
A
S

TR
O

N
-F

O
-0

17
 2

.0

ASTRON-RP-380

 1 / 13

Specification for module interfaces
using VHDL records

 Organisatie / Organization Datum / Date
 Auteur(s) / Author(s):

Eric Kooistra ASTRON

Controle / Checked:

Andre Gunst ASTRON

Goedkeuring / Approval:

Andre Gunst ASTRON

Autorisatie / Authorisation:

Handtekening / Signature

ASTRON

© ASTRON 2010
All rights are reserved. Reproduction in whole or in part is
prohibited without written consent of the copyright owner.

ASTRON-RP-380

 2 / 13

Distribution list:

Group: Others:

Andre Gunst (AG, ASTRON)
Daniel van der Schuur (DS, ASTRON)
Rajan Raj Thilak (RT, ASTRON)
Arpad Szomoru (AS, JIVE)
Jonathan Hargreaves (JH, JIVE)
Salvatore Pirrucci (SP, JIVE)

Gijs Schoonderbeek (GS, ASTRON)
Sjouke Zwier (SZ, ASTRON)

Document history:

Revision Date Author Modification / Change

0.1 2010-04-7 Eric Kooistra Draft, ready for review.

0.2 2010-11-04 Eric Kooistra Updated record functions.
Removed appendix with VHDL code examples (too big).

0.3 2011-01-05 Eric Kooistra
Major rework. Now defined general record types for the MM
interface and the ST interface, instead of defining module
specific record types.

1.0 2011-02-03 Eric Kooistra

Updated after review on Jan 20, 2011 with EK, DS, JH.
Clarified the definition of the terms: design, SOPC system,
module and component as used for in this document.
Clarified more why it is beneficial to use records and wrappers.

ASTRON-RP-380

 3 / 13

Table of contents:
1 Introduction..5

1.1 Purpose ...5
1.2 Design, SOPC system, module, component...5
1.3 Interfaces...5

2 Using VHDL records..7
2.1 Interface definition ...7

2.1.1 MM interface records ..7
2.1.2 ST interface records ...8

2.2 Record instances...8
2.3 Functions ...9
2.4 Packages...9
2.5 Simulation and synthesis...9
2.6 Test bench facilities ...9

3 Using VHDL wrappers...11
3.1 Using a MegaWizard IP wrapper...11
3.2 Using an Avalon component wrapper ...11

3.2.1 The hardware description script..12
4 Conclusion...13

ASTRON-RP-380

 4 / 13

Terminology:

AVS Avalon interface Slave (Avalon slave wrapper of a MM slave peripheral)
DP Data Path
DSP Digital Signal Processing
DUT Device Under Test
eof End of Frame
eop End of Packet
FIFO First In First Out
FPGA Field Programmable Gate Array
GbE Giga Bit Ethernet
GUI Graphical User Interface
HDL Hardware Description Language
ID Identification
IO Input Output
IP Intellectual Property
IRQ Interrupt Request
MAC Media Access Control (in communications) or Multiply and Accumulate (in DSP)
MISO Master In Slave Out
MM Memory-Mapped
MMS MM Slave
MOSI Master Out Slave In
Nof Number of
PHY Physical layer
PPS Pulse Per Second
RX Receive
SISO Source In Sink Out
sof Start of Frame
sop Start of Packet
SOPC System On a Programmable Chip (Altera)
SOSI Source Out Sink In
ST Streaming
TSE Triple Speed Ethernet (Altera 10/100/1000MbE MAC)
TX Transmit
UNB https://svn.astron.nl.UniBoard_FP7/UniBoard/trunk, the UniBoard FP7 SVN repository

References:

1. “Avalon Interface Specifications”, mnl_avalon_spec.pdf, www.altera.com
2. “Quartus II Handbook”, quartusii_handbook.pdf, www.altera.com
3. $UNB/Firmware/doc/howto/How_to_use_SOPC_Component_Editor.txt
4. “Firmware development for the UniBoard”, ASTRON-RP-315, Eric Kooistra
5. “RadioNet FP7: Modular design and module reuse: the ETH module as an example”, UniBoard face to

face meeting in Bordeaux 12-13 Oct 2010, Eric Kooistra
6. “UNB_Common Module Description”, ASTRON-RP-426, Eric Kooistra

ASTRON-RP-380

 5 / 13

1 Introduction

1.1 Purpose
This document defines how VHDL records are used to compactly represent module interfaces. The
document also describes how VHDL wrappers are used to ease the (re)use of modules.

1.2 Design, SOPC system, module, component
The assumption is that we use a modular development approach [4, 5]. In this approach a firmware design is
build up out of firmware modules. In the UniBoard SVN firmware project the firmware designs are kept in the
designs/ directory and the modules are kept in the modules/ directory. In this document the terms design,
module and component are used. Their definition is not strict, but typically a design consists of modules and
a module consists of components. All three are defined by entity and architecture pairs in VHDL. The design
entity is the top level entity that defines the firmware image that will run on the FPGA. The component entity
can be a low level function like a FIFO or it may also be an elaborate IP module like e.g. the TSE MAC. The
module architecture contains several components to define a more elaborate function, e.g. the UniBoard
Ethernet ETH module that not only contains a TSE MAC, but also a received frames FIFO and a MM control
message interface to a microprocessor. Instead of consisting of a single more elaborate function a module
may also consist of a group of related low level functions, e.g. like the UniBoard COMMON module in
$UNB/Firmware/modules/common.

In addition to the term firmware design as defined above, it is also appropriate for UniBoard to define the
term SOPC system. An SOPC system is a set of modules that are interconnected in Altera’s SOPC Builder
GUI and then generated into a VHDL file [2]. With some glue components an SOPC system can be made
into a firmware design that can run on a FPGA [6].

1.3 Interfaces
Besides a clock and reset interface the Altera Avalon interface [1] defines a memory-mapped (MM) interface
and a streaming (ST) interface. Other component specific interfaces are called ‘conduit’ interfaces. The MM
interface is a master-slave interface and typically used for control and monitoring. The streaming interface is
a source-sink interface and used for data transport. The Avalon MM and ST interface are in fact quite
generic and it appears that the MM and ST interfaces are sufficient for all modules. The conduit interface is
typically only needed for off-FPGA PHY interfaces. Figure 1 shows the module interfaces. Note that a
module does not have to have all interfaces.

ST

MM

conduit

ST

Figure 1: Module interfaces: MM, ST and conduit

Figure 2 shows a high level representation of the memory-mapped (MM) interface. Two key aspects of the
MM interface are that it uses addressing to select a data location and that it allows data access in both
directions.

ASTRON-RP-380

 6 / 13

Figure 2: MM interface

The Altera Avalon interface defines interrupts via a separate interrupt interface. However interrupts could
also be considered as part of the MM interface, because the IRQ signal typically corresponds to a MM slave
and can be regarded as a control signal from a slave to a master.

Figure 3 shows a high level representation of the streaming (ST) interface. The key aspect of the ST
interface is that it streams data in only one direction from source to sink. Furthermore there is only one
(control) signal from sink back to the source. This signal is used for backpressure flow control.

Source Sink

control

data

Figure 3: ST interface

ASTRON-RP-380

 7 / 13

2 Using VHDL records

2.1 Interface definition
There are three issues to handle:

- An instance of a record can only be IN or OUT not both
- Not every MM or ST interface requires the full set of available interface signals
- Not every MM or ST interface has the same signal vector widths

It appears best to define a separate record for the inputs and another record for the outputs, rather than to
group all interface signals into one record. For the UniBoard modules it appears fine to define a general
record type for the MM interface and for the ST interface, because most instances do use all fields and it is
no problem if fields remain unused (‘X’). For the vector widths it appears fine to define them such that they
can fit the largest expected vector width. For interfaces that need smaller vector width it is fine to leave some
bits unused (‘X’). The advantage of this approach is that we only need a few record types that suit all
UniBoard module MM and ST interfaces.

2.1.1 MM interface records

The common_mem_pkg package in $UNB/Firmware/modules/common/src/vhdl/ defines the MOSI and
MISO records for the MM interface:

TYPE t_mem_miso IS RECORD -- Master In Slave Out
 rddata : STD_LOGIC_VECTOR(c_mem_address_w-1 DOWNTO 0);
 waitrequest : STD_LOGIC;
END RECORD;

TYPE t_mem_mosi IS RECORD -- Master Out Slave In
 address : STD_LOGIC_VECTOR(c_mem_address_w-1 DOWNTO 0);
 wrdata : STD_LOGIC_VECTOR(c_mem_data_w-1 DOWNTO 0);
 wr : STD_LOGIC; -- write strobe
 rd : STD_LOGIC; -- read strobe
END RECORD;

Where:

c_mem_address_w = 32, is sufficient for a 32-bit microprocessor (like the Altera Nios II)
c_mem_data_w = 72, is sufficient for up to 8 bytes, that can also be 9-bit bytes

The IRQ signal could be made available as a field in the t_mem_miso record. Alternatively interrupt signals
can be treated as a separate interface like with the Avalon interface [1].

The ‘t_mem_miso’ and ‘t_mem_mosi’ records define a subset of the Avalon MM interface. The actual
address range and data width of a register or memory that can be accessed via the MM interface are defined
via a constants record that is also defined in the common_mem_pkg package:

TYPE t_c_mem IS RECORD
 latency : NATURAL; -- read latency
 adr_w : NATURAL;
 dat_w : NATURAL;
 nof_dat : NATURAL; -- optional, nof words <= 2**adr_w
 init_sl : STD_LOGIC; -- optional, init all words to '0', '1' or 'X'
END RECORD;

ASTRON-RP-380

 8 / 13

2.1.2 ST interface records

The ST interface is called DP for data path. The dp_stream_pkg package in
$UNB/Firmware/modules/dp/src/vhdl/ defines the SOSI and SISO records for the ST interface:

TYPE t_dp_siso IS RECORD -- Source In Sink Out
 ready : STD_LOGIC;
 nc : STD_LOGIC; -- not connect
END RECORD;

TYPE t_dp_sosi IS RECORD -- Source Out Sink In
 data : STD_LOGIC_VECTOR(c_dp_stream_data_w-1 DOWNTO 0);
 valid : STD_LOGIC;
 sop : STD_LOGIC;
 eop : STD_LOGIC;
 empty : STD_LOGIC_VECTOR(c_dp_stream_empty_w-1 DOWNTO 0);
 channel : STD_LOGIC_VECTOR(c_dp_stream_channel_w-1 DOWNTO 0);
 err : STD_LOGIC_VECTOR(c_dp_stream_error_w-1 DOWNTO 0);
END RECORD;

Where:

c_dp_stream_data_w = 72, sufficient for maximum word 8 * 9-bit
c_dp_stream_empty_w = 8, is sufficient for maximum 256 symbols per data word
c_dp_stream_channel_w = 8, sufficient for maximum 256 channels
c_dp_stream_error_w = 8, sufficient for maximum 255 error numbers, 0 = OK

The ‘t_dp_siso’ and ‘t_dp_sosi’ records define the whole set of the Avalon ST interface. The ‘t_dp_siso’
record only contains the back pressure ready signal, but is defined as a record to show its relation to the
‘t_dp_sosi’ signals. The ‘nc’ field is needed because it is not possible to initialize a record instance if the
record has only one field.

In DSP systems it is useful to also have a synchronisation signal like a PPS along with the data. This ‘sync’
signal can be defined as an extra field in the ‘t_dp_sosi’ record. This ‘sync’ field is not supported by the
Avalon interface, but it could be provided via an extra ‘data’ field bit or via the ‘sop’ field if that is not used. In
such a way the DP interface with ‘sync’ field can then still be connected within the SOPC Builder GUI.

The dp_stream_pkg package also defines arrays of streaming records. These are e.g. useful to define
multiple ST ports or to define a ST shift register:

TYPE t_dp_siso_arr IS ARRAY (INTEGER RANGE <>) OF t_dp_siso;
TYPE t_dp_sosi_arr IS ARRAY (INTEGER RANGE <>) OF t_dp_sosi;

2.2 Record instances
Figure 4 defines the MM interface signal names. They are all of the same ‘t_mem_miso’ and ‘t_mem_mosi’
record types. On the master component port they have postfixes '_mas_out' and '_mas_in' and on the slave
component port they respectively have postfixes '_sla_in' and '_sla_out'. Between the components they
respectively have postfixes '_mosi' for Master Out Slave In and '_miso' for Master In Slave Out. In fact only
using postfixes '_mosi' and '_miso' for all would be sufficient too, but using '_mas_out', '_mas_in' and
'_sla_in' and '_sla_out' seems clearer.

ASTRON-RP-380

 9 / 13

Master Slave
mosi

miso
sla_out
sla_inmas_out

mas_in

Figure 4: MM interface signal names

Figure 5 defines the ST interface signal names. They are all of the same 't_dp_siso’ and ‘t_dp_sosi' record
types. On the source component port they have postfixes '_src_out' and '_src_in' and on the slave
component port they respectively have postfixes '_snk_in' and '_snk_out'. Between the components they
respectively have postfixes '_sosi' for Source Out Sink In and '_siso' for Source In Sink Out. In fact only using
postfixes '_sosi' and '_siso' for all would be sufficient too, but using '_src_out', '_src_in' and '_snk_in' and
'_snk_out' seems clearer.

Source Sink
sosi

siso
snk_out
snk_insrc_out

src_in

Figure 5: ST interface signal names

Note that the naming conventions of Figure 4 and Figure 5 avoid the confusion that can arise when a signal
is only called ‘_in’ or ‘_out’, because whether a signal is input or output is a matter of perspective.

2.3 Functions
For handling record signals it is convenient to define functions in a package, for example functions to
manipulate fields in a record. The MM interface common_mem_pkg package and the ST interface
dp_stream_pkg package contain many useful functions.

2.4 Packages
The constants, records and functions that are available for modules users should be defined in a module
package. This package can also contain the record for a conduit interface if appropriate. See the eth_pkg
and tse_pkg packages in $UNB/Firmware/modules/tse/src/vhdl for an example. Note that all package items
should have the module name as an (abbreviated) <module name> prefix in there name to indicate where
they originate from.

2.5 Simulation and synthesis
The record types and array of record types defined for the MM interface and ST interface in sections 2.1.1
and 2.1.2 can all be simulated with Modelsim and synthesized with Quartus II.

Unused record fields and unused vector bits show as ‘X’ in Modelsim and they get optimized away properly
by Quartus II.

2.6 Test bench facilities
The tb_common_mem_pkg in $UNB/Firmware/modules/common/tb/vhdl defines useful procedures for
accessing the MM interface. This allows simulating the behaviour of a master to verify a MM slave DUT in a
VHDL test bench.

ASTRON-RP-380

 10 / 13

The tb_dp_stream_pkg and tb_dp_pkg in $UNB/Firmware/modules/dp/tb/vhdl defines useful procedures for
accessing the ST interface. This allows simulating the behaviour of a source or a sync to verify a ST DUT in
a VHDL test bench.

ASTRON-RP-380

 11 / 13

3 Using VHDL wrappers

Important reasons for using VHDL wrappers are [5]:

• Ensures that all instances use the vendor IP in the same way
• Clearly isolates vendor IP from our own generic VHDL
• Eases porting to tool upgrades, other FPGA types or vendor IP should this be necessary
• Allows redefining an interface using records
• The wrapper may also contain some extra (glue) logic
• Corrections in the wrapper automatically effect all instances

It appears that VHDL wrappers are beneficial to use at two levels in the UniBoard modules:

1. Isolate vendor specific IP (e.g. Altera MegaWizard IP) from the generic HDL, see section 3.1.
2. Make a module entity available to Altera’s SOPC Builder, see section 3.2

3.1 Using a MegaWizard IP wrapper
The purpose of a VHDL wrapper is to have a central file via which the IP is instantiated in our designs [5].
Vendor specific components like those created with the Altera MegaWizard or with Xilinx Coregen should not
be used directly in the project firmware VHDL. By defining a wrapper entity and a vendor specific
architecture name like ‘stratix4’, ‘stratix5’ or ‘virtex6’ it becomes easier to port between different FPGA types
or vendors, should this be necessary. Using a wrapper entity also opens the possibility to use records, which
can make the understanding and reuse of the component much easier. For example:

- In the ETH module the tse(stratix4).vhd wraps the tse_sgmii_lvds.vhd MegaWizard IP
- In the COMMON module the common_ram_crw_crw(stratix4).vhd wraps the ram_crw_crw.vhd

MegaWizard IP

Note that such an IP component wrapper can also be used to wrap existing modules that do not (yet) use
records. In this way the internal coding style of the module can be left as it is, while for the user it appears
with the appropriate record type interfaces.

3.2 Using an Avalon component wrapper
A module can be made available within the Altera SOPC Builder tool [2]. Within SOPC Builder a complete
system of MM and ST components can be constructed via a GUI. The SOPC Builder then automatically
generates the HDL code for this system ready to use in a design. To make a component or a module (which
may contain several components) available to SOPC Builder requires a wrapper entity. This wrapper entity
maps the generic interface signals to the Avalon interface signals. Using a wrapper entity is necessary
because:

- The Avalon interface definition [1] defines as set of signal prefixes and postfixes for various interfaces

like clock, memory-mapped, interrupt, streaming.
- The Avalon interface uses the default VHDL signal types std_logic and std_logic_vector, so it does not

use records.

The component specific interface signals are not known to the Avalon interface. These signals need to be
treated within a module or they can be made available outside the SOPC system by defining them as
'conduit' interface. The name of the Avalon interface wrapper file and entity has prefix ‘avs_’ for a slave
followed by the original component name, so avs_<module name> for the entity and avs_<module
name>.vhd for the file. The file also contains the architecture. The architecture is called ‘wrap’. Typically an
Avalon wrapper only needs to be made for modules and reusable components [3]. See for an example

ASTRON-RP-380

 12 / 13

avs_eth.vhd in $UNB/Firmware/modules/tse/src/vhdl that wraps eth.vhd or avs_tr_nonbonded.vhd for the
UniBoard non-bonded transceivers module in $UNB/Firmware/modules/tr_nonbonded/src/vhdl that wraps
mms_tr_nonbonded.vhd.

A module can have multiple AVS wrapper components. For example one wrapper could present the eth.vhd
module to SOPC Builder without the UDP off-load streaming ports (like avs_eth.vhd) and another wrapper
could present the eth.vhdl module to SOPC Builder with those ST ports.

3.2.1 The hardware description script

The Component Editor can be used to create a hardware description TCL script file of our module [3]. When
the wrapper entity of the module uses the signal naming conventions of the Avalon interface [1], then the
Component Editor automatically recognizes these signals. After filling in some more parameters and e.g. a
module name the Component Editor creates the avs_<module name>_hw.tcl script file. This hardware
description TCL file is used by SOPC Builder to be able to use the module in a SOPC firmware system.

ASTRON-RP-380

 13 / 13

4 Conclusion

1. A module can represent a single more elaborate component like e.g. the ETH module and the

TR_NONBONDED module, or a group of related more low level components like e.g. the COMMON
module and the DP module.

2. Modules that represent more elaborate components or low level MM or ST components can use the
same standard MM and ST interfaces defined in common_mem(pkg).vhd and dp_stream(pkg).vhd.

3. General record types have been defined for the MM and ST interfaces:

- ‘t_mem_miso’ and ‘t_mem_mosi’ for the MM interface in common_mem(pkg).vhd
- ‘t_dp_siso’ and ‘t_dp_sosi’ for the ST interface in dp_stream(pkg).vhd

4. A scheme for input and output signal naming has been defined using postfixes:

- ‘_mas_in’, ‘_miso’, ‘_sla_out’ for MM Master In Slave Out
- ‘_mas_out, ‘_mosi’, ‘_sla_in’ for MM Master Out Slave In
- ‘_src_in’, ‘_siso’, ‘snk_out’, for ST Source In Slave Out
- ‘_src_out, ‘_sosi’, ‘_snk_in’ for ST Source Out Slave In

5. For handling record signals it is convenient to define functions in a module package.

6. Modules can be interconnected using the SOPC Builder to create an SOPC system. By means of a
wrapper entity the generic module or component can be wrapped to the Avalon bus interface and made
available to SOPC Builder.

7. By means of a wrapper entity for MegaWizard components the vendor specific firmware is clearly
separated from the generic firmware.

By adhering to these schemes for using records and wrappers it becomes easier to comprehend and reuse
components and modules that have been made by different firmware designers and/or development groups.

