
A
S

TR
O

N
-F

O
-0

17
 2

.0

Doc.nr.: ASTRON-RP-329
Rev.: 2.0
Date: 29 Feb 2012

 UniBoard
Class.: Public

1 / 19

 I2C SMBus Module Description

 Organisatie / Organization Datum / Date
 Auteur(s) / Author(s):

Eric Kooistra ASTRON

Controle / Checked:

André Gunst ASTRON

Goedkeuring / Approval:

André Gunst ASTRON

Autorisatie / Authorisation:

Handtekening / Signature
André Gunst

ASTRON

© ASTRON 2009
All rights are reserved. Reproduction in whole or in part is
prohibited without written consent of the copyright owner.

Doc.nr.: ASTRON-RP-329
Rev.: 2.0
Date: 29 Feb 2012

 UniBoard
Class.: Public

2 / 19

Distribution list:

Group: Others:

André Gunst
Eric Kooistra
Daniel van der Schuur
Harm-Jan Pepping

Gijs Schoonderbeek

Document history:

Revision Date Author Modification / Change

0.1 04-09-2009 Eric Kooistra Creation from LOFAR RSP design documents

0.2 04-09-2009 Eric Kooistra Added I2C slave module from LOFAR RCU
Minor edits.

1.0 08-09-2009 Roelof Kiers Final v1.0

2.0 29-02-2012 Eric Kooistra
Added opcode OP_RD_SDA
Added I2C commander for ADU I2C control
Added I2C application examples used on UniBoard

Doc.nr.: ASTRON-RP-329
Rev.: 2.0
Date: 29 Feb 2012

 UniBoard
Class.: Public

3 / 19

Table of contents:

1 Introduction..5
2 SMBus controller design ...6

2.1 Architecture ...6
2.1.1 Opcodes..6
2.1.2 Protocols ...7

2.2 Interface...7
2.2.1 Protocol request message ..7
2.2.2 Protocol response message ...9
2.2.3 Sequence of protocol messages ..9

3 Applications ...10
3.1 Fixed protocol list in ROM ...10
3.2 Programmable protocol list..11
3.3 Programmable commander using a set of protocol lists ...11

4 Appendix ...14
4.1 Firmware..14

4.1.1 Project files ...14
4.1.2 I2C master core ..14
4.1.3 I2C SMBus controller..14
4.1.4 I2C slave definitions..15
4.1.5 I2C slave behavoral models ...15
4.1.6 Application mms_unb_sens..15
4.1.7 Application avs_i2c_master ..16
4.1.8 Application mms_i2c_commander..16
4.1.9 How to create the I2C commander *_protocol_ram_init.hex file for the u_protocol_ram:..........16

4.2 Known issues ..18
4.2.1 Clk rate and bit rate ..18
4.2.2 Bus arbitration...18
4.2.3 Ringing on SCL and SDA edges ..18
4.2.4 Comma logic ...18
4.2.5 Sometimes access to LOFAR TDS fails...18

4.3 I2C access example...19

Doc.nr.: ASTRON-RP-329
Rev.: 2.0
Date: 29 Feb 2012

 UniBoard
Class.: Public

4 / 19

References:

[1] “RSP Firmware Design Description””, LOFAR-ASTRON-SDD-018, Rev. 4.0, 2009
[2] “RSP-MAC Interface Description”, LOFAR-ASTRON-ICD-002, Rev. 7.0, 2009
[3] https://svn.astron.nl/UniBoard_FP7/UniBoard/ = $UNB
[4] http://www.opencores.org, “I2C-Master Core Specification”, Richard Herveille, rev 0.9, Jul 2003
[5] http://www.freemodelfoundry.com, HDL open source code
[6] http://www.smbus.org, System Management Bus Specification, Rev. 2.0
[7] http://www.nxp.com, Philips I2C standard, I2C slave IO expander chips
[8] http://www.maxim-ic.com, I2C slave sensors chips

Terminology:

ADU Analogue Digital Unit (APERTIF)
AVS Avalon bus Slave (Altera bus)
HDL Hardware Description Language (typically VHDL or Verilog)
I2C Inter-IC Interface
IC Integrated Circuit
I/O Input/Output
MISO Master In Slave Out
MM Memory-Mapped
MMS Memory-Mapped Slave
MOSI Master Out Slave In
RCU Receiver Unit (LOFAR)
RSP Remote Station Processing board (LOFAR)
RTL Register Transfer Level
SCL I2C Clock line
SDA I2C Data line
SENS Sensors module
SMBUS System Management Bus
SOPC System on a Programmable Chip (Altera tool)
T,V Temperature, Voltage sensor
UNB UniBoard
VHDL Very High Speed IC HDL

Doc.nr.: ASTRON-RP-329
Rev.: 2.0
Date: 29 Feb 2012

 UniBoard
Class.: Public

5 / 19

1 Introduction

The I2C SMBus controller module was originally designed for the LOFAR Remote Processing Board (RSP)
firmware [1], [2] and has also been reused for the EMBRACE Center Board (ECB) firmware. For the
RadioNet FP7 UniBoard development it is available again and described separately in this design document.

The I2C SMBus controller is described in chapter 2. It consists of:

1. I2C master core obtained from Open Cores [4] that drives the I2C bus [7]
2. SMBus protocol processor that follows the protocols defined in [6]
3. Control interface

The SMBus controller can be used in several ways that differ in the amount of software or hardware control.
These applications are described in chapter 3 by means of existing examples in the UniBoard firmware [3]:

1. One fixed protocol list in ROM unb_sens in design unb_common
2. One programmable protocol list in RAM under software control i2c_master in module Lofar/i2c
3. A set of protocol lists in RAM that can be issued as commands i2c_commander in module Lofar/i2c

Doc.nr.: ASTRON-RP-329
Rev.: 2.0
Date: 29 Feb 2012

 UniBoard
Class.: Public

6 / 19

2 SMBus controller design

2.1 Architecture
The I2C controller consists of an I2C master core [4] that provides a byte level interface to the physical I2C
interface and a SMBus [6] protocol processor that allows access based on a set of opcodes. A sequence of
opcodes is called a protocol and defines for example an I2C write byte access. The SMBus protocol
processor can run a protocol and report its result. The CTRL block provides a memory access interface to
the protocol list and protocol result registers.

Figure 1: I2C module block diagram

Appendix 4.1 lists the VHDL source code for the I2C module and some more useful files for test benches and
I2C slave models. Appendix 4.2 reports issues that were encountered with the I2C master core.

2.1.1 Opcodes

An I2C access is defined by a sequence of basic operations called opcodes. Table 1 lists the I2C access
opcodes that are sufficient to define any standard I2C accesses.

OPCODE Description

OP_LD_ADR Load address register
OP_LD_CNT Load count register
OP_WR_CNT I2C write count register
OP_WR_ADR_WR I2C start and write address for write
OP_WR_ADR_RD I2C start and write address for read
OP_WR_DAT I2C write byte of data
OP_WR_BLOCK I2C write block of count data bytes
OP_RD_ACK I2C read byte data and acknowledge
OP_RD_NACK I2C read byte data and do not acknowledge
OP_RD_BLOCK I2C read block of count data bytes
OP_STOP I2C stop

Table 1: Opcodes for an I2C access

The opcodes work like instructions for a dedicated microprocessor. Given such a microprocessor it is
possible to add some more opcodes for other functions. This is useful to control the flow of I2C accesses.
Table 2 lists the control opcodes.

I2C
master
core

SMBUS

CTRL

Doc.nr.: ASTRON-RP-329
Rev.: 2.0
Date: 29 Feb 2012

 UniBoard
Class.: Public

7 / 19

OPCODE Description

OP_IDLE Idle
OP_END Signal end of list of protocols
OP_LD_TIMEOUT Load timeout value
OP_WAIT Wait for timeout time units
OP_RD_SDA Sample SDA line

Table 2: Opcodes for flow control and monitoring

2.1.2 Protocols

The network layer of the SMBus standard [6] specifies the protocols for several common I2C accesses. For
example the write quick protocol can be implemented by applying opcodes: OP_LD_ADR,
OP_WR_ADR_WR, OP_STOP. In addition some custom protocols are supported. Each protocol returns a
status and the read data (in case of an I2C read access). For the complete list of protocols that is supported
by the SMBus protocol processor see section 2.2.

2.2 Interface

The protocol list registers contain the protocols that need to be executed by the SMBus protocol processor in
order to do the appropriate I2C accesses on an I2C bus. The I2C access results can be read back from the
protocol result register.

BIT
O/S 7 6 5 4 3 2 1 0

0 PROTOCOL_0[7:0]

1 PROTOCOL_1[7:0]

2

…

Table 3: Protocol list register

BIT
O/S 7 6 5 4 3 2 1 0

0 RESULT_0[7:0]

1 RESULT_1[7:0]

2

…

Table 4: Protocol results register

2.2.1 Protocol request message

To execute a protocol the dedicated protocol processor needs to get a request message containing the
protocol ID followed by the appropriate parameters, see Table 5.

Doc.nr.: ASTRON-RP-329
Rev.: 2.0
Date: 29 Feb 2012

 UniBoard
Class.: Public

8 / 19

Message fields (bytes) Protocol name ID Parameters

PROTOCOL_WRITE_QUICK 02 ADDR
PROTOCOL_READ_QUICK 03 ADDR
PROTOCOL_SEND_BYTE 04 ADDR, DATA
PROTOCOL_RECEIVE_BYTE 05 ADDR
PROTOCOL_WRITE_BYTE 06 ADDR, CMD, DATA
PROTOCOL_READ_BYTE 07 ADDR, CMD
PROTOCOL_WRITE_WORD 08 ADDR, CMD, DATA, DATA
PROTOCOL_READ_WORD 09 ADDR, CMD
PROTOCOL_WRITE_BLOCK 0A ADDR, CMD, CNT, DATA[1..CNT]
PROTOCOL_READ_BLOCK 0B ADDR, CMD, CNT
PROTOCOL_PROCESS_CALL 0C ADDR, CMD, DATA, DATA, ADDR, CMD

PROTOCOL_C_WRITE_BLOCK_NO_CNT 0D ADDR, CMD, CNT, DATA[1..CNT]
PROTOCOL_C_READ_BLOCK_NO_CNT 0E ADDR, CMD, CNT
PROTOCOL_C_SEND_BLOCK 0F ADDR, CNT, DATA[1..CNT]
PROTOCOL_C_RECEIVE_BLOCK 10 ADDR, CNT
PROTOCOL_C_NOP 11 -
PROTOCOL_C_WAIT 12 TIMEOUT[0..3]
PROTOCOL_C_END 13 -
PROTOCOL_C_SAMPLE_SDA 14 TIMEOUT[0..3]

Table 5: Protocol request message format.

Where:
- ID = Protocol ID byte.
- ADDR = Slave I2C address byte.
- CMD = Command byte.
- CNT = Count of number of data bytes to write or to read.
- DATA = Data byte.
- TIMEOUT = Timeout value, 4 bytes, LSByte first. For example TIMEOUT[0:3] = h’00 01 00 00 = 256

 system clock cycles. Only values < 228 are supported.

Protocols 0x02 to 0x0C follow the SMBus standard [6]. The SMBus protocols are not sufficient to access all
kinds of I2C slaves. Furthermore it is useful to define some protocols for protocol flow control. Therefore
some custom protocols are added. For example to access the LOFAR Receiver Unit (RCU) the protocols
PROTOCOL_C_SEND_BLOCK and PROTOCOL_C_RECEIVE_BLOCK need to be used.

Brief description of the protocols: The protocols for flow control do not access the I2C interface, the others
do. The SEND/RECEIVE protocols define a plain data access while the WRITE/READ protocols first write a
command byte and then perform the data access. For the READ protocols first having to write the command
byte causes that the required I2C restart is performed to subsequently receive the actual data. The
WRITE/READ_BLOCK_NO_CNT protocols are similar to the SMBus WRITE/READ_BLOCK protocols
except that the count value is not written to the I2C interface. For CNT=1 the
WRITE/READ_BLOCK_NO_CNT is equivalent to SMBus WRITE/READ_BYTE and for CNT=2 the
WRITE/READ_BLOCK_NO_CNT is equivalent to SMBus WRITE/READ_WORD. The
SEND/RECEIVE_BLOCK protocols are similar to the SMBus SEND/RECEIVE_BYTE/WORD protocols, but
allow an arbitrary number of bytes given by count. The SEND/RECEIVE_BLOCK protocols are also similar to
the WRITE/READ_BLOCK_NO_CNT protocols, except that they do not write a command. The
PROTOCOL_C_WAIT protocol allows postponing subsequent protocol handling. The timeout value is given
by the 4 timeout bytes (LSByte first) and counts system clock cycles. An unknown protocol is detected and
executed as PROTOCOL_C_END.

Doc.nr.: ASTRON-RP-329
Rev.: 2.0
Date: 29 Feb 2012

 UniBoard
Class.: Public

9 / 19

The PROTOCOL_C_SAMPLE_SDA samples the SDA line after a timeout. The timeout must be sufficient to
ensure that the SDA has been pulled up, so typically use a timeout of at least half an SCL period. The result
byte reports NOT(SDA), so for the correct pull up the result byte indicates NOT(‘H’) = 0 is OK.

2.2.2 Protocol response message

The protocol processor returns a protocol result byte for each protocol. In case the protocol concerned an I2C
read access, then the result byte is preceded by the read data bytes. The number of read data bytes
depends on the protocol type. If the read access failed somehow, then the read data bytes are undefined.
Often undefined read bytes show a 0xFF due to the SDA pull up.

The result byte == 0 when the protocol executed OK and <> 0 otherwise. The result byte defaults to OK
except for an I2C write. For an I2C write the result becomes not OK in case a written byte was not
acknowledged by the slave, this may occur for the write of the slave address or of the data.

2.2.3 Sequence of protocol messages

The protocol processor can play one or more protocols from a list of request messages. The corresponding
response messages are returned in a response list. The PROTOCOL_C_END protocol is useful to signal
that the end of a list was reached, so that all protocols in the list have been executed.

Note that by means of the PROTOCOL_C_WAIT timer it is possible to delay (parts of) the I2C access
execution of the protocol list. This can be useful to fine tune the synchronization between access to the TTD
on ECB and the BF chips on the HEX boards. The time unit of the PROTOCOL_C_WAIT timer is one period
of the system clock.

Appendix 4.3 gives an example on how to access an I2C slave using the module interface.

Doc.nr.: ASTRON-RP-329
Rev.: 2.0
Date: 29 Feb 2012

 UniBoard
Class.: Public

10 / 19

3 Applications

3.1 Fixed protocol list in ROM

Figure 2 shows the block diagram of mms_unb_sens. The mms_unb_sens provides a MM register and MM
bus interface to the unb_sens.

Figure 2: Block diagram of mms_unb_sens

The application functionality of mms_unb_sens is determined by the constant protocol list in unb_sens_ctrl.
At a mm_start pulse the protocol list is executed by the i2c_smbus to access the I2C slave peripherals via
the SCL and SDA lines. The read I2C bytes are collected in sens_data[] array of bytes. The I2C
acknowledge signalling result is collected into sens_err. The sens_data bytes and the sens_err value can be
read via the reg_mosi and reg_miso MM bus control signals as shown in Table 6.

 31 24 23 16 15 8 7 0 wi
 |-----------------|-----------------|-----------------|-----------------|
 | xxx fpga_temp = sens_data[0][7:0]| 0
 |---|
 | xxx eth_temp = sens_data[1][7:0]| 1
 |---|
 | xxx hot_swap_v_sense = sens_data[2][7:0]| 2
 |---|
 | xxx hot_swap_v_source = sens_data[3][7:0]| 3
 |---|
 | xxx sens_err[0]| 4
 |---|

Table 6: MM register map defined in unb_sens_reg

The fpga_temp and eth_temp are in degrees (two's complement) and are measured by MAX1618 devices.
The hot swap voltages are measured by an LTC4260 hot swap control device. The FPGA temperature can
be measured via all UniBoard FPGAs. The eth_temp and the voltages can only be obtained via back node 3
(BN3). The protocol list in ROM is fixed and suits BN3, therefore the sens_err indication is only applicable to
BN3. For the other nodes on UniBoard only the fpga_temp value is valid and the rest of the MM register
sens_data and sens_err must be ignored.

Doc.nr.: ASTRON-RP-329
Rev.: 2.0
Date: 29 Feb 2012

 UniBoard
Class.: Public

11 / 19

The mms_unb_sens.vhd can be connected outside to an SOPC Builder system by means of the general
purpose MM slave port avs_common_mm.vhd, which provides the MM bus signals as conduit wires..

3.2 Programmable protocol list
Figure 3 shows the block diagram of avs_i2c_master.vhd. The avs_i2c_master.vhd provides a MM slave
peripheral for general I2C protocol list control that can be used within an SOPC builder system using the
corresponding avs_i2c_master_hw.tcl hardware description file for SOPC Builder.

Figure 3: Block diagram of avs_i2c_master.vhd

The avs_i2c_master.vhd can be controlled in software by means of the functions provided in
avs_i2c_master.h and unb_sensors.h as listed in Table 14.

Instead of using avs_i2c_master.vhd the i2c_master.vhd could also be connected outside to an SOPC
Builder system by means of the general purpose MM slave port avs_common_mm.vhd. The test bench
tb_i2c_master.vhd shows how the i2c_master.vhd is used.

The UniBoard ctrl_unb_common.vhd now contains mms_unb_sens, so the avs_i2c_master_hw.tcl within
SOPC Builder is no longer used.

3.3 Programmable commander using a set of protocol lists

To not burden the user with the protocol list contents it is useful to be able to issue a protocol list as a
command that select one out of a set of protocol lists. This is what the i2c_commander.vhd provides. The
I2C commander can activate one out of a list of protocols. A difference between the i2c_commander and
mms_unb_sens is that the i2c_commander offers multiple protocol lists that can be issued as commands.
Optionally the protocol lists and result buffer can still accessible to the user via the MM bus, so then the
i2c_commander.vhd still offers the same freedom of control as the avs_i2c_master.vhd and the
i2c_master.vhd. Figure 4 shows the block diagram of i2c_commander.vhd.

Doc.nr.: ASTRON-RP-329
Rev.: 2.0
Date: 29 Feb 2012

 UniBoard
Class.: Public

12 / 19

i2c_list_ctrl
i2c_smbus

i2c_byte

i2c_bit

smbus

i2c_comander_reg

u_ram_protocol

u_ram_result

MM

SCL
SDA

i2c_commander

i2c_comander_ctrlsync

Figure 4: Block diagram of the i2c_commander.vhd

With Uniboard the I2C commander is used to control the I2C bus to ADU. The commander register settings
for that are defined in i2c_commander_adu_pkg.vhd. There is also an i2c_commander_unb_pkg.vhd that
provides similar functionality as mms_unb_sens, but that is not used. The I2C commander register map with
up to 16 protocol lists for I2C commander control of ADU is shown in Table 7. The contents of the protocol
RAM and the protocol offsets and the expected results are defined in the i2c_dev_adu_pkg.vhd. For more
information see appendix 4.1.8 and 4.1.9.

The ADU I2C commander can execute one out of g_i2c_cmdr.nof_protocols = 16 protocol lists. Each
protocol list can contain multiple I2C accesses. The protocol word index in Table 7 indicates the protocol list
that will become active. The protocol lists are stored sequentially in u_protocol_ram. The protocol_offset
array in Table 7 contains the offsets to the start of each protocol list. The protocol result is kept in
u_result_ram, but it is also processed by the I2C commander. For each protocol result byte the I2C
commander uses the active word from the result_expected array in Table 7 to know whether the result byte
should be 0 (as for protocol control and write SMBUS protocol identifiers) or whether it contains read data
(as read SMBUS protocol identifiers). For the bits in the result_expected word that are '0' the result byte must
be 0 and for bits that are '1' the result byte gets stored in the result_data array in Table 7. If the result control
byte is not 0 then the result_error_cnt in Table 7 gets incremented. The protocol_status in Table 7 reports
when the protocol list has finished. The protocol_status can be idle (= 0), pending (= 1), busy (= 2) or done
(= 3). The protocol list gets activated by the write access to the corresponding index address in the I2C
commander register. Actual execution of the protocol list may be postponed until an external sync occurs.
Default the sync input shown in Figure 4 is ‘1’ so the pending state is left immediately. Using the sync is
useful if the I2C accesses must be synchronized among multiple nodes. Each protocol can have multiple I2C
accesses. The maximum number of I2C read data bytes per protocol list is determined by
g_i2c_cmdr.nof_result_data_max = 2 in in Table 7. In case a protocol list has no I2C read accesses then the
all expected result bytes are 0, so then the size of the protocol list is only limited by the size of
u_protocol_ram.

Doc.nr.: ASTRON-RP-329
Rev.: 2.0
Date: 29 Feb 2012

 UniBoard
Class.: Public

13 / 19

 31 24 23 16 15 8 7 0 wi
 |-----------------|-----------------|-----------------|-----------------|
 | xxx write access issues protocol 0| 0
 |---|
 | xxx write access issues protocol 1| 1
 |---|
 | xxx write access issues protocol 2| 2
 |---|
 | ... | ..
 |---|
 | xxx write access issues protocol 15| 15
 |---|
 | xxx protocol_offset[protocol_adr_w-1:0] 0| 16
 |---|
 | xxx protocol_offset[protocol_adr_w-1:0] 1| 17
 |---|
 | xxx protocol_offset[protocol_adr_w-1:0] 2| 18
 |---|
 | ... | ..
 |---|
 | xxx protocol_offset[protocol_adr_w-1:0] 15| 31
 |---|
 | xxx result_expected[31:0] 0| 32
 |---|
 | xxx result_expected[31:0] 1| 33
 |---|
 | ... | ..
 |---|
 | xxx result_expected[31:0] 15| 47
 |---|
 | xxx protocol_status[31:0]| 48
 |---|
 | xxx result_error_cnt[31:0]| 49
 |---|
 | xxx result_data[7:0] 0| 50
 |---|
 | xxx result_data[7:0] 0| 51
 |---|

Table 7: MM register map for i2c_commander_reg.vhd defined in i2c_commander_adu_pkg.vhd

To allow for dynamically programming of the protocol lists connect the u_ram_protocol MOSI/MISO to the
MM bus. In this way it is possible to try many different protocols e.g. with different write data bytes. For
normal operation typically a few fixed protocol lists are sufficient, so then u_ram_protocol MOSI/MISO can be
left unconnected, which effectively makes u_protocol_ram a ROM.

Default g_use_result_ram = FALSE is fine because most result status info and data are accessible via the
commander result_error_cnt and result_data array registers. Using TRUE allows for detailed debugging in
case something goes wrong on the I2C bus. The result_expected array contains one mask word per protocol
list. If the protocol list is long then this word is reused periodically. Hence if the protocol list contains multiple
reads then these must occur within one mask word or they have to occur periodically. This can be achieved
by inserting SMBUS_C_NOP in the protocol list.

Doc.nr.: ASTRON-RP-329
Rev.: 2.0
Date: 29 Feb 2012

 UniBoard
Class.: Public

14 / 19

4 Appendix

4.1 Firmware

To speed up simulation the I2C test benches and components use a generic g_sim or input cs_sim to
support setting a faster I2C bit rate for simulation than the actual 50 kbps I2C bit rate defined in the
i2c_pkg.vhd for the target hardware.

4.1.1 Project files

File Description
unb_common/build/synth/quartus/
sopc_unb_common_sim/unb_common.mpf

Modelsim project file to compile unb_common_lib

unb_common/build/synth/quartus/unb_common.qip Quartus list of IP source files
i2c/build/sim/modelsim/i2c.mpf Modelsim project file to compile i2c_lib
i2c/build/synth/quartus/i2c.qip Quartus list of IP source files

Table 8: Project files

4.1.2 I2C master core

The I2C master core is described in i2c/doc/I2C_specs.doc (pdf) from [4] and contains the VHDL files that
are listed in Table 9.

File Description
i2c/src/vhdl/i2c_bit.vhd I2C master core from [4]
i2c/src/vhdl/i2c_byte.vhd I2C master core from [4]

Table 9: I2C master core

4.1.3 I2C SMBus controller

File Description
i2c/src/vhdl/i2c_list_ctrl.vhd General protocol list controller
i2c/src/vhdl/i2c_smbus(pkg).vhd Opcodes and protocols
i2c/src/vhdl/i2c_smbus.vhd Opcodes processor

Table 10: I2C SMBus controller

Doc.nr.: ASTRON-RP-329
Rev.: 2.0
Date: 29 Feb 2012

 UniBoard
Class.: Public

15 / 19

4.1.4 I2C slave definitions

File Description
i2c/src/vhdl/i2c_dev_max1617_pkg.vhd Temperature sensor [8]
i2c/src/vhdl/i2c_dev_max6652_pkg.vhd Temperature and voltages sensor [8]
i2c/src/vhdl/i2c_dev_ltc4260_pkg.vhd Hot swap controller and votages sensor
i2c/src/vhdl/i2c_dev_unb_pkg.vhd I2C slaves on UniBoard
i2c/src/vhdl/i2c_dev_adu_pkg.vhd I2C slaves on ADU

Table 11: I2C slave definitions

4.1.5 I2C slave behavoral models

File Description
i2c/tb/vhdl/i2c_slv_device.vhd I2C slave RTL model, based on LOFAR RCU I2C slave VHDL code
i2c/tb/vhdl/dev_max1618.vhd Temperature sensor
i2c/tb/vhdl/dev_max6652.vhd Temperature and voltages sensor
i2c/tb/vhdl/dev_pca9555.vhd 16 bit IO expander
i2c/tb/vhdl/dev_ltc4260_pkg.vhd Hot swap controller and voltages sensor
i2c/tb/vhdl/dev_unb_pkg.vhd I2C slaves on UniBoard
i2c/tb/vhdl/dev_adu_pkg.vhd I2C slaves on the ADU board

Table 12: I2C slave behavioural models

The $UNB/Firmware/modules/fmf code from [5] also contains a model for an I2C master and a slave, but this
is not used.

4.1.6 Application mms_unb_sens

File Description
unb_common/src/vhdl/unb_sens.vhd
unb_common/src/vhdl/unb_sens_ctrl.vhd
unb_common/src/vhdl/unb_sens_reg.vhd
unb_common/src/vhdl/mms_unb_sens.vhd See Figure 2
unb_common/tb/vhdl/tb_mms_unb_sens.vhd Self checking test bench for mms_unb_sens.vhd. Usage:

> as 10
> run -all

modules/src/reg_unb_sens.c (h)

Table 13: Application mms_unb_sens VHDL and C code for on the NIOS embedded processor

The $UNB/Firmware/modules/Lofar/sens code contains a similar ROM based protocol list module that was
ported from LOFAR RSP, but is not used within UniBoard.

Doc.nr.: ASTRON-RP-329
Rev.: 2.0
Date: 29 Feb 2012

 UniBoard
Class.: Public

16 / 19

4.1.7 Application avs_i2c_master

File Decription
i2c/src/vhdl/i2c_pkg.vhd I2C constants, e.g. bit rate = 50 kpbs
i2c/src/vhdl/i2c_mm.vhd
i2c/src/vhdl/i2c_master.vhd See Figure 3. General I2C master with protocol list, result buffer and

control register
i2c/src/vhdl/avs_i2c_master.vhd See Figure 3. Wrapper for i2c_master.vhd to fit Avalon bus naming
i2c/src/vhdl/avs_i2c_master_hw.tcl SOPC Builder HW description file for avs_i2c_master.vhd
i2c/tb/vhdl/tb_i2c_master.vhd Self checking test bench for i2c_master.vhd. Usage:

> do wave_i2c_master.do
> run -all

modules/src/i2c_max1617.h
modules/src/i2c_ltc4260.h
modules/src/i2c_smbus.c (h)
modules/src/avs_i2c_master.c (h) General I2C master control
modules/src/avs_i2c_master_regs.h
modules/src/unb_sensors.c (h) Hides avs_i2c_master.h, provides UniBoard sensor read out and fan

control via functions. The NIOS /apps/unb_sens_main/main.c
application gives an example of how unb_sensors.h is used

Table 14: Application I2C master VHDL and C code for on the NIOS embedded processor

4.1.8 Application mms_i2c_commander

File Decription
i2c/src/vhdl/i2c_commander_pkg.vhd
i2c/src/vhdl/i2c_commander_unb_pkg.vhd I2C commander register settings for ADU control
i2c/src/vhdl/i2c_dev_unb_pkg.vhd Protocol lists and expected results for UniBoard I2C slaves
i2c/src/vhdl/i2c_commander_aduh_pkg.vhd I2C commander register settings for ADU control
i2c/src/vhdl/i2c_dev_adu_pkg.vhd Protocol lists and expected results for ADU board I2C slaves
i2c/src/vhdl/i2c_commander_ctrl.vhd
i2c/src/vhdl/i2c_commander_reg.vhd
i2c/src/vhdl/i2c_commander.vhd See Figure 4

i2c/tb/vhdl/tb_i2c_commander.vhd Self checking test bench for i2c_commander.vhd. Usage:

> do wave_i2c_commander.do
> run -all

adu_protocol_ram_init.hex (txt, mif) u_ram_protocol init file derived from
i2c_commander_aduh_pkg.vhd (see section 4.1.9)

unb_protocol_ram_init.hex (txt, mif) u_ram_protocol init file derived from
i2c_commander_unb_pkg.vhd (see section 4.1.9)

pi_adu_i2c_commander.py Python peripheral class for ADU I2C commander
tc_pi_adu_i2c_commander.py Demo test case for pi_adu_i2c_commander.py
util_adu_i2c_commander.py Utility script for using pi_adu_i2c_commander.py

Table 15: Application I2C commander VHDL code, RAM initialization files and Python code

4.1.9 How to create the I2C commander *_protocol_ram_init.hex file for the u_protocol_ram:

Text copied from Lofar/i2c/tb/data/ how_to_create_memory_init_hex_file.txt:

Doc.nr.: ASTRON-RP-329
Rev.: 2.0
Date: 29 Feb 2012

 UniBoard
Class.: Public

17 / 19

1) Run the tb_i2c_commander simulation to create the protocol_ram_init.txt file

2) Manual conversion steps
 a) In an editor determine number of bytes in protocol_ram_init, e.g. 5120 (the
 tb_i2c_commander uses a size that is a factor of 1024, i.e. in steps of 1
 M9K = 1 kByte)
 b) In Quartus use File-open of an existing *.mif file. Now the edit menu offers
 fields to change the *.mif file (the default edit menu does not show the
 fields for memory file manipulation).
 - in the Memory Size Wizard set width to 8 bits and size to 5120
 - via Custom Fill Cells fill address 0 to 13FF (=5119) with incrementing
 values
 - save as: protocol_ram_init.mif
 c) Open protocol_ram_init.mif in an editor and use column edit to replace the
 incrementing values with the values from protocol_ram_init.txt. Then save:
 ../../../tb/data/protocol_ram_init.mif
 d) Open protocol_ram_init.mif in Quartus and save it as:
 ../../../tb/data/protocol_ram_init.hex

3) Commit the files:
 . protocol_ram_init.txt
 . protocol_ram_init.mif
 . protocol_ram_init.hex

Doc.nr.: ASTRON-RP-329
Rev.: 2.0
Date: 29 Feb 2012

 UniBoard
Class.: Public

18 / 19

4.2 Known issues

The I2C master module on LOFAR RSP and EMBRACE ECB and the I2C slave on the LOFAR RCUs are
working reliably in practise. However there have been several issues.

4.2.1 Clk rate and bit rate
LOFAR bug 575. Both the master and slave sample the SDA at the rising edge of SCL. The SDA setup time
is (1+clk_cnt)*clk-period and the hold time is 4*(1+clk_cnt)*clk-period, where clk-period = 5 ns and clk_cnt =
399 for 200 MHz to get SCL clock rate of 1/(5*(1+clk_cnt)*clk-period) = 100 kbps. The setup and hold times
are OK, so the I2C master is robust. The master also allows clock stretching by the slave (provided
parameter clk_cnt >= 2).

4.2.2 Bus arbitration
LOFAR bug 575. The bus arbitration logic in i2c_bit.vhd has been commented. This quick fix targets the
problem of ocillating SDA line (looks like start every 4 I2C clk en cycles). Probably the issue is more severe if
the difference between clk rate and bit rate is high, causing the SDA line to be sampled to soon by the I2C
master, thereby mistaking its own activity for a collision. During an access SDA is sometimes not driven by
neither the master nor the slave, causing the SDA to go briefly high while SCL = '0'.

4.2.3 Ringing on SCL and SDA edges
LOFAR bug 1111. On LOFAR RSP the SCL showed undershoot for larger FPGA drive strengths. Once it
was observed that an SDA ack from the LOFAR RCU slave went high some 450 ns after the rising edge of
SCL. The slave should release SDA after the falling edge. Hence apparently the RCU slave logic had
recognized a falling edge in during the rising edge of SDA. There is indeed some ringing on the (slow) rising
edge of SDA.. Sometimes the slave gives its ack one cylce too early, this can be seen e.g. when the last
write bit is a 1, while on the line it is a 0 (due to the ack). This can be explained by an extra false SCL edge.
The RCU slave release SDA on the falling edge of SCL. If timing is awkward, then SDA going high due to
SCL going low could perhaps still be recognized as an I2C stop by the slave. Similar for I2C start. Using a
stronger pull up 2k7 on the RCU instead of 10k gave a big improvement. In addition the RCU firmware has
been adapted. The SCL and SDA are now first clocked in and filtered by the system clock. This avoids the
potential false edge detections and it gives some more hold time of SDA after SCL falling edge.

4.2.4 Comma logic
LOFAR bug 995. The LOFAR HBA client I2C handler on the LOFAR RCU is implemented in software. It
requires that an idle comma is inserted between octets. A comma of 1 msec is sufficient. Probably also after
start a comma should be inserted, since I2C start (and restart) can also cause a slave interrupt. The I2C
master already supports clock stretching, but this is not sufficient for the HBA client I2C slave, because it only
can stretch the clk low for a read bytes access. Therefore comma logic was implemented in
i2c_smbus(rtl).vhd.

4.2.5 Sometimes access to LOFAR TDS fails
LOFAR bug 1242. Programming the LOFAR TDS PLL requires several 100 I2C accesses to the IO expander
on TDS, because it uses bit-banging to program the PLL via SPI. About once every 5 runs the test fails, the
protocol result buffer then shows that an I2C write access did not get an ACK. This is still an open issue, but
with low priority.

Doc.nr.: ASTRON-RP-329
Rev.: 2.0
Date: 29 Feb 2012

 UniBoard
Class.: Public

19 / 19

4.3 I2C access example

This example shows how to configure and read the MAX6652 [8] I2C sensor. To ensure that the I2C access
results are fresh it is useful to first overwrite the protocol results register with some arbitrary data. To access
the I2C sensor write the sequence from Table 16 to the protocol list register.

Octet Value Description
0 0x06 PROTOCOL_WRITE_BYTE
1 0x14 ADDR = I2C address of MAX6652 connected to ground
2 0x40 CMD = Access MAX6652 config register
3 0x11 DATA = Enable config_start and config_line_freq_sel
4 0x07 PROTOCOL_READ_BYTE
5 0x14 ADDR
6 0x20 CMD = Read voltage measured at the MAX6652 2v5 input
7 0x07 PROTOCOL_READ_BYTE
8 0x14 ADDR
9 0x22 CMD = Read voltage measured at the MAX6652 3v3 input
10 0x07 PROTOCOL_READ_BYTE
11 0x14 ADDR
12 0x21 CMD = Read voltage measured at the MAX6652 12v input
13 0x07 PROTOCOL_READ_BYTE
14 0x14 ADDR
15 0x23 CMD = Read voltage measured at the MAX6652 vcc input
16 0x07 PROTOCOL_READ_BYTE
17 0x14 ADDR
18 0x27 CMD = Read the measured temperature
19 0x13 PROTOCOL_C_END

Table 16 Protocol list example

The protocol list execution starts after an activation pulse. A few ms later the result will be available in the
protocol result register. The actual latency depends on the I2C bit rate, which is set e.g. to 50 kbps. The
expected protocol result for the protocol list of Table 16 is shown in Table 17.

Octet Value Description
0 0 0 = PROTOCOL_WRITE_BYTE went OK
1 # Value of 2v5
2 0 0 = PROTOCOL_READ_BYTE done
3 # Value of 3v3
4 0 0 = PROTOCOL_READ_BYTE done
5 # Value of 12v
6 0 0 = PROTOCOL_READ_BYTE done
7 # Value of vcc
8 0 0 = PROTOCOL_READ_BYTE done
9 # Value of temperature
10 0 0 = PROTOCOL_READ_BYTE done
11 0 0 = PROTOCOL_C_END done

Table 17 Expected protocol result example

Octet 0 in Table 17 will read 1 if the I2C slave did not give an ACK (pull up), same for octets 2, 4, 6, 8 and 10.
Similar octets 1, 3, 5, 7 and 9 will read 0xFF (pull up) when the I2C slave is not connected.

