
A
S

TR
O

N
-F

O
-0

17
 2

.0

ASTRON-RP-415

 1 / 15

Common Library Memory and Register
Component Descriptions

 Organisatie / Organization Datum / Date
 Auteur(s) / Author(s):

Eric Kooistra ASTRON

Controle / Checked:

Andre Gunst ASTRON

Goedkeuring / Approval:

Andre Gunst ASTRON

Autorisatie / Authorisation:

Handtekening / Signature

ASTRON

© ASTRON 2010
All rights are reserved. Reproduction in whole or in part is
prohibited without written consent of the copyright owner.

ASTRON-RP-415

 2 / 15

Distribution list:

Group: Others:

Andre Gunst
Daniel van der Schuur
Rajan Raj Thilak
Jonathan Hargreaves (JIVE)
Salvatore Pirruccio (JIVE)

Document history:

Revision Date Author Modification / Change

0.1 2010-09-9 Eric Kooistra Draft.

0.2 2010-11-03 Eric Kooistra Updated.

ASTRON-RP-415

 3 / 15

Table of contents:
1 Introduction..5
2 Memory ...6

2.1 IP ...6
2.2 Wrapper component ..6

3 Register ...9
4 Memory mapped interface ..10
5 Clock domain crossing ..11
6 Dual page ..14
7 Conclusion...15

ASTRON-RP-415

 4 / 15

Terminology:

FPGA Field Programmable Gate Array
HDL Hardware Description Language
IO Input Output
IP Intellectual Property
MISO Master In Slave Out
MM Memory-Mapped
MOSI Master Out Slave In
Nof Number of
PIO Parallel IO
RAM Random Access Memory
ROM Read Only Memory
RTL Register Transfer Level
SOPC System On a Programmable Chip (Altera)
ST Streaming
UNB Path to UniBoard Firmware directory (https://svn.astron.nl/UniBoard_FP7/UniBoard/trunk)

References:

1. www.altera.com
2. www.xilinx.com
3. $UNB/modules/common/doc/common.txt
4. $UNB/doc/howto/How_to_use_MegaWizard.txt
5. “Avalon Interface Specifications”, mnl_avalon_spec.pdf, www.altera.com
6. “Specification for module interfaces using VHDL records”, ASTRON-RP-380, Eric Kooistra
7. $UNB/doc/howto/How_to_use_SOPC_Component_Editor.txt

ASTRON-RP-415

 5 / 15

1 Introduction

Any somewhat more elaborate digital logic design needs some memory and some registers. The difference
between memory and registers is that for a register the whole content is available in parallel, whereas for a
memory only one word is available at a time. This document describes the generic memory and register
components that are available in the common library and some usage examples. The common library is
located in the UniBoard RadioNET FP7 SVN repository at:

https://svn.astron.nl/UniBoard_FP7/UniBoard/trunk/Firmware/modules/common

and the generated memory IP is located at:

https://svn.astron.nl/UniBoard_FP7/UniBoard/trunk/Firmware/modules/MegaWizard/mem

The common library contains many more low level VHDL components, see [3] for a brief overview.

The purpose of the common memory and register components is to hide vendor specific code or to provide a
generic solution that can be reused.

ASTRON-RP-415

 6 / 15

2 Memory

2.1 IP
The memory can be RAM or ROM. In an FPGA larger memories (> 1 kBit) are typically implemented in RAM
blocks, because otherwise they take too much of the logic resources. Memory can be inferred by writing
VHDL in a form that the synthesizer recognizes as a memory or it can be generated using the Altera
MegaWizard [1] or Xilinx CORE Generator [2]. For a generic VHDL implementation it is proper to wrap such
vendor specific IP by a self defined component, because the wrapper provides a uniform interface for using
the vendor specific IP.

For the memory components available in the UniBoard common library the Altera MegaWizard was used to
create an IP memory component called ram_crw_crw. The generated file ram_crw_crw.vhd (stored at
modules/MegaWizard/mem) was then edited manually (this is allowed, see [4]) to provide it with generics so
that the memory size can be selected in VHDL when the component is used:

ENTITY ram_crw_crw IS
GENERIC (
 g_adr_w : NATURAL := 5;
 g_dat_w : NATURAL := 8;
 g_nof_words : NATURAL := 2**5;
 g_init_file : STRING := "UNUSED"
);
PORT (
 address_a : IN STD_LOGIC_VECTOR (g_adr_w-1 DOWNTO 0);
 address_b : IN STD_LOGIC_VECTOR (g_adr_w-1 DOWNTO 0);
 clock_a : IN STD_LOGIC := '1';
 clock_b : IN STD_LOGIC ;
 data_a : IN STD_LOGIC_VECTOR (g_dat_w-1 DOWNTO 0);
 data_b : IN STD_LOGIC_VECTOR (g_dat_w-1 DOWNTO 0);
 enable_a : IN STD_LOGIC := '1';
 enable_b : IN STD_LOGIC := '1';
 wren_a : IN STD_LOGIC := '0';
 wren_b : IN STD_LOGIC := '0';
 q_a : OUT STD_LOGIC_VECTOR (g_dat_w-1 DOWNTO 0);
 q_b : OUT STD_LOGIC_VECTOR (g_dat_w-1 DOWNTO 0)
);
END ram_crw_crw;

2.2 Wrapper component
The common library provides a memory package and the following generic MM memory components:

common_mem(pkg).vhd
common_ram_crw_crw.vhd
common_ram_rw_rw.vhd
common_ram_r_w.vhd
common_rom.vhd

ASTRON-RP-415

 7 / 15

The used memory naming convention is as follows:

- r = single port read only (ROM)
- rw = single port ram, shared address for both write read address
- r_w = dual port ram, with separate write address and read address
- rw_rw = dual port ram with separate address per port
- crw_crw = dual port ram with separate clock and address per port

Note:

- Using a ‘r_w’ RAM with only the read port and an init file effectively makes it a ‘r’ RAM, i.e. a ROM
- Using a ‘r_w’ RAM with the same address effectively makes it a ‘rw’ RAM
- Using a ‘rw_rw’ RAM with only a write port and a read port effectively makes it a ‘r_w’ RAM
- Using a ‘crw_crw’ RAM with the same clock effectively makes it a ‘rw_rw’ RAM

Therefore the ‘crw_crw’ RAM, and therefore the ram_crw_crw.vhd IP with generics from section 2.1, covers
all other memory variants either by:

- using an init file to set the initial contents
- not using some input (set to constant value)
- not using some output ports (left open)
- connecting some input ports together (clk or address).

Figure 1 shows the entity of common_ram_crw_crw.vhd that wraps the IP RAM from ram_crw_crw.vhd. The
other memory components in common library use common_ram_crw_crw.

Figure 1: The general IP RAM wrapper component (common_ram_crw_crw.vhd)

The common_ram_crw_crw has two generic parameters. An optional g_init_file that provides the location of
a memory initialisation file and a record defined in common_mem(pkg).vhd that defines the memory size and
the read latency. The record definition is:

ASTRON-RP-415

 8 / 15

TYPE t_c_mem IS RECORD
 latency : NATURAL; -- read latency
 adr_w : NATURAL;
 dat_w : NATURAL;
 nof_dat : NATURAL; -- optional, nof dat words <= 2**adr_w
 init_sl : STD_LOGIC; -- optional, init all to std_logic '0', '1' or 'X'
 --init_file : STRING; -- "UNUSED", unconstrained length can not be in
 -- record
END RECORD;

The minimal read latency of the ram_crw_crw memory IP is 2, because it has been generated with registered
read data. The common_ram_crw_crw internally uses common_pipeline (also from the common library) to
increase this if a larger read latency is needed. The common_ram_crw_crw has the following control signals:

rst = asynchronous reset
clken = clock enable per clock domain
wr_en = write enable per port
rd_en = read enable per port
rd_val = read valid per port

Typcially the rd_en is not needed (i.e. always '1'), the read data then always shows the data for the read
address. The rd_en is then only used to drive rd_val to account for the memory read latency. The RAM
contents can not be reset, only the I/O registers. Resetting the data I/O registers is of little use. Therefore
use RAM without reset, except for letting apply the rst input to rd_val.

The common_ram_crw_crw memory has the same data width for both read and write and also for both ports.
Different aspect ratio memories (e.g. write byte, read word) are less common, so they can be added to the
common library when needed. Typically different aspect ratio memories can not be inferred from RTL code,
so an IP prototype will then need to be generated with the MegaWizard.

ASTRON-RP-415

 9 / 15

3 Register

Figure 2 shows the schematic of the common_reg_r_w register written in RTL VHDL. The common_reg_r_w
is a MM register with separate read and write addresses. The register can have multiple words
(g_reg.nof_dat ≥ 1). The address selects a word in the register. The size of the register is set via a generic
t_c_mem record (section 2.2) and it can be initialized via the g_init_reg generic. The minimal read latency of
the common_reg_r_w is 1. The common_reg_r_w can be used in various ways:

- Connect out_reg to in_reg for write and readback register
- Do not connect out_reg to in_reg for seperate write only register and read only register at the same

address
- Leave out_reg OPEN for read only register
- Connect wr_adr and rd_adr to have a shared address bus register
- Pipeline to support MM read data latency ≥ 1

Figure 2: Memory mapped multi word read-write register (common_reg_r_w.vhd)

ASTRON-RP-415

 10 / 15

4 Memory mapped interface

Both common_ram_crw_crw and common_reg_r_w have a memory-mapped (MM) interface that fits the
MOSI and MISO signal definitions [5, 6]. Therefore it is possible to make these components known within
Altera SOPC Builder. For the common_reg_r_w this has been done using the SOPC Component Editor [6]:

- avs_common_reg_r_w.vhd = Avalon wrapper entity
- avs_common_reg_r_w_hw.tcl = Avalon hardware description file

The avs_common_reg_r_w can typically be used as a generic PIO, instead of using the Altera specific PIO.

For common_ram_crw_crw it is less useful to define a SOPC builder component, because for RAM it is
easier to use the Altera specific onchip_memory component. When RAM is used inside a peripheral
component then it the common_ram_crw_crw should be used. The ETH module shows an example of using
common_ram_crw_crw and accessing it per word of 4 bytes. The I2C module shows an example of using
common_ram_crw_crw and accessing it per byte.

ASTRON-RP-415

 11 / 15

5 Clock domain crossing

Reliably crossing a clock domain requires that the data is stable in one clock domain when it is captured in
the other clock domain. If stable data is not guaranteed, then the logic that captures this data may get into an
undefined state which then may cause the application to fail.

The base variant of common_ram_crw_crw provides a dual port, dual clock RAM which can be used to cross
a clock domain.

For the common_reg_r_w some additional logic is needed to reliably let the register data cross a clock
domain. Figure 3 shows eth_mm_registers.vhd from $UNB/modules/tse where the register data is crossed
from the MM clock domain to the ST clock domain.

Figure 3: Clock domain crossing for register data (example eth_mm_registers.vhd)

The eth_mm_registers example of Figure 3 instantiates a multi word common_reg_r_w. Part of this register
is read/write accessible and part is read only. The write part (demux, config, control) needs to be crossed
from MM to ST clock domain and the read only part (frame, status) needs to be crossed from the ST to MM
clock domain. If the MM clock and ST clock are in fact the same, then the g_cross_clock_domain generic
can be set to FALSE to skip the clock domain crossing logic.

The eth_mm_registers uses separate common_cross_domain instances for the write and the read part of the
register but also for the functional parts of the register. For demux, config and control this is a matter of
convenience, because they could also be transferred across with a single common_cross_domain instance.
The continue register is empty, only its address is defined. A write access to the continue register is used in

ASTRON-RP-415

 12 / 15

the ST clock domain as a special event and transferred by means of common_spulse. Similar a write access
to the status register signals a special event in the ST clock domain.

The common_reg_r_w I/O is a multi word vector. First this vector is mapped on the separate register parts by
indexing the appropriate section. Second when the register contents needs to be used it is mapped on to
record structures by means of functions defined eth(pkg).vhd. Both these mappings are wires in the
implementation, so they do not take resources, but they do make it easier to define and use the register
contents.

Figure 4 shows the schematic diagram of common_spulse that is used to get a pulse across to the other
clock domain. There is also a test bench tb_common_spulse.vhd.

hi
lo

in_pulse

switch

g_delay_len

Output clock domainInput clock domain

out_pulselevel

in_busy
pulse_ack

in_level

Figure 4: Schematic diagram of common_spulse

Figure 5 shows the schematic diagram of common_cross_domain that is used to get the register data across
to the other clock domain. There is also a test bench tb_common_cross_domain.vhd.

in_dat[] in_buf[]

0
10

1
out_dat[]

common
_spulsein_new

g_in_new_latency

p_state

in_done

cross_req

cross_busy
out_en out_new

Output clock domainInput clock domain

Figure 5: Schematic diagram of common_cross_domain

The crossing of in_dat[] starts when in_new is asserted. If in_new is a pulse, then the new in_dat is available
after g_in_new_latency. The in_dat[] is captured in in_buf[]. The in_new pulse becomes out_en in the output
clock domain and this is used to capture the in_buf[] in the out_dat[]. When the in_clk equals the out_clk then
the latency between in_new and out_new is 9 clock cyles. It is also allowed to hold in_new high, then
out_new will pulse once every 17 clock cycles. Use in_done to be sure that in_dat due to in_new has
crossed the clock domain, in case of multiple in_new pulses in a row the in_done will only pulse when the

ASTRON-RP-415

 13 / 15

clock domain crossing has completely finished before the next in_new pulse arrives. If in_clk equals
out_clock, then in_done will only pulse if the in_new pulses are ≥ 20 clock cycles apart. Therefore in_done
will not pulse if in_new is kept high.

ASTRON-RP-415

 14 / 15

6 Dual page

A dual page memory or register is needed when the new contents needs to be available at clock cycle
accuracy. One page is accessible to the MM interface and the other page is accessible to the peripheral
application in the ST clock domain. A sync pulse in the ST clock domain defines when the two pages swap.
The sync pulse interval must be long enough for the MM interface access to have started and finished.

ASTRON-RP-415

 15 / 15

7 Conclusion

The common library provides generic components for MM memory and MM registers.

The common library MM memory and MM register components can also be made available to SOPC Builder.

The common library provides generic components to get MM register data across to and from the ST clock
domain. For the MM memory clock domain crossing is inherently already provided by using the dual port,
dual clock memory component.

