
A
S

TR
O

N
-F

O
-0

17
 2

.0

Doc.nr.: ASTRON-RP-871
Rev.: 0.2
Date:

UniBoard DESP
Class.: Public

1 / 11

 Uthernet (UTH) Module Description

 Organisatie / Organization Datum / Date
 Auteur(s) / Author(s):

Eric Kooistra ASTRON

Controle / Checked:

Andre Gunst ASTRON

Goedkeuring / Approval:

Andre Gunst ASTRON

Autorisatie / Authorisation:

Handtekening / Signature
Andre Gunst

ASTRON

© ASTRON 2011
All rights are reserved. Reproduction in whole or in part is
prohibited without written consent of the copyright owner.

Doc.nr.: ASTRON-RP-871
Rev.: 0.2
Date:

UniBoard DESP
Class.: Public

2 / 11

Distribution list:

Group: Others:

Andre Gunst (AG, ASTRON)
Eric Kooistra (EK, ASTRON)
Daniel van der Schuur (DS, ASTRON)
Harm-Jan Pepping (HJP, ASTRON)

Gijs Schoonderbeek (GS, ASTRON)
Jonathan Hargreaves (JH, JIVE)
Salvatore Pirrucci (SP, JIVE)

Document history:

Revision Date Author Modification / Change

0.1 2011-11-16 Eric Kooistra Draft.

0.2 2012-06-29 Eric Kooistra Define preamble word instead of IDLE word.
Added packet level flow control to uth_rx via XON.

Doc.nr.: ASTRON-RP-871
Rev.: 0.2
Date:

UniBoard DESP
Class.: Public

3 / 11

Table of contents:
1 Introduction..4

1.1 Purpose ...4
1.2 Scope ..4

2 Interface, design and implementation of the components ..5
2.1 uth_tx – Transmit an UTH packet..5
2.2 uth_rx – Receive an UTH packet ..8

3 Verification of the components..11

Terminology:

CRC Cyclic Redundancy Check
eop end of packet
HDL Hardware Description Language
IDLE Idle word between frames
PHY Physical interface
PRE Preamble
RL Ready Latency
RTL Register Transfer Level
SFD Start of Frame Delimiter
SISO Source in Sink Out
sop start of packet
SOSI Source Out Sink In
TLEN Type / Length
UTH Uthernet

References:

1. “Uthernet Interface Specification”, ASTRON-SP-041, E. Kooistra
2. “Specification for module interfaces using VHDL records”, ASTRON-RP-380, E. Kooistra
3. “DP Streaming Module Description”, ASTRON-RP-382, E. Kooistra
4. “Data Path Interface Description”, ASTRON-RP-394, E. Kooistra

Doc.nr.: ASTRON-RP-871
Rev.: 0.2
Date:

UniBoard DESP
Class.: Public

4 / 11

1 Introduction

1.1 Purpose
This document describes the Uthernet (UTH) module. The UTH module contains components to transmit or
receive a block of data as payload in an Uthernet packet. The Uthernet packet structure is specified in [1].
The Uthernet interface is intended data transfer over for point-to-point links.

1.2 Scope
The UTH components use the SISO and SOSI streaming interface records that are defined in [2]. For more
information on the streaming interface see [3].

This UTH module makes most of the DP packetizing components that were defined in [4] obsolete.

Doc.nr.: ASTRON-RP-871
Rev.: 0.2
Date:

UniBoard DESP
Class.: Public

5 / 11

2 Interface, design and implementation of the components

2.1 uth_tx – Transmit an UTH packet

2.1.1 Interface

The uth_tx assembles a data block into an UTH packet as shown below in Figure 1 and Figure 2:

Figure 1: uth_tx snk_in

Figure 2: uth_tx src_out

The uth_tx interface parameters and ports are given in respectively Table 1 and Table 2.

Generic Type Description
g_data_w natural >= 1, <= c_uth_data_max_w = 256
g_nof_ch natural The channels are numbered from 0 TO g_nof_ch-1, each channel represents a

type of UTH packet
g_typ_arr t_natural_arr Array of g_nof_ch TLEN type values
g_out_rl natural Only for architecture ‘rtl_delay’. Default use 6 to avoid instantiating the RL

adapter else use the required source RL value.

Table 1: uth_tx parameters

Signal IO Type Description
rst IN std_logic Reset
clk IN std_logic Clock
snk_out OUT t_dp_siso SISO: ready
snk_in IN t_dp_sosi SOSI: data, valid, sop, eop, channel
src_in IN t_dp_siso SISO: ready
src_out OUT t_dp_sosi SOSI: data, valid, sop, eop

Table 2: uth_tx ports

2.1.2 Design

The input data is a block of data marked by snk_in.sop and snk_in.eop. If the PHY link supports data valid
then the input block may have gaps where snk_in.valid is '0', else the snk_in.valid has to remain active

Doc.nr.: ASTRON-RP-871
Rev.: 0.2
Date:

UniBoard DESP
Class.: Public

6 / 11

during the block of data to ensure that src_out_valid remains active too. The minimum block size is 1 data
word, whereby the snk_in.valid, snk_in.sop and snk_in.eop are then all active in the same clock cycle.

After the snk_in.sop the uth_tx first outputs the PRE (preamble), the SFD (start of frame delimiter) and the
TLEN (type or length) words. The PRE word is marked by the src_out.sop. If the TLEN word represents a
length then its value must match the number of input data words in a block. The TLEN length must be known
and fixed, it is not dynamically derived from snk_in.sop, snk_in.valid and snk_in.eop, because that would
require some block store and forward buffering. If the TLEN word represents a type, then it can have an
arbitrary type value, because then receiving side will also know the fixed length that corresponds to that
TLEN type. Typically the TLEN type value should be larger than the largest supported TLEN length value, to
support both TLEN interpretations on the same PHY link.

Each snk_in.channel input channel gets a unique TLEN value. The requirement is that each input channel
has a fixed number of data. The number of channels that is supported is set by g_nof_ch. The TLEN value is
defined per channel via the parameter g_typ_arr(snk_in.channel). The g_typ_arr value can indicate the
payload data length or a packet type. For the uth_tx this is indifferent, because it just inserts the
g_typ_arr(snk_in.channel) value at the TLEN field and determines the payload length using the snk_in.valid ,
snk_in.sop and snk_in.eop. Hence the uth_tx does not need to know whether the TLEN field is used as
length or as type. The transmitted payload length must off course be the same as the payload length that the
receiver side will expect for that TLEN value.

The valid snk_in.data block marked by the snk_in.valid, snk_in.sop and snk_in.eop is passed on as UTH
payload via the UTH packet data field. The UTH payload is protected by a cyclic redundancy check (CRC).
The CRC word is passed on via the CRC field. The CRC field is marked by the src_out.eop. The uth_tx
passes the snk_in.data on to src_out.data without restriction, i.e. the g_data_w parameter is not used for
that. The g_data_w parameter is used to select the appropriate CRC polynomial as defined in [1].

Originally the intention was to output preamble words between UTH packets to fill inter frame gaps if
necessary. However to decrease the change of falsely detecting an SFD the uth_tx output now outputs IDLE
words with all ‘1’-s (so 0xF..FFF) with src_out.valid is ‘0’ between UTH packets. The src_out.valid,
src_out.sop and src_out.eop signals are available to ease subsequent UTH packet scheduling. They can be
use on the PHY link if the PHY link interface supports them, but they do not have to be used on the PHY link.
For more information on the PHY link see [1].

The uth_tx sink and source assume a ready latency of RL = 1. The uth_tx does support backpressure from
the downstream sink via src_in.ready. The uth_tx does give backpressure to the upstream source via
snk_out.ready. If the upstream source does not support the ready then this may be handled by placing an RL
adapter or a FIFO in between [3]. If the downstream sink is always ready then uth_tx can continuously output
UTH packets, i.e. src_out.sop directly after src_out.eop, if sufficient input data blocks are provided.

2.1.3 Implementation

The uth_tx has been implemented in two architectures:

• rtl_hold – using dp_hold_input
• rtl_delay – using dp_latency_adapter

The ‘rtl_delay’ architecture is based on a state machine that assembles the UTH packet while ignoring the
src_in.ready followed by a RL adapter to correct for that omission. The RL adapter adapts from internal RL =
6 to source RL = g_out_rl. The ‘rtl_hold’ architecture is the preferred implementation. Figure 3 shows the
block diagram of ‘rtl_hold’ that uses a dp_hold_input [3] component to handle the sink and the source with
RL = 1. Note that src_buf is only used as buffer for next_src_buf and pend_src_buf, but not directly (this is
typical for using dp_hold_input).

Doc.nr.: ASTRON-RP-871
Rev.: 0.2
Date:

UniBoard DESP
Class.: Public

7 / 11

Figure 3: uth_tx(rtl_hold) implementation

Doc.nr.: ASTRON-RP-871
Rev.: 0.2
Date:

UniBoard DESP
Class.: Public

8 / 11

2.2 uth_rx – Receive an UTH packet

2.2.1 Interface

The uth_rx disassembles a data block from an UTH packet as shown below in Figure 4 and Figure 5:

Figure 4: uth_rx snk_in

Figure 5: uth_rx src_out

The uth_rx interface parameters and ports are given in respectively Table 3 and Table 4.

Generic Type Description
g_data_w natural >= 1, <= c_uth_data_max_w = 256
g_len_max natural Defines the maximum number of data in the payload, used by the internal

payload data counter.
g_nof_ch natural The channels are numbered from 0 TO g_nof_ch-1, each channel

represents a type of UTH packet
g_typ_arr t_natural_arr Array of g_nof_ch TLEN type values
g_len_arr t_natural_arr Array of g_nof_ch TLEN length values
g_use_this_siso boolean Default use TRUE for best throughput performance. When FALSE then

uth_rx does not need to control snk_out and it is ready when the
downstream sink is ready, this may ease achieving timing closure. When
TRUE then in addition uth_rx can also be ready when it is receiving inter
frame gaps or the header to increase the throughput.

g_use_src_in boolean Only for architecture ‘rtl_adapt’. Default use TRUE for backpressure
support else use FALSE to avoid instantiating the RL adapter.

Table 3: uth_rx parameters

Signal IO Type Description
rst IN std_logic Reset
clk IN std_logic Clock
snk_out OUT t_dp_siso SISO: ready
snk_in IN t_dp_sosi SOSI: data
src_in IN t_dp_siso SISO: ready
src_out OUT t_dp_sosi SOSI: data, valid, sop, eop, channel, err

Table 4: uth_rx ports

Doc.nr.: ASTRON-RP-871
Rev.: 0.2
Date:

UniBoard DESP
Class.: Public

9 / 11

2.2.2 Design

The UTH packet overhead words are stripped, only the payload data is output, indicated by the src_out.valid,
src_out.sop and src_out.eop. The UTH packet starts with an PRE word. The src_out.sop is derived based on
an PRE to SFD word transition in the snk_in.data. The number of payload data words is derived from the
TLEN field. The last payload data word is held during the CRC word and output at the src_out.eop. The
evaluation of the received CRC is passed on via the src_out.err field, where 0 indicates OK and 1 indicates
an CRC error. The src_out.err field is valid at the src_out.eop.

The uth_rx can only receive a predefined set of different UTH packets. The different UTH packets are
identified by their TLEN value. The number of TLEN values that uth_rx supports is set by g_nof_ch. The
received TLEN word should match a value in g_typ_arr. The index that matches is used for src_out.channel
and used to obtain the length of the payload from g_len_arr(src_out.channel). All other UTH packets with
unsupported TLEN values that are not in g_typ_arr will get discarded. While counting
g_len_arr(src_out.channel) number of valid payload data words the uth_rx is insensitive to possible PRE /
SFD words in the payload data. Hence the source output is always a full block of payload data. If for some
reason the input UTH framing got corrupted, then this will reflect in the CRC so the src_out.err field will then
report error. Another UTH packet may even get lost, but the UTH packet reception will recover on a next
PRE / SFD detection.

Even without backpressure (so src_in.ready = '1') the src_out.valid will have a 1 cycle gap just before the
src_out.eop, due to the processing of the CRC. Between received source output payloads there is a gap of 3
cycles between the src_out.eop and the next src_out.sop due to the 3 UTH packet header words (PRE, SFD
and TLEN) that get removed from the UTH packet.

The uth_rx supports packet level flow control by flushing packets from the sink when src_in.xon is XOFF.
Therefore the indication to the sink via snk_out.xon is always XON. The src_in.xon is examined when a sop
arrived. During the reception of a packet src_in.xon has no effect.

2.2.3 Implementation

The uth_rx has been implemented in two architectures:

• rtl_hold – using dp_hold_input
• rtl_adapt – using dp_latency_adapter

The ‘rtl_adapt’ architecture is based on a state machine that disassembles the UTH packet while ignoring the
src_in.ready followed by a RL adapter to correct for that omission. The RL adapter adapts from internal RL =
2 to source RL = 1. The ‘rtl_hold’ architecture is the preferred implementation, but using ‘rtl _adapt’ may also
be applicable because it achieves about 0.5 % more throughput for random ready and it may achieve time
closure more easily. Figure 6 shows the block diagram of ‘rtl_hold’ that uses a dp_hold_input [3] component
to handle the sink and the source with RL = 1. Note that the state machine uses next_src_buf, whereas the
state machine for uth_tx uses pend_src_buf, this is due to that uth_tx needs to insert data while uth_rx skips
data.

Doc.nr.: ASTRON-RP-871
Rev.: 0.2
Date:

UniBoard DESP
Class.: Public

10 / 11

src_out_reg
next_src_out

pend_src_out
src_in

snk_out
snk_in

dp_hold_input

uth_rx_tlen

p_state
(s_sfd,
s_tlen,
s_sop,
s_data,
s_crc,
s_eop)

src_buf
next_src_buf

pend_src_buf

pend_src_buf.data

nof_data

snk_in
NC

snk_out

hold_src_in

crc_init

crc

nof_data_hld
channel_hld
data_hld
state
cnt

src_out

channel

1
0

this_siso

src_in

g_use_this_siso

g_typ_arr
g_len_arr

Figure 6: uth_rx(rtl_hold) implementation

Doc.nr.: ASTRON-RP-871
Rev.: 0.2
Date:

UniBoard DESP
Class.: Public

11 / 11

3 Verification of the components

Figure 7 shows the tb_uth testbench that verifies uth_tx and uth_rx together. The two main stimuli for a
streaming interface component are:

• upstream source enable
• downstream sink ready.

These stimuli can active, random or pulsed. The tb_uth uses the procedures described in [3] to generate
blocks of data for the uth_tx sink and to verify that these blocks of data arrive properly at the uth_rx source.
The expected_uth_rx_data signal in Figure 7 is used to verify that the test as run at all. When the stimuli
have finished then signal tb_end stops the testbench clock to automatically stop the simulation.

src_in
src_out

snk_out
snk_in

p_stimuli
- proc_dp_gen_block_data
- tb_end

uth_tx

g_in_en
- e_active
- e_random
- e_pulse

in_en

- proc_dp_verify_data
- proc_dp_verify_valid
- proc_dp_verify_value

g_nof_repeat

g_out_ready
- e_active
- e_random
- e_pulse

src_in
src_out

snk_in
snk_out

uth_rx

g_use_uth_tx_arch
- rtl_hold
- rtl_delay

g_use_uth_rx_arch
- rtl_hold
- rtl_adapt

p_phy_link

g_phy_link_valid
phy_link_err

expected_uth_rx_data

Figure 7: tb_uth testbench for uth_tx and uth_rx

The tb_tb_uth multi-testbench instantiates testbench tb_uth several times with different generic settings to
perform regression tests on the uth_tx and uth_rx.

