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Terminology:

DP Data Path
Eop End of packet
FPGA Field Programmable Gate Array
HDL Hardware Description Language
HW Hardware
10 Input Output
IP Intellectual Property
MM Memory-Mapped
RTL Register Transfer Level
SISO Source In Sink Out
Slice FFT block size
Sop Start of packet
SOSI Source Out Sink In
ST Streaming
SwW Software
Subband Frequency bin of the PFB
UNB Path to UniBoard Firmware directory.
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1 Introduction

Development time of VHDL designs has considerably increased due to increased complexity of designs and
devices. In order to decrease the development time a new form of design creation is considered. This
document will introduce the context for such a revised design flow and it will serve as a communication
platform to exchange and present ideas regarding this topic. The intended new design flow is currently
named as “One-click design flow”.

1.1 Background

The development of large FPGA designs takes a lot of time. The one-click design flow will cover several
optimizations in order to decrease development time. Apart from optimizing development time its aim is also
to make programming of the supported hardware (UniBoard, UniBoard*2, Roach3...) available to a wider
range of people. People without knowledge of VHDL should be able to create and simulate a design for the
supported platforms. To summarize the three most important incentives for the one-click design flow:

- Decrease development time
- Create accessible design environment
- Support multiple platforms

An optimized design flow that uses a higher level language to automate the design flow could also include
the possibility for functional modelling. In case all (VHDL) building blocks have a corresponding functional
model it is possible to prototype and explore different design implementations in an early design stage. The
functional model could already be used without a corresponding VHDL block being available.

1.2 Assumptions

1.2.1 Modelling language: Python

The scripting language Python will be used to facilitate the one-click design flow. Python has the capability to
be used for functional modelling, automatic (testbench) code generation and test scripting.

1.2.2 Component based modelling

A design is always composed out of a set of components. Components can be I/O related, DSP related or
platform specific. It is essential that the higher level description of a design contains all the necessary
information of the design in order to auto generate the VHDL code. The high level description therefore
requires a component-approach instead of a register based approach because some components don’t have
registers. A register based approach would therefor be shortcoming. For every high level instantiated
component a corresponding VHDL component should be instantiated as well.

1.2.3 Modelling on a structural level

The aim is NOT to generate RTL code from a functional Python description. The Python model will only be
used to connect existing VHDL blocks. Automatic code generation shall be limited to the structural level of
VHDL. The generated VHDL should be proper readable and understandable. It should not be necessary to
look at the functional Python description to understand the structure of the generated VHDL.

1.2.4 Model reflects the actual implementation

The Python model must reflect the actual VHDL implementation in terms of building blocks and hierarchical
levels. The Python model is a blueprint for the VHDL, but the generated VHDL could also function as a
blueprint for a Python model.
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1.2.5 Two internal bus types: MM and DP

To automate the design flow it is essential to use standardized busses. For accessing registers and memory
spans of components a memory mapped interface shall be used (Memory Mapped bus). The data transfer
between components is facilitated by means of a streaming protocol (DataPath). Both busses have their own
clock domain.

1.2.6 Multiple clock domains

The design flow should facilitate multiple clock domains. Initial a separate clock for the datapath and the
memory mapped bus should be available. Later on support for multiple clock domains in the datapath must
be provided.

1.2.7 Threerealms in the design flow

As a result of the one-click design flow there will be three realms in which a design or a component can exist.

1.2.7.1 Modelling realm

In the realm of (functional) modelling only high level components can be modelled. These components are
datablock oriented and have a generic port map. This realm serves two purposes. Based on a library with
functional models a preliminary design can be made to verify several different types of algorithms and
architectures. It is not an issue that for a certain model, the underlying VHDL component is not (yet)
available as long as the functional behaviour is well described in a method. The second purpose is to create
a model based design that is used to automatically generate the VHDL design that will result in a bit file to
target a FPGA.

1.2.7.2 Simulation realm

The second realm is the simulation realm where Modelsim is used in conjunction with Python scripts. Here
the RTL (written in VHDL) of the components are clock and bit accurately simulated and verified. Python will
be used for verification and stimuli generation. This realm will be used for development of new VHDL
componentns and it can be used for regression tests.

1.2.7.3 Hardware realm

The hardware realm is the place where a component or a design is mapped on an FPGA. Here a component
is targeted and validated on hardware with the same python scripts that are used in the simulation realm.
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1.3 Overview one-click design flow

Figure 1 gives a schematic representation of the one-click design flow and the role of Python and Modelsim.

Design Component
test case test case

Component class

. Functional
= =
Modelling Model < Component models

Code
Generation

Functional level

Register transfer
level (RTL) MyHDL components <+ <

RTL design

Board specific HDL
components
(UniBoard, UniBoard2,
Roach3...)
Synthesis and
Place & Route
V
Hardware level EPGA bit file
47 = Python cockpit
> Validation > Hardware = Modelsim simulation
= Hardware platform

Figure 1 One-click design flow

The verification part using a test case in Python and a component in Modelsim are already used for
UniBoard1.
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1.4 Datadriven or clock accurate

SA are doing trials with MyHDL [telecon 15 May 2014]. They want designers to have access to the RTL
without having to know VHDL, because this makes the FPGA development accessible for a broad
community of engineers (like they already have in the Casper toolflow with Matlab/Simulink) and not only to
a few digital engineers. RTL access in Python is what MyHDL provides. MyHDL simulates HDL at the RTL
level, i.e. event driven with clocks. The parallel simulation in MYHDL is achieved using sensitivity lists, similar
as in VHDL.

Astron wants to model the DSP at the data level, by passing along lists of valid data, so without the clock.
The parallel simulation is not achieved by a sensitivity list and functions that are processed each time an
input changes, but instead a function is only processed when it has sufficient data to calculate its next new
output. Hence input data is only processed once. The functions may be mapped on software processes,
threads or in a sequential loop. The current investigations focus on using software processes or threads, and
on using pipes or queues.

MyHDL could be supported in the Astron scheme by treating the MyHDL components as just another source
for creating RTL components. Default at Astron we develop our RTL components in VHDL, but one may also
start coding in MyHDL and then use the toVHDL() function of MyHDL to convert it to an VHDL component.
The advantage of a MyHDL component is that the RTL description in Python can also serve as behavioral
model in Python by simply adding an local clock source (assuming that the RTL description uses the
standard MM and ST interfaces). For the VHDL components we manually need to create a model in Python.
However this model is typically quite simple.

2 System Description

What should be described?
e What types of connection schemes should be provided: Are daisy chain or tree sufficient?
e Python methods Connect() vs Composite(). What should these functions return?
e Should it be possible to connect individual I/O-pins or only records/standardized ports?

Will feedback loops be supported?
Are MM busses connected implicitly or explicitly like the DP streams?

Will explicit assignment of the CLK and RST signals be supported?

2.1 Hierarchy

What level of hierarchy will be allowed/provided?

The use of hierarchy in the functional modelling realm is an important matter. One of the assumptions states
that the functional model should be a complete reflection of the underlying VHDL design. As long as the
functional model is used to generate a VHDL design there should be no hierarchical level introduced in the
model other than that already exists in VHDL.

In case the model is only used for modelling it should be possible to introduce hierarchical levels. These
introduced levels will only exist locally and will not be archived in a library structure.

2.2 Python component definition

How will a Python component class look?

The intended Python components classes should cover the following items in order to provide a complete
reflection of the underlying VHDL instance.

- Provide methods for functional simulation
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- Code generation
- Driver in Python control framework.

2.2.1 Reflect VHDL instance

2.2.1.1 Generics

The model should have attributes that reflect the values of the generics that configure a VHDL instance. The
generic attributes should be considered read only and are defined when the components constructor is
called.

2.2.1.2 Memory mapped registers

In case the VHDL model has an MM interface the content of these registers should also be reflected in
attributes. These register attributes receive a default value in the constructor but can be modified during the
lifetime of the object with methods. The read and write accessibility of the register attributes must reflect the
read and write accessibility of the modelled VHDL component.

2.2.1.3 Datapath ports

The number of data in- and output ports should be reflected in attributes. If the number of ports depends on
a generic attribute then this should be represented in the port attribute definition as well. There must also be
room to specify certain features of a data port, for instance: backpressure support or which fields are used
for data transport (data or re & im).

2.2.1.4 Clocks

The connected clocks and resets can be derived from the availability of memory mapped registers and/or the
availability of datapath ports. The connected clocks and resets should be reflected in an attribute.

2.2.2 Functional simulation

The class should provide a behavioral model (as a method) that determines the output(s) of the component
based on a given input. This method is unique for every class and this behavioral model takes into account
both the generic attributes for the instance as the values of the current register attributes.

2.2.3 Code generation

The Python component should have an attribute that points to the corresponding VHDL entity.

2.2.4 Python framework driver

A peripheral driver class should be implemented that facilitates reads and writes to the memory mapped
registers in both simulation (verification) and in hardware (validation). A general driver for all memory
mapped registers in all components would be desirable.

2.2.5 Component base class definition

Table 1 shows a possible component class definition that covers the aforementioned attributes and methods
except the VHDL generics. Note the “Derived Attributes” that are literally derived from the attributes that are
provided as arguments to the constructor.

Attribute name Description

vhdl_reg_definition String that contains the name(s) of the VHDL file(s) that contain(s) the memory
mapped register definition(s). The constructor will create an attribute for every
register that is defined ( )

vhdl_comp_name String that contains the name of the VHDL file that contains the toplevel of the

VHDL component that is modelled.

(Derived Attributes)

dp_clk ‘True’ when data input and/or output ports are available. Otherwise: ‘False’
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mm_clk ‘True’ when a VHDL _reg_definition is defined, otherwise ‘False’.

reg_<component name> | Dictionary that contains all available registers in the component.

Method name Description

func() A placeholder for the functional behavioral model of the component.
read _reg() Method to read a register (from python model, simulation or hardware)
write_reg() Method to write a register (from python model, simulation or hardware)

Table 1 Component Base Class Definition

To facilitate multiple input and output ports a separate base class is available for the data ports. An example
for such a data port class is shown in Table 2.

Attribute name Description

nof ports Number of ports

port_dir Port direction: In or Out

data_width Data width

clk Label indicating the clock domain

data Lists that represent the actual data on the in- or output ports.

Table 2 Data Port Class Definition

New components can inherit from the component base class. Besides that component specific attributes like
ports can be added where appropriate. This will cover the VHDL generics that can be added as component
specific attributes. Table 3 shows an example of a component class definition that describes a beamformer.
Note the attributes that represent the corresponding VHDL generics and the func() method is now filled.

Attribute name Description

d_in Data port object that represents the data input. (Antenna inputs)

d_out Data port object that represents the output. (Beamlet outputs)

g_quantize_ena ‘True’ to enable quantization, ‘False’ to disable quantization.

g_nof weights Specifies the number of weights.

Method name Description

func() d_out.data[0] = Yreg_weights* d_in.data[d_in.nof ports - 1: 0] Here the actual
functional behavior is modelled. The output is defined as the sum of the weighted
inputs.

Table 3 Beamformer class definition

Figure 2 shows a possible instantiation of a beamformer component that inherits from the base component
and is complemented with beamformer specific attributes.
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d_in=data_port(64, in, 16, dp_clk,[])
d_out =data_port(1, out, 39, dp_clk,[])
vhdl_reg_definition = ‘bf_reg_def.vhd’
vhdl_comp_name = ‘bf.vhd’
g_quantize_ena = ‘True’
g_nof_weights = 256

dp_clk = ‘True’
mm_clk = ‘True’
reg_beamformer.weights = [default_weight_list]

func(): d_out.data[0] = ¥ weights*d_in.data[63:0]

Figure 2 Possible beamformer object

Base Component

vhdl_reg_definition
vhdl_comp_name

dp_clk
mm_clk
reg_<component_name>

func()
read_reg()
write_reg()

ASTRON
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3 Functional Modelling

The functional modeling realm should provide a way to model (part of) a design for preliminary architectural
design research and provide a way to automatically generate a complete FPGA design (including
testbenches for the simulation realm). In order to avoid that the functional modelling will become a functional
simulation it is important to define the boundaries of the functional modelling realm. Here is a list of
assumptions to this:

- Only standardized interfaces
- Data block accurate

- Time aware

- Clear syntax

In case the modelling realm is solely used for design generation the model should fit within the boundaries of
the target FPGA. In that case it is important to be able to create a corresponding (auto-generated) VHDL
design. In case the modelling realm is just used for modelling only it is not a necessity to be able to generate
a corresponding VHDL design. In that case it is OK that the model exceeds the boundaries of a target FPGA.
Of course design generation is not an option then.

3.1 Standardized interfaces

To automate the design flow and provide a proper way of modelling it is essential to use standardized
busses. For accessing registers and memory spans of components a memory mapped interface shall be
used (Memory Mapped bus). The data transfer between components is facilitated by means of a streaming
protocol (DataPath). Both busses have their own clock domain. Note that these standardized busses have to
be implemented at the VHDL RTL level. Functional modelling only requires that the interfaces are
standardized in order to connect and access the components in a well known way.

3.1.1 Register map

Apart from the interfaces there must also be a standardized way of obtaining the register map of the
components. The register definition originates in the VHDL and the functional model should refer to that
definition.

3.2 Modelling resolution

The modelling resolution can be defined as the maximum number of samples that are transferred from one
component to another at a single simulation cycle. In other words it defines the stepsize (in clock cycles) of
the functional simulation with the assumption that there is valid data on every clock cycle. The corresponding
quantity in the hardware realm is the HDL frame size (e.g. 256 clock cycles) that is marked by a SOP signal,
an EOP signal and accompanied by a block sequence number. The usefulness of the HDL frame size is in
the fact that the blocks that process data don’t require counters to calculate the data. The start and end of an
HDL frame is marked and there are always a known amount of samples in between. Based on this
information and assuming the modelling resolution is independent from the HDL frame size three types of
modelling resolutions can be distinguished:

- Multi Frame Resolution (Modelling resolution > HDL frame resolution). The modelling resolution is
here a multiple of the corresponding HDL frame size. It theory the size could be extended to the
complete simulation time in order to do a simulation in only one cycle.

- Single Frame Resolution (Modelling resolution = HDL frame resolution). In this case the modelling
resolution corresponds to the frame size of the hardware realm.

- Sub Frame Resolution (Modelling resolution < HDL frame resolution). This resolution type offers
cycle accurate simulations when set to 1.

Since most of the current available HDL components are HDL frame size oriented it is obvious that the
Single Frame resolution is the type that is the easiest type to model in python. The Multi Frame and Sub
Frame type require more administration with respect to transmitting and receiving data.
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3.3 Block accurate

The components that are qualified for functional modelling must be data block oriented. This means that the
functional models apply their functionality on a block of data and they provide blocks of data on their output.
These blocks represent the blocks of data that are sent over the streaming datapath interfaces in the VHDL.
In theory a blocksize of one data word is possible, but in practice the blocksize will, for instance, equals the

number of points of the FFT.

3.3.1 Dataexchange format

What is the best format for passing the data from one component to the next?
o Lists, Arrays
e What dimensions?

What are the limits of the data format candidates in terms of memory usage of the PC and speed of overall
functional simulation? Should we use lists (range) or generators (xrange)?

3.4 Time awareness

Should the functional model include time as a controlled dimension (in order to facilitate feedback loops and
MM accesses) ?

Within the functional model there should be the awareness of time to facilitate loopback functionality and to
provide a way to change register settings over time. Having this time dimension available it becomes
possible to create, for instance, a functional model of a beamformer system that is actively tracking a source,
since the weights can be updated in time. Time awareness can be implemented by adding a block sequence
number to the data blocks.

3.5 Clear syntax

Since there is a potential broad audience for this functional modelling system it is very important that the
modelling syntax is clear and intuitive.
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4 Code Generation

4.1 Memory Mapped bus
Replace the embedded processor (NIOS) by VHDL statemachine for address decoding.

For automatic code generation it is essential to have a generic and easy configurable memory mapped bus.
Currently the Altera SOPC system is used to generate the bus. The bus is controlled by the NIOS |l
processor which runs a simple OS (unb_osy) that initiates bus accesses in response to incoming ethernet
packets. The SOPC with the NIOS Il processor facilitates the bus, the bus controller and the (single) bus
master. Automated generation of the SOPC system requires interfering in the XML file that defines the
SOPC system which is not straight forward. Other disadvantages are the vendor-dependency of the SOPC
system and the chance of discontinuation or extensive upgrades of the system by Altera.

A replacement is therefore required and should meet the following:

- Vendor independent

- Compatible with current used MM interface at Astron

- Support multiple or single bus master?

- Support multiple slaves (256)

- Single read access

- Single write access

- No burst transfers

- Bus configuration (base-address, address span etc.) via VHDL Generics

How to deal with the address map and symbolic links. Store complete register map in FPGA?

Create the MM bus in VHDL.:
e Instantiating the DP components (incl. port maps and connection section)
e Connecting the DP components
e Connect MM busses to MM master.

Create VHDL testbench.

5 Modelsim in-the-loop

Should we use blockgenerators and databuffers?
Or should we use HEX-files for data I/0?
Or should we use the foreign language interface?

6 Component control driver

The Python peripheral definition should also be included in the component class.

7 Prototypes

The first prototype, prototype X, shall demonstrate the functional modelling capabilities of the system and
NOT the automatic code generation. It will consider a simple system as shown in Figure 3. A block generator
provides two streams with blocks of data. The streams are multiplexed to a single stream in the dp_mux
component and this output stream is stored in a data buffer. The represented components are based on
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components that already exist in VHDL. For simplicity reasons no I/O components will be included. The
model will not reflect any clocks, flow-control or memory mapped control.

block generator dp_mux
(diag_lib)

data_buffer

> (dp_lib) (diag_lib)

Figure 3 Schematic overview prototype X

The aim of prototype X is to demonstrate a suitable implementation for transferring data blocks from one
component to another. There are three implementation options to consider:

1. Threads
2. Processes
3. Sequential

Both threads and processes offer convenient solutions for inter-component data transfer by means of
queues or pipes.

7.1 Prototype X requirements

- For every connection (output-port to input-port) in the model the transferred data is stored and can
be viewed when the modelling run is done.

- The length of the modelling run is defined upfront by specifying the number of blocks to process.

- A modelling run can always be interrupted. The calculated values (lists) that do exist at the moment
of interruption can still be viewed.

- Each component will be modelled in a unique class that will inherit from the component class and
ports class.
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