGNAL tr_ref_clk_156 : STD_LOGIC := '0'; - SIGNAL tr_ref_rst_156 : STD_LOGIC := '0'; + SIGNAL tr_10GbE_src_out : t_dp_sosi; + SIGNAL tr_10GbE_src_in : t_dp_siso; + SIGNAL tr_ref_clk_312 : STD_LOGIC := '0'; + SIGNAL tr_ref_clk_156 : STD_LOGIC := '0'; + SIGNAL tr_ref_rst_156 : STD_LOGIC := '0'; -- dp_offload_rx SIGNAL offload_rx_hdr_dat_mosi : t_mem_mosi := c_mem_mosi_rst; @@ -261,32 +331,32 @@ ARCHITECTURE tb OF tb_lofar2_unb2b_sdp_station_bf IS SIGNAL exp_dp_bsn : NATURAL; -- DUT - SIGNAL ext_clk : STD_LOGIC := '0'; - SIGNAL ext_pps : STD_LOGIC := '0'; + SIGNAL ext_clk : STD_LOGIC := '0'; + SIGNAL ext_pps : STD_LOGIC := '0'; - SIGNAL WDI : STD_LOGIC; - SIGNAL INTA : STD_LOGIC; - SIGNAL INTB : STD_LOGIC; + SIGNAL WDI : STD_LOGIC; + SIGNAL INTA : STD_LOGIC; + SIGNAL INTB : STD_LOGIC; - SIGNAL eth_clk : STD_LOGIC := '0'; - SIGNAL eth_txp : STD_LOGIC_VECTOR(c_unb2b_board_nof_eth-1 downto 0); - SIGNAL eth_rxp : STD_LOGIC_VECTOR(c_unb2b_board_nof_eth-1 downto 0); + SIGNAL eth_clk : STD_LOGIC := '0'; + SIGNAL eth_txp : STD_LOGIC_VECTOR(c_unb2b_board_nof_eth-1 downto 0); + SIGNAL eth_rxp : STD_LOGIC_VECTOR(c_unb2b_board_nof_eth-1 downto 0); - SIGNAL sens_scl : STD_LOGIC; - SIGNAL sens_sda : STD_LOGIC; - SIGNAL pmbus_scl : STD_LOGIC; - SIGNAL pmbus_sda : STD_LOGIC; + SIGNAL sens_scl : STD_LOGIC; + SIGNAL sens_sda : STD_LOGIC; + SIGNAL pmbus_scl : STD_LOGIC; + SIGNAL pmbus_sda : STD_LOGIC; - SIGNAL SA_CLK : STD_LOGIC := '1'; - SIGNAL si_lpbk_0 : STD_LOGIC_VECTOR(c_unb2b_board_tr_qsfp.bus_w-1 DOWNTO 0); + SIGNAL SA_CLK : STD_LOGIC := '1'; + SIGNAL si_lpbk_0 : STD_LOGIC_VECTOR(c_unb2b_board_tr_qsfp.bus_w-1 DOWNTO 0); -- back transceivers SIGNAL JESD204B_SERIAL_DATA : STD_LOGIC_VECTOR(c_sdp_S_pn-1 downto 0); SIGNAL JESD204B_REFCLK : STD_LOGIC := '1'; -- jesd204b syncronization signals - SIGNAL jesd204b_sysref : STD_LOGIC; - SIGNAL jesd204b_sync_n : STD_LOGIC_VECTOR(c_sdp_N_sync_jesd-1 DOWNTO 0); + SIGNAL jesd204b_sysref : STD_LOGIC; + SIGNAL jesd204b_sync_n : STD_LOGIC_VECTOR(c_sdp_N_sync_jesd-1 DOWNTO 0); BEGIN @@ -326,7 +396,7 @@ BEGIN g_sim_node_nr => c_node_nr, g_wpfb => c_wpfb_sim, g_bsn_nof_clk_per_sync => c_nof_clk_per_sync, - g_scope_selected_subband => c_subband_sp_0 + g_scope_selected_subband => g_subband ) PORT MAP ( -- GENERAL @@ -445,16 +515,15 @@ BEGIN tb_clk <= NOT tb_clk AFTER c_tb_clk_period/2; -- Testbench MM clock p_mm_stimuli : PROCESS - VARIABLE v_bsn : NATURAL; - VARIABLE v_sp_subband_power : REAL; - VARIABLE v_pol_beamlet_power : REAL; - VARIABLE v_data_lo, v_data_hi : STD_LOGIC_VECTOR(c_word_w-1 DOWNTO 0); - VARIABLE v_stat_data : STD_LOGIC_VECTOR(c_longword_w-1 DOWNTO 0); - VARIABLE v_len, v_span, v_A : NATURAL; -- address ranges, indices - VARIABLE v_W, v_P, v_U, v_S, v_B : NATURAL; -- array indicies - VARIABLE v_re, v_im : INTEGER; - VARIABLE v_re_exp, v_im_exp : INTEGER; - VARIABLE v_offset : NATURAL; + VARIABLE v_bsn : NATURAL; + VARIABLE v_sp_subband_sst : REAL := 0.0; + VARIABLE v_pol_beamlet_bst : REAL := 0.0; + VARIABLE v_data_lo, v_data_hi : STD_LOGIC_VECTOR(c_word_w-1 DOWNTO 0); + VARIABLE v_stat_data : STD_LOGIC_VECTOR(c_longword_w-1 DOWNTO 0); + VARIABLE v_len, v_span, v_offset, v_addr, v_sel : NATURAL; -- address ranges, indices + VARIABLE v_W, v_P, v_S, v_A, v_B, v_G : NATURAL; -- array indicies + VARIABLE v_re, v_im, v_weight : INTEGER; + VARIABLE v_re_exp, v_im_exp : REAL := 0.0; BEGIN -- Wait for DUT power up after reset WAIT FOR 1 us; @@ -502,8 +571,15 @@ BEGIN ------------------------------------------------------------------------------ FOR bset IN 0 TO c_sdp_N_beamsets-1 LOOP -- MM beamlet_scale + -- . write v_offset := bset * c_mm_span_reg_bf_scale; - mmf_mm_bus_rd(c_mm_file_reg_bf_scale, v_offset + 0, rd_data, tb_clk); rd_beamlet_scale <= rd_data(15 DOWNTO 0); + mmf_mm_bus_wr(c_mm_file_reg_bf_scale, v_offset + 0, c_exp_beamlet_scale, tb_clk); + proc_common_wait_some_cycles(tb_clk, c_cross_clock_domain_latency); + proc_common_wait_some_cycles(ext_clk, c_cross_clock_domain_latency); + + -- . readback + mmf_mm_bus_rd(c_mm_file_reg_bf_scale, v_offset + 0, rd_data, tb_clk); + rd_beamlet_scale <= rd_data(15 DOWNTO 0); proc_common_wait_some_cycles(tb_clk, 1); ASSERT TO_UINT(rd_beamlet_scale) = c_exp_beamlet_scale REPORT "Wrong MM read beamlet_scale for beamset " & NATURAL'IMAGE(bset) SEVERITY ERROR; @@ -588,23 +664,25 @@ BEGIN pps_rst <= '0'; ---------------------------------------------------------------------------- - -- Enable WG + -- Enable and start WG ---------------------------------------------------------------------------- -- 0 : mode[7:0] --> off=0, calc=1, repeat=2, single=3) -- nof_samples[31:16] --> <= c_ram_wg_size=1024 -- 1 : phase[15:0] -- 2 : freq[30:0] -- 3 : ampl[16:0] - mmf_mm_bus_wr(c_mm_file_reg_diag_wg, 0, 1024*2**16 + 1, tb_clk); -- nof_samples, mode calc - mmf_mm_bus_wr(c_mm_file_reg_diag_wg, 1, INTEGER(c_phase_sp_0 * c_diag_wg_phase_unit), tb_clk); -- phase offset in degrees - mmf_mm_bus_wr(c_mm_file_reg_diag_wg, 2, INTEGER(REAL(c_subband_sp_0) * c_wg_subband_freq_unit), tb_clk); -- freq - mmf_mm_bus_wr(c_mm_file_reg_diag_wg, 3, INTEGER(REAL(c_ampl_sp_0) * c_wg_ampl_lsb), tb_clk); -- ampl + -- . Put wanted signal on g_sp input + v_offset := g_sp * c_mm_span_reg_diag_wg; + mmf_mm_bus_wr(c_mm_file_reg_diag_wg, v_offset + 0, 1024*2**16 + 1, tb_clk); -- nof_samples, mode calc + mmf_mm_bus_wr(c_mm_file_reg_diag_wg, v_offset + 1, INTEGER(c_wg_phase * c_diag_wg_phase_unit), tb_clk); -- phase offset in degrees + mmf_mm_bus_wr(c_mm_file_reg_diag_wg, v_offset + 2, INTEGER(REAL(g_subband) * c_wg_subband_freq_unit), tb_clk); -- freq + mmf_mm_bus_wr(c_mm_file_reg_diag_wg, v_offset + 3, INTEGER(REAL(c_wg_ampl) * c_wg_ampl_lsb), tb_clk); -- ampl -- Read current BSN mmf_mm_bus_rd(c_mm_file_reg_bsn_scheduler_wg, 0, current_bsn_wg(31 DOWNTO 0), tb_clk); mmf_mm_bus_rd(c_mm_file_reg_bsn_scheduler_wg, 1, current_bsn_wg(63 DOWNTO 32), tb_clk); proc_common_wait_some_cycles(tb_clk, 1); - + -- Write scheduler BSN to trigger start of WG at next block v_bsn := TO_UINT(current_bsn_wg) + 2; ASSERT v_bsn <= c_bsn_start_wg REPORT "Too late to start WG: " & int_to_str(v_bsn) & " > " & int_to_str(c_bsn_start_wg) SEVERITY ERROR; @@ -612,7 +690,117 @@ BEGIN mmf_mm_bus_wr(c_mm_file_reg_bsn_scheduler_wg, 0, v_bsn, tb_clk); -- first write low then high part mmf_mm_bus_wr(c_mm_file_reg_bsn_scheduler_wg, 1, 0, tb_clk); -- assume v_bsn < 2**31-1 + ---------------------------------------------------------------------------- + -- Read weighted subband selector + ---------------------------------------------------------------------------- + mmf_mm_bus_rd(c_mm_file_reg_dp_selector, 0, rd_data, tb_clk); + proc_common_wait_some_cycles(tb_clk, 1); + sst_offload_weighted_subbands <= NOT rd_data(0); + + ---------------------------------------------------------------------------- + -- Subband weight + ---------------------------------------------------------------------------- + + -- . MM format: (cint16)RAM_EQUALIZER_GAINS[S_pn/Q_fft]_[Q_fft][N_sub] = [S_pn][N_sub] + v_addr := g_sp * c_sdp_N_sub + g_subband; + -- . read + mmf_mm_bus_rd(c_mm_file_ram_equalizer_gains, v_addr, rd_data, tb_clk); + v_re := unpack_complex_re(rd_data, c_sdp_W_sub_weight); + v_im := unpack_complex_im(rd_data, c_sdp_W_sub_weight); + sp_subband_weight_re <= v_re; + sp_subband_weight_im <= v_im; + sp_subband_weight_gain <= SQRT(REAL(v_re)**2.0 + REAL(v_im)**2.0) / REAL(c_sdp_unit_sub_weight); + sp_subband_weight_phase <= atan2(Y => REAL(v_im), X => REAL(v_re)) * 360.0 / MATH_2_PI; + + -- No need to write subband weight, because default it is unit weight + + ---------------------------------------------------------------------------- + -- Subband select to map subband to beamlet + ---------------------------------------------------------------------------- + -- . MM format: (uint16)RAM_SS_SS_WIDE[N_beamsets][A_pn]_[S_sub_bf][Q_fft], Q_fft = N_pol = 2 + + -- . write selection, only for g_beamlet to save sim time + v_span := true_log_pow2(c_sdp_N_pol * c_sdp_S_sub_bf); -- = 1024 + FOR U IN 0 TO c_sdp_N_beamsets-1 LOOP + -- Same selection for both beamsets + -- Select beamlet g_beamlet to subband g_subband + FOR A IN 0 TO c_sdp_A_pn-1 LOOP + -- Same selection to all SP + FOR P IN 0 TO c_sdp_N_pol-1 LOOP + v_addr := P + g_beamlet * c_sdp_N_pol + A * v_span + U * c_mm_span_ram_ss_ss_wide; + v_sel := P + g_subband * c_sdp_N_pol; + mmf_mm_bus_wr(c_mm_file_ram_ss_ss_wide, v_addr, v_sel, tb_clk); + END LOOP; + END LOOP; + END LOOP; + + -- . read back selection for g_sp = c_pfb_index * c_sdp_N_pol + c_pol_index + v_P := c_pol_index; + v_A := c_pfb_index; + FOR U IN 0 TO c_sdp_N_beamsets-1 LOOP + -- Same selection for both beamsets, so fine to use only one sp_subband_select_arr() + FOR B IN 0 TO c_sdp_S_sub_bf-1 LOOP + -- Same selection for all SP, so fine to only read subband selection for g_sp + v_addr := v_P + B * c_sdp_N_pol + v_A * v_span + U * c_mm_span_ram_ss_ss_wide; + mmf_mm_bus_rd(c_mm_file_ram_ss_ss_wide, v_addr, rd_data, tb_clk); + v_sel := (TO_UINT(rd_data) - v_P) / c_sdp_N_pol; + sp_subband_select_arr(B) <= v_sel; + sp_subband_select <= v_sel; -- for time series view in Wave window + END LOOP; + END LOOP; + proc_common_wait_some_cycles(tb_clk, 1); + proc_common_wait_some_cycles(ext_clk, 100); -- delay for ease of view in Wave window + + ---------------------------------------------------------------------------- + -- Write beamlet weight for g_beamlet + ---------------------------------------------------------------------------- + -- . MM format: (cint16)RAM_BF_WEIGHTS[N_beamsets][N_pol_bf][A_pn]_[N_pol][S_sub_bf] + + -- . write BF weights, only for g_beamlet to save sim time + v_span := true_log_pow2(c_sdp_N_pol * c_sdp_S_sub_bf); -- = 1024 + FOR U IN 0 TO c_sdp_N_beamsets-1 LOOP + -- Same BF weights for both beamsets + FOR A IN 0 TO c_sdp_A_pn-1 LOOP + FOR P IN 0 TO c_sdp_N_pol-1 LOOP + v_S := A * c_sdp_N_pol + P; + IF v_S = g_sp THEN + -- use generic BF weight for g_sp in g_beamlet + v_weight := pack_complex(re => c_bf_weight_re, im => c_bf_weight_im, w => c_sdp_W_bf_weight); + ELSE + -- default set all weights to zero + v_weight := 0; + END IF; + v_addr := g_beamlet + A * v_span + U * c_mm_span_ram_bf_weights; + v_addr := v_addr + P * c_sdp_S_sub_bf; + mmf_mm_bus_wr(c_mm_file_ram_bf_weights, v_addr, v_weight, tb_clk); + END LOOP; + END LOOP; + END LOOP; + + -- . read back BF weights for g_beamlet + FOR U IN 0 TO c_sdp_N_beamsets-1 LOOP + FOR A IN 0 TO c_sdp_A_pn-1 LOOP + FOR P IN 0 TO c_sdp_N_pol-1 LOOP + v_addr := g_beamlet + A * v_span + U * c_mm_span_ram_bf_weights; + v_addr := v_addr + P * c_sdp_S_sub_bf; + mmf_mm_bus_rd(c_mm_file_ram_bf_weights, v_addr, rd_data, tb_clk); + v_re := unpack_complex_re(rd_data, c_sdp_W_bf_weight); + v_im := unpack_complex_im(rd_data, c_sdp_W_bf_weight); + -- same BF weights for both beamsets, so fine to use only one sp_bf_weights_*_arr() + v_S := A * c_sdp_N_pol + P; + sp_bf_weights_re_arr(v_S) <= v_re; + sp_bf_weights_im_arr(v_S) <= v_im; + sp_bf_weights_gain_arr(v_S) <= SQRT(REAL(v_re)**2.0 + REAL(v_im)**2.0) / REAL(c_sdp_unit_bf_weight); + sp_bf_weights_phase_arr(v_S) <= atan2(Y => REAL(v_im), X => REAL(v_re)) * 360.0 / MATH_2_PI; + END LOOP; + END LOOP; + END LOOP; + proc_common_wait_some_cycles(tb_clk, 1); + proc_common_wait_some_cycles(ext_clk, 100); -- delay for ease of view in Wave window + + ---------------------------------------------------------------------------- -- Wait for enough WG data and start of sync interval + ---------------------------------------------------------------------------- mmf_mm_wait_until_value(c_mm_file_reg_bsn_scheduler_wg, 0, -- read BSN low "UNSIGNED", rd_data, ">=", c_init_bsn + c_nof_block_per_sync*3, -- this is the wait until condition c_sdp_T_sub, tb_clk); @@ -623,134 +811,186 @@ BEGIN --------------------------------------------------------------------------- -- Read subband statistics --------------------------------------------------------------------------- - -- . the subband statistics are c_wpfb_sim.stat_data_sz = 2 word power values. - -- . there are c_sdp_N_sub = 512 subbands per signal path - -- . one complex WPFB can process two real inputs A, B, is c_sdp_Q_fft = c_sdp_N_pol = 2 + -- . the subband statistics are c_stat_data_sz = 2 word power values. + -- . there are c_sdp_S_pn = 12 signal inputs A, B, C, D, E, F, G, H, I, J, K, L + -- . there are c_sdp_N_sub = 512 subbands per signal input (SI, = signal path, SP) + -- . one complex WPFB can process two real inputs A, B, so there are c_sdp_P_pfb = 6 WPFB units, + -- but only read for the 1 WPFB unit of the selected g_sp, to save sim time + -- . the outputs for A, B are time multiplexed, c_sdp_Q_fft = 2, assume that they + -- correspond to the c_sdp_N_pol = 2 signal polarizations -- . the subbands are output alternately so A0 B0 A1 B1 ... A511 B511 for input A, B - -- . the subband statistics for multiple WPFB units appear in order in the ram_st_sst address map + -- . the subband statistics multiple WPFB units appear in order in the ram_st_sst address map -- . the subband statistics are stored first lo word 0 then hi word 1 v_len := c_sdp_N_sub * c_sdp_N_pol * c_stat_data_sz; -- 2048 = 512 * 2 * 64/32 - FOR I IN 0 TO v_len - 1 LOOP - v_W := I MOD c_stat_data_sz; -- 0, 1 per statistics word, word index - v_P := (I / c_stat_data_sz) MOD c_sdp_N_pol; -- 0, 1 per SP pol, poilarization index - v_U := I / v_len; -- / 2048, pfb unit index, range(P_pfb = 6) - v_S := v_P + v_U * c_sdp_N_pol; -- signal input index, range(S_pn = 12) - v_B := (I / (c_sdp_N_pol * c_stat_data_sz)) MOD c_sdp_N_sub; -- subband index, range(N_sub = 512) per dual pol - v_A := I; -- MM address (v_len = v_span) - -- Only read sp 0 and sp 1 (v_S = 0, v_S = 1) to see digital crosstalk between two real inputs of PFB - IF v_U = 0 THEN -- v_U = 0 is equivalent to signal input index v_S = 0 OR v_S = 1 + v_span := true_log_pow2(v_len); -- = 2048 + FOR I IN 0 TO v_len-1 LOOP + v_W := I MOD c_stat_data_sz; -- 0, 1 per statistics word, word index + v_P := (I / c_stat_data_sz) MOD c_sdp_N_pol; -- 0, 1 per SP pol, polarization index + v_B := I / (c_sdp_N_pol * c_stat_data_sz); -- subband index, range(N_sub = 512) per dual pol + v_addr := I + c_pfb_index * v_span; -- MM address + -- Only read SST for g_subband for dual pol SP, to save sim time + IF g_read_all_SST = TRUE OR v_B = g_subband THEN IF v_W = 0 THEN -- low part - mmf_mm_bus_rd(c_mm_file_ram_st_sst, v_A, rd_data, tb_clk); + mmf_mm_bus_rd(c_mm_file_ram_st_sst, v_addr, rd_data, tb_clk); v_data_lo := rd_data; - ELSE + ELSE -- high part - mmf_mm_bus_rd(c_mm_file_ram_st_sst, v_A, rd_data, tb_clk); + mmf_mm_bus_rd(c_mm_file_ram_st_sst, v_addr, rd_data, tb_clk); v_data_hi := rd_data; v_stat_data := v_data_hi & v_data_lo; - sp_subband_powers_arr2(v_S)(v_B) <= v_stat_data; + sp_subband_ssts_arr2(v_P)(v_B) <= v_stat_data; + stat_data <= v_stat_data; -- for time series view in Wave window END IF; END IF; END LOOP; - + proc_common_wait_some_cycles(tb_clk, 1); + + -- Subband power of g_subband in g_sp + -- . For the selected g_subband in g_sp the sp_subband_sst will be close + -- to sp_subband_sst_sum_arr(c_pol_index), because the input is a + -- sinus, so most power will be in 1 subband. + sp_subband_sst <= TO_UREAL(sp_subband_ssts_arr2(c_pol_index)(g_subband)); + proc_common_wait_some_cycles(tb_clk, 1); + proc_common_wait_some_cycles(ext_clk, 100); -- delay for ease of view in Wave window + --------------------------------------------------------------------------- -- Read beamlet statistics --------------------------------------------------------------------------- -- . the beamlet statistics are c_stat_data_sz = 2 word power values. - -- . there are c_sdp_S_sub_bf = 488 dual pol beamlets - -- . the beamlets are output alternately so A0 B0 A1 B1 ... A487 B487 for input A, B + -- . there are c_sdp_S_sub_bf = 488 dual pol beamlets per beamset + -- . the beamlets are output alternately so X0 Y0 X1 Y1 ... X487 Y487 for polarizations X, Y -- . the beamlet statistics for multiple beamsets appear in order in the ram_st_bst address map -- . the beamlet statistics are stored first lo word 0 then hi word 1 v_len := c_sdp_S_sub_bf * c_sdp_N_pol_bf * c_stat_data_sz; -- = 1952 = 488 * 2 * 64/32 v_span := true_log_pow2(v_len); -- = 2048 - FOR I IN 0 TO v_len - 1 LOOP - v_W := I MOD c_stat_data_sz; -- 0, 1 per statistics word, word index - v_P := (I / c_stat_data_sz) MOD c_sdp_N_pol_bf; -- 0, 1 per BF pol, poilarization index - v_U := I / v_len; -- / 1952, beamset unit index, range(N_beamsets = 2) - v_S := v_P + v_U * c_sdp_N_pol_bf; -- beamset * pol index, range(N_beamsets * N_pol_bf = 4) - v_B := (I / (c_sdp_N_pol_bf * c_stat_data_sz)) MOD c_sdp_S_sub_bf; -- beamlet index, range(S_sub_bf = 488) per dual pol - v_A := I MOD v_len + v_U * v_span; -- MM address - -- Only read beamset 0, pol 0 and 1 (v_U = 0) - IF v_U = 0 THEN -- v_U = 0 is equivalent to beamset * pol index v_S = 0 OR v_S = 1 - IF v_W = 0 THEN - -- low part - mmf_mm_bus_rd(c_mm_file_ram_st_bst, v_A, rd_data, tb_clk); - v_data_lo := rd_data; - ELSE - -- high part - mmf_mm_bus_rd(c_mm_file_ram_st_bst, v_A, rd_data, tb_clk); - v_data_hi := rd_data; - v_stat_data := v_data_hi & v_data_lo; - - pol_beamlet_powers_arr2(v_S)(v_B) <= v_stat_data; - - -- sum - v_pol_beamlet_power := TO_UREAL(v_stat_data); - pol_beamlet_power_sum(v_S) <= pol_beamlet_power_sum(v_S) + v_pol_beamlet_power; + FOR U IN 0 TO c_sdp_N_beamsets-1 LOOP + FOR I IN 0 TO v_len-1 LOOP + v_W := I MOD c_stat_data_sz; -- 0, 1 per statistics word, word index + v_P := (I / c_stat_data_sz) MOD c_sdp_N_pol_bf; -- 0, 1 per BF pol, polarization index + v_B := I / (c_sdp_N_pol_bf * c_stat_data_sz); -- beamlet index in beamset, range(S_sub_bf = 488) per dual pol + v_G := v_B + U * c_sdp_S_sub_bf; -- global beamlet index, range(c_sdp_N_beamlets_sdp) + v_addr := I + U * v_span; -- MM address + --Only read BST for g_beamlet and dual pol_bf 0 and 1 and for both beamsets, to save sim time + IF g_read_all_BST = TRUE OR v_B = g_beamlet THEN + IF v_W = 0 THEN + -- low part + mmf_mm_bus_rd(c_mm_file_ram_st_bst, v_addr, rd_data, tb_clk); + v_data_lo := rd_data; + ELSE + -- high part + mmf_mm_bus_rd(c_mm_file_ram_st_bst, v_addr, rd_data, tb_clk); + v_data_hi := rd_data; + v_stat_data := v_data_hi & v_data_lo; + + pol_beamlet_bsts_arr2(v_P)(v_G) <= v_stat_data; + stat_data <= v_stat_data; -- for time series view in Wave window + END IF; END IF; - END IF; + END LOOP; END LOOP; + proc_common_wait_some_cycles(tb_clk, 1); - -- pol_beamlet_power_sum is the sum of all subband powers per SP, this value will be close to pol_beamlet_power - -- because the input is a sinus, so most power will be in 1 subband. The pol_beamlet_power_leakage_sum shows - -- how much power from the input sinus at a specific subband has leaked into the 511 other subbands. - pol_beamlet_power_0 <= TO_UREAL(pol_beamlet_powers_arr2(0)(c_subband_sp_0)); - - pol_beamlet_power_sum_0 <= pol_beamlet_power_sum(0); - + -- Beamlet power of g_beamlet X and Y, same for both beamsets + FOR U IN 0 TO c_sdp_N_beamsets-1 LOOP + v_G := g_beamlet + U * c_sdp_S_sub_bf; -- global beamlet index, range(c_sdp_N_beamlets_sdp) + pol_beamlet_bst_X_arr(U) <= TO_UREAL(pol_beamlet_bsts_arr2(0)(v_G)); -- X pol beamlet + pol_beamlet_bst_Y_arr(U) <= TO_UREAL(pol_beamlet_bsts_arr2(1)(v_G)); -- Y pol beamlet + END LOOP; proc_common_wait_some_cycles(tb_clk, 1); + proc_common_wait_some_cycles(ext_clk, 100); -- delay for ease of view in Wave window --------------------------------------------------------------------------- - -- Verify subband statistics - --------------------------------------------------------------------------- - FOR I IN 0 TO c_sdp_N_pol*c_sdp_S_sub_bf-1 LOOP - v_P := I MOD c_sdp_N_pol; - v_U := I / (c_sdp_N_pol*c_sdp_S_sub_bf); - v_S := v_P + v_U * c_sdp_N_pol; - v_B := (I / c_sdp_N_pol) MOD c_sdp_S_sub_bf; - IF v_S = 0 THEN - -- Convert STD_LOGIC_VECTOR to REAL - v_pol_beamlet_power := TO_UREAL(pol_beamlet_powers_arr2(v_S)(v_B)); - - -- Convert STD_LOGIC_VECTOR to REAL - v_sp_subband_power := TO_UREAL(sp_subband_powers_arr2(v_S)(v_B)); - - -- verify if subband power and beamlet power are the same. This is expected because we only use 1 WG input and the BF weights have unit value. - -- the difference should not be larger than 0.5% (+/- 2^13 for low values) - ASSERT v_pol_beamlet_power > 0.995 * v_sp_subband_power -2.0**13 REPORT "index ("& integer'image(v_S) &","& integer'image(v_B) &"): Subband power = "& real'image(v_sp_subband_power) &" and Beamlet power = "& real'image(v_pol_beamlet_power) &" are not equal" SEVERITY ERROR; - ASSERT v_pol_beamlet_power < 1.005 * v_sp_subband_power +2.0**13 REPORT "index ("& integer'image(v_S) &","& integer'image(v_B) &"): Subband power = "& real'image(v_sp_subband_power) &" and Beamlet power = "& real'image(v_pol_beamlet_power) &" are not equal" SEVERITY ERROR; - END IF; + -- Log WG, subband and beamlet statistics + --------------------------------------------------------------------------- + + print_str(""); + print_str("WG:"); + print_str(". c_wg_ampl = " & int_to_str(c_wg_ampl)); + print_str(". c_exp_sp_power = " & real_to_str(c_exp_sp_power, 20, 1)); + print_str(". c_exp_sp_ast = " & real_to_str(c_exp_sp_ast, 20, 1)); + + print_str(""); + print_str("Subband selector:"); + print_str(". sst_offload_weighted_subbands = " & sl_to_str(sst_offload_weighted_subbands)); + + print_str(""); + print_str("Subband weight:"); + print_str(". sp_subband_weight_gain = " & real_to_str(sp_subband_weight_gain, 20, 6)); + print_str(". sp_subband_weight_phase = " & real_to_str(sp_subband_weight_phase, 20, 6)); + + print_str(""); + print_str("SST results:"); + print_str(". c_exp_subband_ampl = " & int_to_str(NATURAL(c_exp_subband_ampl))); + print_str(". c_exp_subband_power = " & real_to_str(c_exp_subband_power, 20, 1)); + print_str(". c_exp_subband_sst = " & real_to_str(c_exp_subband_sst, 20, 1)); + print_str(""); + print_str(". sp_subband_sst = " & real_to_str(sp_subband_sst, 20, 1)); + print_str(". sp_subband_sst / c_exp_subband_sst = " & real_to_str(sp_subband_sst / c_exp_subband_sst, 20, 6)); + + print_str(""); + print_str("BST results:"); + print_str(". c_exp_beamlet_ampl = " & int_to_str(NATURAL(c_exp_beamlet_ampl))); + print_str(". c_exp_beamlet_power = " & real_to_str(c_exp_beamlet_power, 20, 1)); + print_str(". c_exp_beamlet_bst = " & real_to_str(c_exp_beamlet_bst, 20, 1)); + print_str(""); + FOR U IN 0 TO c_sdp_N_beamsets-1 LOOP + v_G := g_beamlet + U * c_sdp_S_sub_bf; -- global beamlet index, range(c_sdp_N_beamlets_sdp) + print_str(". pol_beamlet_bst_X beamlet(" & INTEGER'IMAGE(v_G) & ") = " & real_to_str(pol_beamlet_bst_X_arr(U), 20, 1)); + print_str(". pol_beamlet_bst_Y beamlet(" & INTEGER'IMAGE(v_G) & ") = " & real_to_str(pol_beamlet_bst_Y_arr(U), 20, 1)); + END LOOP; + FOR U IN 0 TO c_sdp_N_beamsets-1 LOOP + v_G := g_beamlet + U * c_sdp_S_sub_bf; -- global beamlet index, range(c_sdp_N_beamlets_sdp) + print_str(". pol_beamlet_bst_X beamlet(" & INTEGER'IMAGE(v_G) & ") / c_exp_beamlet_bst = " & real_to_str(pol_beamlet_bst_X_arr(U) / c_exp_beamlet_bst, 20, 6)); + print_str(". pol_beamlet_bst_Y beamlet(" & INTEGER'IMAGE(v_G) & ") / c_exp_beamlet_bst = " & real_to_str(pol_beamlet_bst_Y_arr(U) / c_exp_beamlet_bst, 20, 6)); END LOOP; - -- verify expected subband power based on WG power - IF pol_beamlet_power_sum_0>0.0 THEN ASSERT pol_beamlet_power_0 > c_lo_factor * c_exp_beamlet_power_sp_0 REPORT "Wrong beamlet power for SP 0" SEVERITY ERROR; END IF; - IF pol_beamlet_power_sum_0>0.0 THEN ASSERT pol_beamlet_power_0 < c_hi_factor * c_exp_beamlet_power_sp_0 REPORT "Wrong beamlet power for SP 0" SEVERITY ERROR; END IF; - - -- view c_exp_pol_beamlet_power_ratio in Wave window - IF pol_beamlet_power_sum_0>0.0 THEN pol_beamlet_power_ratio_0 <= pol_beamlet_power_0/pol_beamlet_power_sum_0; END IF; - - -- view c_exp_pol_beamlet_power_sum_ratio in Wave window - -- The pol_beamlet_power_sum_ratio show similar information as pol_beamlet_power_leakage_sum, because when - -- pol_beamlet_power_leakage_sum is small then pol_beamlet_power_sum_ratio ~= pol_beamlet_power_ratio. - IF pol_beamlet_power_sum_0>0.0 THEN pol_beamlet_power_sum_ratio_0 <= pol_beamlet_power_sum_0/pol_beamlet_power_0; END IF; + print_str(""); + print_str("Beamlet output:"); + print_str(". rd_beamlet_scale = " & int_to_str(TO_UINT(rd_beamlet_scale))); + print_str(". c_exp_beamlet_output_ampl = " & int_to_str(NATURAL(c_exp_beamlet_output_ampl))); - -- View pol_beamlet_power_leakage_sum in Wave window - IF pol_beamlet_power_sum_0>0.0 THEN pol_beamlet_power_leakage_sum_0 <= pol_beamlet_power_sum_0 - pol_beamlet_power_0; END IF; + --------------------------------------------------------------------------- + -- Verify SST and BST + --------------------------------------------------------------------------- + + -- verify expected subband power based on WG power + ASSERT sp_subband_sst > c_stat_lo_factor * c_exp_subband_sst REPORT "Wrong subband power for SP " & NATURAL'IMAGE(g_sp) SEVERITY ERROR; + ASSERT sp_subband_sst < c_stat_hi_factor * c_exp_subband_sst REPORT "Wrong subband power for SP " & NATURAL'IMAGE(g_sp) SEVERITY ERROR; + + -- verify expected beamlet power based on WG power and BF weigths + -- + -- All co and cross polarization weights are equal: w = w_xx = w_xy = w_yx = w_yy + -- With one g_sp either SP X or SP Y is used, so the other antenna polarization is 0 + -- Hence the c_exp_beamlet_bst will be the same for beamlet X and Y independent of whether g_sp is an X or Y signal input: + -- g_sp = X --> w_xx --> beamlet X = c_exp_beamlet_bst + -- g_sp = Y --> w_xy --> beamlet X = c_exp_beamlet_bst + -- g_sp = X --> w_yx --> beamlet Y = c_exp_beamlet_bst + -- g_sp = Y --> w_yy --> beamlet Y = c_exp_beamlet_bst + -- + FOR U IN 0 TO c_sdp_N_beamsets-1 LOOP + ASSERT pol_beamlet_bst_X_arr(U) > c_stat_lo_factor * c_exp_beamlet_bst REPORT "Wrong beamlet power for X in beamset " & NATURAL'IMAGE(U) SEVERITY ERROR; + ASSERT pol_beamlet_bst_X_arr(U) < c_stat_hi_factor * c_exp_beamlet_bst REPORT "Wrong beamlet power for X in beamset " & NATURAL'IMAGE(U) SEVERITY ERROR; + ASSERT pol_beamlet_bst_Y_arr(U) > c_stat_lo_factor * c_exp_beamlet_bst REPORT "Wrong beamlet power for Y in beamset " & NATURAL'IMAGE(U) SEVERITY ERROR; + ASSERT pol_beamlet_bst_Y_arr(U) < c_stat_hi_factor * c_exp_beamlet_bst REPORT "Wrong beamlet power for Y in beamset " & NATURAL'IMAGE(U) SEVERITY ERROR; + END LOOP; --------------------------------------------------------------------------- - -- Verify 10GbE UDP offload + -- Verify beamlet output in 10GbE UDP offload --------------------------------------------------------------------------- - v_re := TO_SINT(rx_beamlet_list_re(c_exp_beamlet_index)); v_re_exp := TO_SINT(c_exp_beamlet_re); - v_im := TO_SINT(rx_beamlet_list_im(c_exp_beamlet_index)); v_im_exp := TO_SINT(c_exp_beamlet_im); - ASSERT v_re = v_re_exp REPORT "Wrong 10GbE output (re) " & INTEGER'IMAGE(v_re) & " != " & INTEGER'IMAGE(v_re_exp) SEVERITY ERROR; - ASSERT v_im = v_im_exp REPORT "Wrong 10GbE output (im) " & INTEGER'IMAGE(v_re) & " != " & INTEGER'IMAGE(v_re_exp) SEVERITY ERROR; + v_re := TO_SINT(rx_beamlet_list_re(c_exp_beamlet_index)); v_re_exp := c_exp_beamlet_output_re; + v_im := TO_SINT(rx_beamlet_list_im(c_exp_beamlet_index)); v_im_exp := c_exp_beamlet_output_im; + ASSERT v_re > INTEGER(v_re_exp) - c_beamlet_output_delta REPORT "Wrong 10GbE output (re) " & INTEGER'IMAGE(v_re) & " != " & REAL'IMAGE(v_re_exp) SEVERITY ERROR; + ASSERT v_re < INTEGER(v_re_exp) + c_beamlet_output_delta REPORT "Wrong 10GbE output (re) " & INTEGER'IMAGE(v_re) & " != " & REAL'IMAGE(v_re_exp) SEVERITY ERROR; + ASSERT v_im > INTEGER(v_im_exp) - c_beamlet_output_delta REPORT "Wrong 10GbE output (im) " & INTEGER'IMAGE(v_im) & " != " & REAL'IMAGE(v_im_exp) SEVERITY ERROR; + ASSERT v_im < INTEGER(v_im_exp) + c_beamlet_output_delta REPORT "Wrong 10GbE output (im) " & INTEGER'IMAGE(v_im) & " != " & REAL'IMAGE(v_im_exp) SEVERITY ERROR; --------------------------------------------------------------------------- -- End Simulation --------------------------------------------------------------------------- tb_almost_end <= '1'; - proc_common_wait_some_cycles(ext_clk, 100); + proc_common_wait_some_cycles(ext_clk, 100); -- delay for ease of view in Wave window proc_common_stop_simulation(TRUE, ext_clk, tb_almost_end, tb_end); WAIT; END PROCESS; @@ -879,7 +1119,7 @@ BEGIN FOR I IN 0 TO (c_sdp_cep_nof_blocks_per_packet * c_sdp_cep_nof_beamlets_per_block/2)-1 LOOP proc_common_wait_until_high(ext_clk, test_offload_sosi.valid); rx_beamlet_valid <= '1'; - -- Capture rx beamlets per longword in rx_beamlet_arr + -- Capture rx beamlets per longword in rx_beamlet_arr, for time series view in Wave window rx_beamlet_arr_re(0) <= test_offload_sosi.data(55 DOWNTO 48); -- X rx_beamlet_arr_im(0) <= test_offload_sosi.data(63 DOWNTO 56); rx_beamlet_arr_re(1) <= test_offload_sosi.data(39 DOWNTO 32); -- Y @@ -890,13 +1130,13 @@ BEGIN rx_beamlet_arr_im(3) <= test_offload_sosi.data(15 DOWNTO 8); IF I < c_sdp_cep_nof_beamlets_per_block/2 THEN -- Only capture the first beamlets block of each packet in rx_beamlet_list - rx_beamlet_list_re(I*4 + 0) <= test_offload_sosi.data(55 DOWNTO 48); + rx_beamlet_list_re(I*4 + 0) <= test_offload_sosi.data(55 DOWNTO 48); -- X rx_beamlet_list_im(I*4 + 0) <= test_offload_sosi.data(63 DOWNTO 56); - rx_beamlet_list_re(I*4 + 1) <= test_offload_sosi.data(39 DOWNTO 32); + rx_beamlet_list_re(I*4 + 1) <= test_offload_sosi.data(39 DOWNTO 32); -- Y rx_beamlet_list_im(I*4 + 1) <= test_offload_sosi.data(47 DOWNTO 40); - rx_beamlet_list_re(I*4 + 2) <= test_offload_sosi.data(23 DOWNTO 16); + rx_beamlet_list_re(I*4 + 2) <= test_offload_sosi.data(23 DOWNTO 16); -- X rx_beamlet_list_im(I*4 + 2) <= test_offload_sosi.data(31 DOWNTO 24); - rx_beamlet_list_re(I*4 + 3) <= test_offload_sosi.data( 7 DOWNTO 0); + rx_beamlet_list_re(I*4 + 3) <= test_offload_sosi.data( 7 DOWNTO 0); -- Y rx_beamlet_list_im(I*4 + 3) <= test_offload_sosi.data(15 DOWNTO 8); END IF; proc_common_wait_until_high(ext_clk, test_offload_sosi.valid);