
A
S

TR
O

N
-F

O
-0

17
 2

.0

Doc.nr.: ASTRON-RP-873
Rev.: 0.2
Date:

UniBoard DESP
Class.: Public

1 / 13

 Data Path Packet Module Description

 Organisatie / Organization Datum / Date
 Auteur(s) / Author(s):

Eric Kooistra ASTRON

Controle / Checked:

Andre Gunst ASTRON

Goedkeuring / Approval:

Andre Gunst ASTRON

Autorisatie / Authorisation:

Handtekening / Signature
Andre Gunst

ASTRON

© ASTRON 2011
All rights are reserved. Reproduction in whole or in part is
prohibited without written consent of the copyright owner.

Doc.nr.: ASTRON-RP-873
Rev.: 0.2
Date:

UniBoard DESP
Class.: Public

2 / 13

Distribution list:

Group: Others:

Andre Gunst (AG, ASTRON)
Eric Kooistra (EK, ASTRON)
Daniel van der Schuur (DS, ASTRON)
Harm-Jan Pepping (HJP, ASTRON)

Gijs Schoonderbeek (GS, ASTRON)
Jonathan Hargreaves (JH, JIVE)
Salvatore Pirrucci (SP, JIVE)

Document history:

Revision Date Author Modification / Change

0.1 2011-11-19 Eric Kooistra Draft.

0.2 2012-06-29 Eric Kooistra

Redefined SOSI frame sync.
Added g_use_sosi_err for dp_packet_dec.
Added dp_packet_enc_channel_lo component.
Added dp_packet_dec_channel_lo component.

Doc.nr.: ASTRON-RP-873
Rev.: 0.2
Date:

UniBoard DESP
Class.: Public

3 / 13

Table of contents:
1 Introduction..4

1.1 Purpose ...4
1.2 Scope ..4

2 Interface, design and implementation of the components ..5
2.1 dp_packet_enc – Encode DP SOSI to DP packet ..5
2.2 dp_packet_dec – Decode DP packet to DP SOSI ..7
2.3 dp_packet_enc_channel_lo - Encode channel low bits into the CHAN field...9
2.4 dp_packet_dec_channel_lo - Decode channel low bits from the CHAN field10

3 Verification of the components..11
3.1 DP packet level test bench..11
3.2 PHY level test bench ...12

Terminology:

BSN Block Sequence Number
CHAN Channel
CRC Cyclic Redundancy Check
DP Data Path
eop end of packet
ERR Error
ETH Ethernet
LSBit Least Significant bit
MSBit Most Significant bit
PHY Physical interface
RL Ready Latency
SFD Start of Frame Delimiter
SISO Source in Sink Out
sop start of packet
SOSI Source Out Sink In
TLEN Type/Length
UTH Uthernet

References:

1. “Data Path Packet Interface Specification”, ASTRON-SP-042, E. Kooistra
2. “Specification for module interfaces using VHDL records”, ASTRON-RP-380, E. Kooistra
3. “DP Streaming Module Description”, ASTRON-RP-382, E. Kooistra
4. “Data Path Interface Description”, ASTRON-RP-394, E. Kooistra
5. “Timing in the Streaming interface”, ASTRON-RP-481, E. Kooistra
6. “Uthernet Interface Specification”, ASTRON-SP-041, E. Kooistra
7. “Uthernet (UTH) Module Description”, ASTRON-RP-871, E. Kooistra

Doc.nr.: ASTRON-RP-873
Rev.: 0.2
Date:

UniBoard DESP
Class.: Public

4 / 13

1 Introduction

1.1 Purpose
This document describes the DP packet encoding and decoding part of the data path (DP) module [3]. The
DP contains components to encode the SOSI signals into a DP packet and to decode a DP packet into the
SOSI signals. The DP module uses the streaming SOSI and SISO records that were defined in [2]. The DP
packet has been specified in [1]. The SISO backpressure ready signal is not (yet) supported at DP packet
level.

1.2 Scope
The DP packet encoding and decoding components make the similar DP packetizing components that were
defined in [4] obsolete.

Doc.nr.: ASTRON-RP-873
Rev.: 0.2
Date:

UniBoard DESP
Class.: Public

5 / 13

2 Interface, design and implementation of the components

2.1 dp_packet_enc – Encode DP SOSI to DP packet

2.1.1 Interface

The dp_packet_enc encodes the SOSI signals into a DP packet as shown below in respectively Figure 1 and
Figure 2. The DP packet structure with the CHAN, BSN, DATA and ERR fields has been specified in [1].

Figure 1: dp_packet_enc snk_in

Figure 2: dp_packet_enc src_out

The dp_packet_enc interface parameters and ports are given in respectively Table 1 and Table 2.

Generic Type Description
g_data_w natural >= 1, the data width of the packet
g_channel_lo natural >= 0, the snk_in.channel[g_channel_lo-1:0] bits are not encoded into the CHAN

field, but passed on to src_out.channel instead. This allows using these LSbit
channel fields to define different groups of DP packet streams.

Table 1: dp_packet_enc parameters

Signal IO Type Description
rst IN std_logic Reset
clk IN std_logic Clock
snk_out OUT t_dp_siso SISO: ready
snk_in IN t_dp_sosi SOSI: sync, bsn, data, valid, sop, eop, channel, empty, err
src_in IN t_dp_siso SISO: ready
src_out OUT t_dp_sosi SOSI: data, valid, sop, eop, channel_lo

Table 2: dp_packet_enc

Doc.nr.: ASTRON-RP-873
Rev.: 0.2
Date:

UniBoard DESP
Class.: Public

6 / 13

2.1.2 Design

The CHAN, BSN and ERR field have a specified fixed width of respectively 16 bit, 48 bit and 16 bit. The
packet data width is set by g_data_w and can have any value >= 1. Therefore the number of packet data
words that is needed to encode the CHAN, BSN and ERR field depends on g_data_w. For example for
g_data_w = 16 the CHAN takes 1 data word, BSN takes 3 data words and the ERR field takes 1 data word
[1]. If the number of data words in the input data block marked by the snk_in.valid, snk_in.sop and
snk_in.eop is N then the total src_out output packet will have N+5 data words.

The snk_in.channel field is read at the snk_in.sop. The LSBits snk_in.channel[g_channel_lo-1:0] are passed
on directly to src_out.channel. The rest of the MSBits of snk_in.channel are transported via the CHAN field.

For framed data the snk_in.sync is active during the entire frame (so for all active snk_in.valid from
snk_in.sop to snk_in.eop) and applies to the next frame [5]. The dp_packet_enc reads the snk_in.sync at the
snk_in.sop and transports the snk_in.sync as MSBit of the BSN field. The snk_in.bsn is read at the
snk_in.sop and transported via the BSN field. If the BSN field just fits in an integer number of packet data
words then the input sync will be transported instead of the MSbit 47 of the snk_in.bsn value.

The snk_in.data is transported via the DATA field. The snk_in.data is copied to src_out.data as it is, so any
resizing to g_data_w is left to do by the downstream blocks.

The snk_in.err field is read at the snk_in.eop and transported via the ERR field.

The snk_in.empty is valid at the snk_in.eop but ignored, because it is assumed to be implicitly known per
channel. Hence the recipient of the packet will know it based on the CHAN field.

In case the CHAN, BSN and/or ERR field do not fit in an integer number of packet data words (of width
g_data_w) then the unused MSbits of the MSword are set to 0.

2.1.3 Implementation

Figure 3 shows the RTL block diagram of the dp_packet_enc implementation. The dp_packet_enc uses
dp_hold_input to maintain the input RL of 1 and the output RL of 1 [3].

Figure 3: dp_packet_enc implementation

Doc.nr.: ASTRON-RP-873
Rev.: 0.2
Date:

UniBoard DESP
Class.: Public

7 / 13

2.2 dp_packet_dec – Decode DP packet to DP SOSI

2.2.1 Interface

The dp_packet_dec decodes the SOSI signals from a DP packet as shown below in respectively Figure 4
and Figure 5.

Figure 4: dp_packet_dec snk_in

Figure 5: dp_packet_dec src_out

The dp_packet_enc interface parameters and ports are given in respectively Table 1 and Table 2.

Generic Type Description
g_data_w natural >= 1, the data width of the packet
g_channel_lo natural >= 0, the snk_in.channel[g_channel_lo-1:0] bits are not encoded into the CHAN

field, but passed on to src_out.channel instead. This allows using these LSbit
channel number to define different groups of DP packet streams.

g_use_sosi_err boolean When the DP packet comes from a PHY link then it may have gotten corrupted
contents so then it is useful to set g_use_sosi_err to TRUE to get the error
status from the PHY link instead of from the received ERR field.

g_use_this_siso boolean Default use TRUE for best throughput performance. When FALSE then
dp_packet_dec does not need to control snk_out and it is ready when the
downstream sink is ready, this may ease achieving timing closure. When TRUE
then in addition dp_packet_dec can also be ready when it is receiving inter
frame gaps or the header to increase the throughput.

Table 3: dp_packet_dec parameters

Doc.nr.: ASTRON-RP-873
Rev.: 0.2
Date:

UniBoard DESP
Class.: Public

8 / 13

Signal IO Type Description
rst IN std_logic Reset
clk IN std_logic Clock
snk_out OUT t_dp_siso SISO: ready
snk_in IN t_dp_sosi SOSI: data, valid, sop, eop, channel_lo
src_in IN t_dp_siso SISO: ready
src_out OUT t_dp_sosi SOSI: sync, bsn, data, valid, sop, eop, channel, empty, err

Table 4: dp_packet_dec ports

2.2.2 Design

The DP packet overhead words are stripped.

The src_out.sync is derived from the BSN MSbit and output before the src_out.sop. The src_out.bsn is
derived from the BSN field and is valid at the src_out.sop.

The src_out.channel is derived from the CHAN field and is valid at the src_out.sop.

The first src_out.data word is the first DATA field word and is also valid at the src_out.sop. The last
src_out.data word is the last DATA field word and is valid at the src_out.eop. The dp_packet_dec can handle
DP packets with only one DATA field word, so then the src_out.valid, src_out.sop and src_out.eop
are all active in the same clock cycle.

The src_out.empty is set to 0. The assumption is that the downstream recipient of the src_out will know the
actual empty value based on the src_out.channel identifier.

The src_out.err is derived from the ERR field if g_use_sosi_err = false and is valid at the src_out.eop. In
case the DP packet was transported over some PHY link with cyclic redundancy check (CRC) protection,
then a CRC error at the receiver may be reported into the src_out.err signal instead by using g_use_sosi_err
= true.

2.2.3 Implementation

Figure 6 shows the RTL block diagram of the dp_packet_dec implementation. The dp_packet_dec uses
dp_hold_input to maintain the input RL of 1 and the output RL of 1 [3].

The dp_packet_dec uses dp_shiftreg to strip the packet ERR field words from the src_out stream. Therefore
the dp_shiftreg contains c_error_len + 1 number of data words, where c_error_len is the number of packet
data words used for the ERR field. When the blk_sosi.eop is there the process p_src_out strips these words
by setting the src_out.eop at the last payload data word that is just still in the shift register. Together with that
src_out.eop it also sets the src_out.err based on the ERR field value that was aggregated by process
p_src_err.

Doc.nr.: ASTRON-RP-873
Rev.: 0.2
Date:

UniBoard DESP
Class.: Public

9 / 13

src_out_reg
next_src_out

pend_src_out
src_in

snk_out
snk_in

dp_hold_input

src_buf
next_src_bufsnk_in

NC

snk_out

hold_src_in

channel
bsn
cnt
state

src_out

0
1

this_siso

src_in

g_use_this_siso

src_in
src_out

cur

snk_out
snk_in

new

dp_shiftreg

NC

NC

p_src_err
p_src_out

g_flush_eop=TRUE
g_nof_word=c_error_len+1

p_state
(s_sop,

s_channel,
s_bsn,

s_data_sop,
s_data_eop)

Figure 6: dp_packet_dec implementation

2.3 dp_packet_enc_channel_lo - Encode channel low bits into the CHAN field

2.3.1 Interface

The dp_packet_enc_channel_lo encodes the sosi.channel low bits into the high part of the CHAN field of a
DP packet. The snk_in.data must be DP packet data. The [g_channel_lo-1:0] bits of the sosi.channel field
get placed into the [high-1:high-g_channel_lo] bits of the CHAN field. The [high] bit of the CHAN field is not
used because it is reserved for future use. The dp_packet_enc_channel_lo interface parameters and ports
are given in respectively Table 5 and Table 6.

Generic Type Description
g_data_w natural >= 1, the data width of the packet
g_channel_lo natural Number of channel bits. Pre-conditions:

- g_channel_lo+1 <= g_data_w
- g_channel_lo+1 <= c_dp_packet_channel_w = 16
- g_channel_lo+1 <= c_dp_packet_channel_w - currently used CHAN width

Table 5: dp_packet_enc_channel_lo parameters

Doc.nr.: ASTRON-RP-873
Rev.: 0.2
Date:

UniBoard DESP
Class.: Public

10 / 13

Signal IO Type Description
snk_out OUT t_dp_siso SISO: ready
snk_in IN t_dp_sosi SOSI: data, valid, sop, eop, channel_lo
src_in IN t_dp_siso SISO: ready
src_out OUT t_dp_sosi SOSI: data, valid, sop, eop

Table 6: dp_packet_enc_channel_lo ports

2.3.2 Design

The DP packet CHAN field occurs at the sop. By placing the channel_lo bits in the high part of the CHAN
field this dp_packet_enc_channel_lo can combinatorially modifiy the CHAN data at the sop. For small
g_data_w the CHAN field can cover multiple data words, therefore using the low part of the CHAN field
would imply shifting in the g_channel_lo bits and would require more logic including registers to modify the
entire CHAN field. The snk_in channel is passed on unmodified to the src_out.channel, because DP packets
typically do not use the channel field, so the g_channel_lo bits are the only valid bits in the channel field and
therefore they may as well remain, rather then being shifted out.

2.3.3 Implementation

The dp_packet_enc_channel_lo is a combinatorial component.

2.4 dp_packet_dec_channel_lo - Decode channel low bits from the CHAN field

2.4.1 Interface

The dp_packet_dec_channel_lo decodes the sosi.channel low bits from the high part of the CHAN field of a
DP packet. The snk_in.data must be DP packet data. The [high-1:high-g_channel_lo] bits of the CHAN field
get set to 0 and placed into the [g_channel_lo-1:0] bits of the sosi.channel field. The
dp_packet_dec_channel_lo interface parameters and ports are given in respectively Table 7 and Table 8.

Generic Type Description
g_data_w natural >= 1, the data width of the packet
g_channel_lo natural Number of channel bits.

Table 7: dp_packet_dec_channel_lo parameters

Signal IO Type Description
rst IN std_logic Reset
clk IN std_logic Clock
snk_out OUT t_dp_siso SISO: ready
snk_in IN t_dp_sosi SOSI: data, valid, sop, eop
src_in IN t_dp_siso SISO: ready
src_out OUT t_dp_sosi SOSI: data, valid, sop, eop, channel_lo

Table 8: dp_packet_dec_channel_lo ports

2.4.2 Design

The sosi.channel field must be valid during the entire frame, so not only at the sop. Therefore it is necessary
to use channel_lo_hold and to have a clock and reset.

2.4.3 Implementation

The dp_packet_dec_channel_lo decodes combinatorialy.

Doc.nr.: ASTRON-RP-873
Rev.: 0.2
Date:

UniBoard DESP
Class.: Public

11 / 13

3 Verification of the components

3.1 DP packet level test bench
Figure 7 shows the tb_dp_packet testbench that verifies dp_packet_enc and dp_packet_dec together. The
two main stimuli for a streaming interface component are:

• upstream source enable
• downstream sink ready.

These stimuli can active, random or pulsed. The tb_dp_packet uses the procedures described in [3] to
generate blocks of data for the dp_packet_enc sink and to verify that these blocks of data arrive properly at
the dp_packet_dec source. The proc_dp_verify_data() is used to verify the sosi.data, but also the
sosi..channel, sosi.bsn and the sosi.err. The expected_rx_* signals in Figure 7 are used to verify that the test
as run at all. When the stimuli have finished then signal tb_end stops the testbench clock to automatically
stop the simulation.

src_in
src_out

snk_out
snk_in

p_stimuli
- proc_dp_gen_block_data
- tb_end

dp_packet_enc

g_in_en
- e_active
- e_random
- e_pulse

in_en

- proc_dp_verify_data
- proc_dp_verify_valid
- proc_dp_verify_value
- proc_dp_verify_gap_invalid
- proc_dp_verify_sync

g_nof_repeat
c_nof_ch

g_out_ready
- e_active
- e_random
- e_pulse

src_in
src_out

snk_in
snk_out

dp_packet_dec

g_data_w

g_data_w

expected_rx_data
expected_rx_bsn
expected_rx_err

g_data_w

- proc_dp_verify_valid

Figure 7: tb_dp_packet testbench for dp_packet_enc and dp_packet_dec

The tb_tb_dp_packet multi-testbench instantiates testbench tb_dp_packet several times with different
generic settings to perform regression tests on the dp_packet_enc and dp_packet_dec.

Doc.nr.: ASTRON-RP-873
Rev.: 0.2
Date:

UniBoard DESP
Class.: Public

12 / 13

The dp_packet_enc_channel_lo.vhd and dp_packet_dec_channel_lo.vhd are verified in
tb_dp_distribute.vhd.

3.2 PHY level test bench
Figure 8 shows the tb_uth_dp_packet testbench that verifies the transport of DP packets over an Uthernet
[6] PHY link. Note that the scheme of Figure 8 models a practical use case for communicating multiple SOSI
streams over a single PHY link.

p_stimuli(I)(J)
- proc_dp_gen_block_data
- tb_end

dp_packet
enc

g_in_en

g_data_w

- proc_dp_verify_data(I)(J)
- proc_dp_verify_valid(I)(J)
- proc_dp_verify_value(I)(J)

g_out_ready

uth
tx

dp_packet
dec

uth
rx

g_data_w

I=0:c_nof_tlen-1

J=0:c_nof_input-1

J=0:c_nof_input-1

in_siso_2arr(I)(J)
in_sosi_2arr(I)(J)

dp_mux

dp_mux

dp_mux

J=0:c_nof_input-1

dp_demux
out_siso_2arr(I)(J)
out_sosi_2arr(I)(J)

expected_out_data(I)(J)

p_phy_link

dp_demux

dp_demux

c_loopback_mux c_loopback_packet

g_phy_link_valid_support
phy_link_err

J=0:c_nof_input-1
I=0:c_nof_tlen-1

g_combined=false

Figure 8: tb_uth_dp_packet testbench for dp_packet and UTH

The tb_uth_dp_packet testbench uses the uth_tx and uth_rx components from [7]. The p_stimuli process
generates c_nof_tlen different types of packets. For each packet type the p_stimuli process generates
c_nof_input parallel input streams. All input streams are identified by the channel number. The low part of
the channel number reflects the different packet types and gets mapped on different TLEN type field values
of the Uthernet protocol. The high part of the channel number gets mapped on the DP packet CHAN field.
The distinction is set by the DP packet encoding and decoding parameter g_channel_lo = c_nof_tlen_w. The

Doc.nr.: ASTRON-RP-873
Rev.: 0.2
Date:

UniBoard DESP
Class.: Public

13 / 13

testbench uses dp_mux and dp_demux to perform the multiplexing and de-multiplexing to and from a single
stream.

All p_stimuli(I)(J) get the same input enable stimulus and all out_siso_2arr(I)(J) get the same sink ready
stimulus. These flow control stimuli can be active, random or pulsed dependent on g_in_en and
g_out_ready. By means of setting c_loopback_mux = TRUE or c_loopback_packet = TRUE the same test
bench can also run looping back already at this interfaces as shown in Figure 8. Default both loopback
constants are FALSE. Using c_loopback_mux = TRUE and always active flow control stimuli via g_in_en and
g_out_ready reveals that the muliplexers and demultiplexers can pass on the framed data without gaps.

The tb_tb_uth_dp_packet multi-testbench instantiates testbench tb_uth_dp_packet several times with
different g_data_w and with different flow control.

