
A
S

T
R

O
N

-F
O

-0
1

7
2.

0

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

1 / 50

 ADU Handler Module Description

 Organisatie / Organization Datum / Date

 Auteur(s) / Author(s):

Eric Kooistra ASTRON

Controle / Checked:

Gijs Schoonderbeek ASTRON

Goedkeuring / Approval:

Andre Gunst ASTRON

Autorisatie / Authorisation:

Handtekening / Signature
Andre Gunst

ASTRON

© ASTRON 2012
All rights are reserved. Reproduction in whole or in part is
prohibited without written consent of the copyright owner.

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

2 / 50

Distribution list:

Group: Others:

Andre Gunst (AG, ASTRON)
Gijs Schoonderbeek (GS, ASTRON)
Eric Kooistra (EK, ASTRON)
Daniel van der Schuur (DS, ASTRON)
Harm-Jan Pepping (HJP, ASTRON)

Document history:

Revision Date Author Modification / Change

0.1 2012-04-05 Eric Kooistra Draft.

0.2 2013-02-1 Eric Kooistra

Improved the current solution of the ADUH for receiving the
sampled data and discussed alternative solutions.
Added overview of the Apertif subrack.
Added description of the measurement set up.
Added measurement results of the ADUH with the bn_capture
design in the UniBoard back nodes in the Apertif subrack with
64 signal paths.

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

3 / 50

Table of contents:

1 Introduction .. 6

1.1 Purpose .. 6
1.2 Scope .. 6
1.3 Summary .. 6

1.3.1 ADUH firmware ... 6
1.3.2 Measurement setup .. 6
1.3.3 Correct data and stable timing .. 6
1.3.4 Data results ... 7
1.3.5 Timing results ... 7

2 Data input and timing between ADU and BN .. 8

2.1 System overview... 8
2.2 Problem statement ... 9
2.3 Measurement setup .. 9

2.3.1 Hardware .. 9
2.3.2 Software .. 12

2.3.2.1 CW statistics ... 12
2.3.2.2 Data bit error detection using BIST .. 13
2.3.2.3 Data noise measurements .. 13
2.3.2.4 Timing statistics .. 18

2.4 Current solution .. 20
2.4.1 Hardware aspects ... 20

2.4.1.1 Correct data .. 20
2.4.1.2 Correct timing ... 20

2.4.2 Firmware aspects ... 20
2.4.2.1 Correct data .. 20
2.4.2.2 Correct timing ... 20

2.4.3 Implementation ... 21
2.4.3.1 Using IOE registers... 21
2.4.3.2 Using IOE delay settings .. 21
2.4.3.3 Using PLL and clock tree .. 21
2.4.3.4 Correct data .. 21
2.4.3.5 Correct timing ... 22
2.4.3.6 Synthesis .. 24

2.4.4 Validation .. 25
2.4.4.1 Correct data .. 25
2.4.4.2 Correct timing ... 28

2.5 Alternative solutions ... 32
2.5.1 Hardware aspects ... 32
2.5.2 Firmware aspects ... 32

3 MMS_ADUH_QUAD ... 34

3.1 ADUH_QUAD ... 34
3.2 ADUH_QUAD_REG ... 34
3.3 Verification .. 35

4 ADUH_DD - ADC data receiver .. 36

4.1 ADUH_DD .. 36
4.1.1 Hardware interface ... 36
4.1.2 Design ... 37
4.1.3 Implementation ... 38

4.2 LVDSH_DD ... 39
4.2.1 Design ... 39
4.2.2 Verifcation ... 39

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

4 / 50

4.3 ADUH_PLL ... 39
4.4 LVDSH_PLL ... 39

5 ADUH_VERIFY - ADC test pattern verification ... 40

5.1 Hardware interface ... 40
5.2 Design ... 40
5.3 Implementation ... 41
5.4 Verifcation ... 41
5.5 Validation .. 41

6 MMS_ADUH_MONITOR ... 42

6.1 ADUH_MONITOR .. 42
6.2 ADUH_MONITOR_REG ... 42

7 Appendix : Data value measurement results using the BIST .. 44

8 Appendix : Data timing measurement results using a CW .. 46

8.1 SP 0, 1, 2, 3 .. 46
8.2 SP 0, 1, 4, 5, 8, 9, 12, 13 .. 47
8.3 SP 0, 2, 16, 18, 32, 34, 48, 50 .. 49

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

5 / 50

Terminology:

ADC Analogue Digital Converter
ADU Analogue Digital Unit [2]
ADUH ADU Handler firmware module
ADUH_DD ADUH that uses DDIO input and no PLL to receive the samples
ADUH_PLL ADUH that uses LVDS Rx with a PLL to receive the samples
ALM Adaptive Logic Module (1 ALM in Stratix IV FPGA contains 20 FF)
BN Back Node
CDR Clock Data Recovery
CW Carrier Wave
dclk Digital clock (400 MHz double data rate clock from the ADC)
dp_clk Data path clock (200 MHz data path processing clock)
DDIO Double Data rate IO
DDR Double Data Rate
DP Data Path
FF Flip Flop
FIFO First In First Out
HDL Hardware Description Language
IO Input Output
IOE IO Element
LCU Local Control Unit
LSBit Least Significant bit
LVDS Low Voltage Differential Signalling
MM Memory Mapped
MSBit Most Significant bit
PAC Power And Clock board
PLL Phase Locked Loop
RF Radio Frequency
sclk Sample clock (800 MHz sample clock for the ADC)
SDR Single Data Rate
SISO Source in Sink Out
SNR Signal Noise Ratio
SOSI Source Out Sink In
TB Test Bench
UNB UniBoard
Wi Word index

References:

1. “Detailed Design of the Digital Beamformer System for Apertif”, ASTRON-RP-413, G. Schoonderbeek,

A. Gunst, E. Kooistra
2. “ADU Board Design”, ASTRON-RP-399, G. Schoonderbeek
3. “PAC Hardware Design Document”, ASTRON-RP-453, G. Schoonderbeek
4. “BN Capture Design Description”, ASTRON-RP-498, E. Kooistra, D. van der Schuur
5. “Specification for module interfaces using VHDL records”, ASTRON-RP-380, E. Kooistra
6. “PPS Handler Module Description”, ASTRON-RP-1374, E. Kooistra
7. “I2C SMBUS Module Description”, ASTRON-RP-329, E. Kooistra
8. UNB = https://svn.astron.nl/UniBoard_FP7/UniBoard/trunk/
9. UPE = $UNB/Software/python, UniBoard Python Environment, see $UPE/README.txt

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

6 / 50

1 Introduction

1.1 Purpose

This document describes the ADU Handler firmware module that contains VHDL components for receiving
the ADC samples on the UniBoard back node (BN) from the Analogue Digital Unit (ADU) [2] that is used for
Apertif [1]. The ADUH module also contains other VHDL components for verifying and monitoring the
samples. The ADUH module is located at $UNB/Firmware/modules/aduh [8].

1.2 Scope

The ADUH measurements with the bn_capture design have been done at 800 MSps for all 16 BN in an
Apertif subrack. The measurements have only been done for certain temperatures of the ADC and the BN.
The timing margins for correct sample data clocking and sample timing synchronization are sufficiently large
though to expect that the ADUH will work reliably over the wider range of operational temperatures and also
for higher sample rates (up to 1.6 Gbps, see section 2.4.4). The ADUH module can also be used for
interfacing to other ADC boards that use the BN LVDS interface of Uniboard.

1.3 Summary

1.3.1 ADUH firmware

The ADUH module provides components for clocking in ADC samples via the BN LVDS inputs with correct
data and stable timing. De ADUH firmware is described in sections 3, 4, 5 and 6. The ADUH is validated
using the bn_capture design on the 16 BN of an Apertif subrack (Figure 1).

1.3.2 Measurement setup

The measurement setup consists of the Apertif subrack (section 2.3.1) and a set of Python scripts that can
interface with the memory mapped (MM) peripherals on UniBoard and analyse the results (section 2.3.2).
The Python scripts are located at $UPE [9].

1.3.3 Correct data and stable timing

The stable sample timing solution (section 2.4) assumes that all UniBoard back nodes (BN) can use the
same settings that are defined at synthesis. Therefore the solution relies on matched latencies for the
distribution of the clock, pps and data from the central source to each BN. For the data the central source is
a common RF source. For the timing the central source is a 10 MHz reference. On the BN the solution relies
on using IOE registers (Figure 21) and PLLs, on the synchronous behaviour of clock trees in an FPGA and
on the common_acapture instances with a small logic lock region (Figure 23) to have a stable data delay
between two internal clock domains.

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

7 / 50

1.3.4 Data results

The sample data measurements showed that for all 64 signal paths (SP) in the Apertif subrack no sample
data bit errors occurred on the ADU-BN interfaces (section 2.4.2.1 and appendix 7).

1.3.5 Timing results

The sample timing was measured for a subset of SP (section 2.3.1). The timing measurements (section
2.4.4.2) resulted in an optimum set of IOE delays and PLL phase settings of Table 2. The timing
measurements showed that still occasionally a timing offset did occur (none for some SP and less than once
in every 100 restarts for some other SP, see section 2.3.2.4 and appendix 8). The timing offsets or rare.
Therefore if still necessary then investigating them further can be done when the clk traces to the BN0:3 on
UniBoard have been matched as well (Figure 28).

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

8 / 50

2 Data input and timing between ADU and BN

2.1 System overview

Figure 1 shows a block diagram of the Apertif subrack that can input and process 64 analogue signal paths
(SP). The analogue input signals are sampled by 8 analogue to digital units (ADU) and digital processed by
16 back nodes (BN) on 4 UniBoards (UNB). The 800 MHz sample clock (sclk) and 200 MHz digital
processing clock (clk) are generated on the power and clock (PAC) board [3] by a PLL that is locked to an
external reference 10 MHz clock. The 800 MHz sample clock (sclk) is used as a single data rate (SDR)
clock. On the LVDS interface between ADU and BN the 8 bit samples arrive as double data rate (DDR) data
together with a 400 MHz clock (dclk) that is divided from the 800 MHz sample clock by the ADC. The
external timestamp reference is provided by a PPS pulse that is also locked to the 10 MHz. The interconnect
between the 1 PAC, 4 UNB and 8 ADU is carried via a backplane PCB.

PAC
10M PLL

pps

pps

200M

800M

UNB 0
FN 0 BN 0

AB
CD

0,1

ADU0 ADU1

2,3

4,5

6,7

0,1

2,3

4,5

6,7

UNB 1 ADU2 ADU3

UNB 2 ADU4 ADU5

UNB 3 ADU6 ADU7

SP

0,1
2,3

4,5
6,7

8,9
10,11

12,13
14,15

62,63

...

16,17

Apertif subrack

clk sclk

FN 1 BN 1
AB
CD

FN 2 BN 2
AB
CD

FN 3 BN 3
AB
CD

dclk = 400M, sample[7:0]
dclk_rst

Figure 1: Apertif subrack for 64 analogue signal paths (SP)

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

9 / 50

2.2 Problem statement

The ADU Handler (ADUH) firmware is instantiated in each BN and can handle the interfacing of 4 signal
paths from two ADU. Signal paths [A, B] from ADU [0] and signal paths [C, D] from ADU [1]. The ADU
Handler has to receive the 800 MHz ADC samples across the LVDS interface between ADC and BN and
capture them in the 200 MHz data path processing clock domain. It has to do this without data errors and
with a fixed phase for the division from the 800 MHz clock to the 200 MHz clock. Inside the BN the ADUH
outputs 4 ADC samples in parallel so packed per 32 bit word. The fixed phase for 1/4 clock division
corresponds to a fixed phase for the 4x parallelization of the samples into data words.

The BN cannot process the samples directly at 800 MHz and even processing at 400 MHz makes it difficult
to achieve timing closure on the FPGA logic. Therefore the BN dp_clk runs at 200 MHz and has to process 4
ADC samples in parallel. The sclk  dclk divide by 2 divider phase needs to be fixed because otherwise the
samples from one ADU may be taken as data word [s0,s1,s2,s3] at timestamp 0 while for another ADU the
data word at timestamp 0 can be shifted 1 sample e.g. [s1,s2,s3,s4]. Similar the dclk  dp_clk divide by 2
divider phase uncertainty can cause 2 samples shift uncertainty between two different BN - ADU interfaces.

The PPS also needs to be clocked into the dp_clk domain, because it is used to synchronize the start of the
block sequence number (BSN) timestamp between the different BN. This capturing of the PPS is done by
the PPS handler firmware module that is described in [6]. If the PPS is not clocked in at the same dp_clk
cycle in all nodes then this shows as a 4 sample shift between two different BN - ADU interfaces.

2.3 Measurement setup

2.3.1 Hardware

Figure 2 shows the back side of the Apertif subrack where the 64 analogue SP can be applied to the 8 ADU.
The ADU boards are numbered from 0 at the right to 7 at the left.

Figure 2: Photo of the back side of the Apertif subrack with 8 ADU

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

10 / 50

Figure 3 shows how the signal paths (SP) are numbered. For the BIST test pattern data measurements
across the ADU-BN interface all 64 SP were measured. For the timing synchronization only the signal paths
(SP) marked in gray in Figure 3 were measured. The top row of connectors connects from right to left to SP
0, 2, 16, 18, 32, 34, 48 and 50. The right column of connectors connects from top to bottom connects to SP
0, 1, 4, 5, 8, 9, 12, and 13. SP 3 is to include all SP of BN 0. This subset of SP covers all SP regarding
location in the subrack and location on UniBoard. The RF signal splitter on top of the subrack in Figure 2
connects to the subset of SP that are marked in gray. The other SP were not measured for their analogue
input because the RF splitter is not large enough and because they are expected to show similar behavior
regarding the timing synchronization. The RF signal is an analogue CW that is generated by the signal
generator that is visible at the right in Figure 2. All BN0:15 run the bn_capture firmware design [4].

Figure 3: Numbering of the SP on the back side of the Apertif subrack

Figure 4 shows the front side of the Apertif subrack with the PAC board in the middle an UniBoard 0, 1, 2
and 3 from left to right. The 10 MHz reference signal and PPS signal come from a FS725 Rubidium
Frequency Standard that is visible in Figure 4 just below the subrack. The 10 MHz signal is also use to lock
the RF signal generator so that the generated waveform is in lock with the clocks in the subrack.

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

11 / 50

Figure 4: Photo of the front side of the Apertif subrack with PAC and 4 UNB

The RF signal generator is set to 700 MHz. After sampling at 800 MHz the captured signal appears as a 100
MHz sinus due to the under sampling as shown in Figure 5.

Figure 5: RF sinus captured in ADUH monitor buffer via SP 0

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

12 / 50

Figure 5 was obtained with Python script tc_bn_capture_adc_plot.py and shows the first 16 samples of the
SP signals that are stored into the ADUH monitor buffer at every internal sync pulse. The internal sync pulse
period is programmable to e.g. 200 M clock cycles. The periodic sync pulse is initiated at an external PPS
pulse, so that the sync pulse in all nodes are aligned. The RF generator and the subrack clocks are locked to
the external 10 MHz so therefore the view of is stable in time not only when ADU is kept in normal mode, but
also when it is restarted in normal mode.

The ADCs on ADU can be configured via an I2C bus that is driven by the BN. The firmware supports some
predefined I2C sequence that can be transferred using i2c_commander component [7]. The
Software/python/peripherals/pi_adu_i2c_commander.py Python peripheral script provides methods for
accessing the ADU via I2C and the util_adu_i2c_commander.py provides usage examples. For the
measurements the ADC are set in test pattern mode to be able to run the BIST or in normal mode to be able
to sample the analogue input signal.

The subrack is controlled by a Local Control Unit (LCU) via 1GbE. The LCU is a rack PC that is mounted
below the subrack in Figure 4. The 1GbE switches on each UniBoard are used to interconnect all 4 UniBoard
to the LCU. The FPGA images can be programmed via an USB blaster that connects to PAC (also shown in
Figure 4) or the images can be stored in the flash and loaded into the FPGAs from there.

2.3.2 Software

Table 1 lists the scripts that are used for evaluating the ADUH in the bn_capture design. These scripts can in
fact run with any design that has the node_bn_capture component instantiated. The ADUH in the
node_bn_capture provides a set of memory mapped (MM) registers that can be controlled and monitored.

Python script Description
apps/adu_tests/tc_bn_capture_adc_plot.py Capture the ADC data for all signal paths
base/ADC_functions.py Methods for calculating the timing statistics of the measured

RF sinus.
bn_capture/tc_bn_capture_adc_bist.py Set up and monitor the BIST for the ADC test pattern

Table 1: Python scripts for evaluating the ADUH with bn_capture

2.3.2.1 CW statistics

The assumption is that the analogue input is a CW signal with known period and that is locked to the sample
clock. The zero-crossing of the measured CW in Figure 5 reveals the timing of the SP. The timing is
synchronous for all SP if this zero-crossing occurs at the same time for all SP for every restart of the ADU (or
power up of the subrack). There may be an offset between SP as long as this offset remains fixed. The zero-
crossing instant can be observed manually but for intensive tests with >> 10 ADU restarts and multiple SP it
is necessary to automate the measurement. Therefore tc_bn_capture_adc_plot.py uses the method
add_clock_cw_statistics() in base/ADC_functions.py to estimate the DC offset, phase φ and amplitude A of
the captured CW. Furthermore the base/ADC_functions.py has methods to log and plot the various CW
estimates.

The ADC samples are captured into the ADU Handler data buffer that can store 1024 samples per signal
path. The buffering starts at the internal sosi.sync pulse [5] that is synchronous to the external PPS [6]. At
CW frequency of 100 MHz the period T=8 samples so the ADUH monitor buffer can then store exactly 128
periods. First the DC level of the measured signal is determined and subtracted. Then the CW(t) samples are
multiplied by a reference I(t) = sin(ωt) and Q(t) = cos(ωt), where ω=2π/T. Integrating the products yields two
equations that solve phase φ and amplitude A. The zero-crossing of the RF sinus in Figure 5 occurs at about
sample phase φ = 4.3. The statistics of φ for every time that the ADC on ADU is reprogrammed (restarted)
into normal mode now reveal the stability of the timing distribution in the subrack. If for some ADU restarts
there occur steps in φ of 1, 2, 3 or 4 sample times then these steps indicate synchronisation issues with
respectively the dclk_rst, the FIFO reset, both dclk_rst and FIFO reset, or with the PPS. When the zero-
crossings do not jump one or more integer sample periods then this means that the sclk  dclk  dp_clk

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

13 / 50

dividers divide with fixed phase relative to the dp_clk and that the PPS has started the sync at the same
dp_clk cycle in all BN.

With the estimated the DC level, phase φ and amplitude A of the captured RF wave the noise level can be
estimated by subtracting the estimated CW from the measured CW. This yields the noise signal N(t). Any
large peaks in the noise sample values indicate bit errors. For the noise signal N(t) the noise power
noisePower is calculated. The power of a full-scale CW is cwPower = A2/2 where A = 127.5 for the 8-bit
ADC. The estimated SNR = 10 * log10(cwPower / noisePower). The theoretical SNR for an 8 bit ADC is 6.02
* 8 bit + 1.76 = 50 dB.

2.3.2.2 Data bit error detection using BIST

The ADC  BN LVDS data interface is validated for bit errors by checking that the received data matches
exactly the test pattern that the ADC outputs in test mode (using tc_bn_capture_adc_bist.py). The BIST test
can run for hours or days, because it is evaluated continuously in aduh_verify.

2.3.2.3 Data noise measurements

The CW measurements input (using tc_bn_capture_adc_plot.py) show that the noise peak values remained
within < 2 units for all measurements and on average the noise peak values were about 1.3 units. This
implies that no bit errors occurred for bit [6:1] and probably no bit errors occurred for bit [0]. Bit [7] was not
covered, because with 13 dBm RF signal level at the input of the RF 1:32 splitter the amplitude of the
measured CW was about 51 units (see Figure 5). The measured SNR were between about 45 and 53 dB
across all SP. The noise level test can only measure the sampled data for the 1024 samples that are
captured in the ADUH monitor buffer, so it is only nice to have compared to the BIST.

The following figures show the measured DC levels, amplitudes, noise peaks and SNR results for SP that
are marked in gray in Figure 3. The results are plotted for 3000 ADU restarts using a bn_capture image that
included the DDR3 logic and used the settings of Table 2. The results were obtained by means of running:

> python apps/adu_tests/tc_bn_capture_adc_plot.py --unb 0 --bn 0 --sp 0,1,2,3 --rep 3000 -v 3 -s <bn0>
> python apps/adu_tests/tc_bn_capture_adc_plot.py --unb 0 --bn 0:3 --sp 0,1 --rep 3000 -v 3 –s <column>
> python apps/adu_tests/tc_bn_capture_adc_plot.py --unb 0:3 --bn 0 --sp 0,2 --rep 3000 -v 3 -s <row>

Note that SP-0 is included in all three runs, so it gets tested 9000 times. The detailed log results that
correspond to the plots are listed in appendix 8.

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

14 / 50

Figure 6: clock_cw_dcs_ch_0_1_2_3_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0

Figure 7: clock_cw_dcs_ch_0_1_4_5_8_9_12_13_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0

Figure 8: clock_cw_dcs_ch_0_2_16_18_32_34_48_50_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

15 / 50

Figure 9: clock_cw_amplitudes_ch_0_1_2_3_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0

Figure 10:
clock_cw_amplitudes_ch_0_1_4_5_8_9_12_13_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0

Figure 11:
clock_cw_amplitudes_ch_0_2_16_18_32_34_48_50_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

16 / 50

Figure 12: clock_cw_noise_peaks_ch_0_1_2_3_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0

Figure 13:
clock_cw_noise_peaks_ch_0_1_4_5_8_9_12_13_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0

Figure 14:
clock_cw_noise_peaks_ch_0_2_16_18_32_34_48_50_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

17 / 50

Figure 15: clock_cw_snrs_ch_0_1_2_3_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0

Figure 16: clock_cw_snrs_ch_0_1_4_5_8_9_12_13_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0

Figure 17: clock_cw_snrs_ch_0_2_16_18_32_34_48_50_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

18 / 50

2.3.2.4 Timing statistics

The following figures show the phase estimates for 3000 restarts of ADU. The phase of SP 0 ≈ 4.32 for all
runs, similar as in Figure 5. The phases of the other SP differ compared to the phase SP 0 but are almost
constant too as they should be.

From Figure 19 and Figure 20 and the details in appendix 8.2 and 8.3 it shows that for SP 0,2 on BN0, SP
4,5 on BN1, and SP 12,13 on BN3 a few times a 4 sample timing offset occurred. It is unclear why these
timing offsets occur. It is unlikely that they are due to the PPS-dp_clk synchronization. From Figure 27 it is
expected that also with PPS input delay D3=0 the PPS is clocked in stable with almost maximum timing
margin with respect to the rising edge of the dp_clk.

In another test using the same settings for bn_capture, but now without DDR3 logic. The phase of SP 0 ≈
4.32 so this shows that the timing was independent of the amount of other logic in the bn_capture design.
The other results were that in 17500 restarts SP 12,13 showed four times a 4 sample timing offset and two
times a 2 sample timing offset. All other SP then showed no timing offsets.

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

19 / 50

Figure 18: clock_cw_phases_ch_0_1_2_3_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0

Figure 19: clock_cw_phases_ch_0_1_4_5_8_9_12_13_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0

Figure 20:
clock_cw_phases_ch_0_2_16_18_32_34_48_50_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

20 / 50

2.4 Current solution

2.4.1 Hardware aspects

2.4.1.1 Correct data

The ADC outputs the sample data to the BN together with a 400 MHz dclk clock. The BN can use this dclk to
reliably clock in the sample data into the FPGA.

2.4.1.2 Correct timing

The clock distribution traces, the pps traces and the sample data traces on the boards and on the backplane
are all matched in length to ensure that at each BN corresponding signals arrive at the same global time
(within a margin that is sufficiently small compared to the sample clock period of 1250 ps). In this way the
same firmware image can run on all BN.

The phase of the divide by 2 clock divider in the ADC on ADU that output the 400 MHz dclk can be reset to
have a using the dclk_rst signal from the 200 MHz dp_clk domain on the BN FPGA to the 800 MHz sclk
sample clock domain on ADU.

2.4.2 Firmware aspects

2.4.2.1 Correct data

The current mms_aduh_quad VHDL module described in section 3 uses the aduh_dd component that relies
on using the input delay elements D1, D2, and D3 in the IOE at the FPGA pin to ensure that the ADC data is
stable when it is clocked in. The aduh_dd component uses two lvdsh_dd components to receive the data
from two ADUs. See Figure 31 and Figure 32 for a block diagram of the aduh_dd and lvdsh_dd components.

2.4.2.2 Correct timing

The phase of the 800M sclk sample clock  400 MHz dclk clock divider in the ADC can be set reliably using
the dclk_rst signal. The clock divider in the ADC will start at a random phase, causing 0 or 1 sclk clock cycle
phase uncertainty in the starting phase of the dclk. This then shows as a 0 or 1 sample offset between the
inputs from two different ADCs. The starting phase of the clock divider in the ADC can be set with a pulse
from the 200 MHz dp_clk clock domain onto the dclk_rst BN output to ADC input pin. In the VHDL the 200
MHz clock domain is referred to as the dp_clk (DP = Data Path) clock domain.

The clock division from the 400 MHz dclk domain to the 200 MHz dp_clk domain is taken care of using a
mixed width FIFO (see Figure 32). While the dclk_rst pulse is issued, the FIFO in the BN that transfers the
data from the 400 MHz dclk domain to the 200 MHz dp_clk domain is reset as well. This causes the FIFO to
become empty. This FIFO is a mixed width FIFO, which means that for every two 16 bit words that are
written there can be read one 32 bit word. The 400 MHz dclk writes the sample for two SP input streams in
parallel and the 200 MHz dp_clk reads them out with two samples for these two SP input streams in parallel.

During the dclk_rst pulse the dclk stops and after the dclk_rst release the dclk starts again, but then with a
defined divider phase. The FIFO was empty so the first data that is then written by the dclk is also the first 16
bit word in the FIFO, therefore the phase of the 400 MHz dclk to the 200 MHz dp_clk is thereby then also
defined. In summary:

1. The dclk_rst pulse resets the phase of the 800M sample sclk  400M dclk divider with respect to the

dp_clk
2. The FIFO reset resets the phase of the 400M dclk  200M dp_clk division with respect to the dp_clk

The 800 MHz sclk sample clock and the 200 MHz dp_clk are in lock thanks to the Power and Clock (PAC)
board, see Figure 1. This implies that during normal operation the FIFO can not overflow or run empty. The
common_fifo_dc_lock_control component in Figure 32 lets the FIFO get filled to a certain level and from then
on it enables the reading of the FIFO. As long as the filling level of the FIFO remains the same then that is

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

21 / 50

reported as ADUH-locked, see section 3.2. When the FIFO does run empty (or overflows) then there is
something wrong between the dclk and the dp_clk and this then gets reported as ADUH-not-locked. The
common_fifo_dc_lock_control continuously tries to regain lock by restarting again.

The fact that the 800 MHz sclk sample clock and the 200 MHz dp_clk are in lock also implies that the
dclk_rst pulse can be passed on reliably from the 200 MHz dp_clk domain into the 800 MHz sclk sample
clock domain, provided that the dclk_rst signal has sufficient setup and hold margin with respect to the rising
edge of the 800 MHz sclk sample clock near the ADC on ADU.

2.4.3 Implementation

2.4.3.1 Using IOE registers

The IOE registers are close to the pin so by using these registers e.g. via DDIO the IO timing is guaranteed
to be the same independent of how much logic the rest of the design has.

2.4.3.2 Using IOE delay settings

If possible the IOE delay values should be chosen as close to 0 as possible, because then any temperature
or chip process dependency of the delay setting has the least impact.

If possible it is better to delay a clock than to delay a data bus, because there will be a mismatch between
the delay elements of the individual data lines.

It seems not possible to control the IOE delay elements dynamically via the MM interface, because not all IO
pins used for the BN-ADU LVDS interface support the configuration clock that is needed for that. Therefore
the IOE delay settings are fixed after synthesis.

With aduh_dd_top.vhd and aduh_dd.sdc it was found that the IOE input delay elements can be invoked
using ‘set_input_delay’ in the SDC file. However it seems not possible to invoke the IOE output delay
elements using ‘set_output_delay’. Instead these output delays can directly be set by via a pin assignment in
the pinning TCL file. Using pin assignmentsto set the IOE delays is easier than to use timing constrains,
therefore all IOE delays are set via the pinning TCL files.

2.4.3.3 Using PLL and clock tree

The PLL in ctrl_unb_common is used in “NORMAL” mode and ensures that the dp_clk inside the FPGA has
a fixed phase offset (delay) with respect to the 200 MHz clock that arrives at the FPGA pin. The clock tree
distribution network in the FPGA guarantees that the dp_clk arrives at every flip flop (FF) with that same
delay.

Using a PLL to adjust the output phase of a clock is preferred over using IOE delays, because the PLL
phase setting is independent of temperature and chip process variations.

2.4.3.4 Correct data

Figure 21 shows the IOE for the sample data input in the BN FPGA. The D3 input delay element is used for
each data bit to delay the data with respect to the dclk. The dclk itself cannot be delayed, because it is a
global clock and the place and route then gives an error, therefore the data bus needs to be delayed instead.
The D3 can be set per sample input pin. For example as done in
$UNB\designs\unb_common\src\tcl\BACK_NODE_adc_pins.tcl:

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

22 / 50

set_instance_assignment -name D1_DELAY 0 -to ADC_BI_A[0]
set_instance_assignment -name D2_DELAY 0 -to ADC_BI_A[0]
set_instance_assignment -name D3_DELAY 2 -to ADC_BI_A[0]

set_instance_assignment -name D1_DELAY 0 -to ADC_BI_C[0]
set_instance_assignment -name D2_DELAY 0 -to ADC_BI_C[0]
set_instance_assignment -name D3_DELAY 3 -to ADC_BI_C[0]

Figure 21: Input for ADC_BI_A[1] using D3 and DDIO

2.4.3.5 Correct timing

For the dclk_rst the requirement is that it must be issued from the 200 MHz dp_clk clock domain. The dp_clk
is driven by a PLL in ctrl_unb_common and its phase can be adjusted such that the timing of dclk_rst suits
the setup and hold requirements of the sclk in at the ADC on ADU. It is not necessary to add another clock
output to this PLL with the appropriate offset phase for dclk_rst, because the rest of the functionality that
uses the dp_clk works fine this phase offset (including the capture of the PPS). Using only one PLL clock
output saves the (power) cost of using an extra clock tree resource in the FPGA. The phase of the dp_clk is
set via g_dp_clk_phase = "156" ps in ctrl_unb_common for 11.25 degrees at 200 MHz.

Figure 22 shows the IOE with the output delay elements D5 and D6 to adjust the dclk_rst signal for the setup
and hold requirements of the sclk in at the ADC on ADU. Both can be set to 0, because the PLL phase offset

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

23 / 50

for the dp_clk already provides sufficient control. The IOE delays can be set for example as done in
$UNB\designs\unb_common\src\tcl\BACK_NODE_adc_pins.tcl:

set_instance_assignment -name D5_DELAY 0 -to ADC_BI_A_CLK_RST
set_instance_assignment -name D5_DELAY 0 -to ADC_BI_D_CLK_RST
set_instance_assignment -name D6_DELAY 0 -to ADC_BI_A_CLK_RST
set_instance_assignment -name D6_DELAY 0 -to ADC_BI_D_CLK_RST

Figure 22: Output for ADC_BI_A_CLK_RST using D5 and DDIO

The timing between the 200 MHz dp_clk and the 400 MHz dclk domain is preserved thanks to the clock tree
distribution network in the FPGA and by ensuring that the setup time for control signals of the mixed width
FIFO is fixed. Therefore the FIFO reset signal is passed through a common_acapture component and the
number of used words vector signal is passed is through a common_acapture_slv component in Figure 32.
Both the common_acapture and the common_acapture_slv fit inside 1 ALM, so by setting a logic-lock region
constraint on these instances ensures that the data trace length between the signal in the dclk write clock
domain and the dp_clk read clock domain is more or less fixed. The logic-lock regions are shown in Figure
23. Thanks to the clock tree network the location of the logic-lock region does not need to be constraint, only
the size. The ALM is the smallest possible logic-lock region and it appears that the data trace within an ALM
delay varies between 386 ps and 458 ps according to the TimeQuest Timing Analyzer, so about 72 ps which
is acceptable compared to the dclk period of 2500 ps. Without the logic-lock region constraint the data trace
length can span across the FPGA and result in several ns delay that then will also depend on the amount of
logic in the rest of the design.

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

24 / 50

Figure 23: Lock regions using common_acapture

The logic-lock regions were set using LogicLock Region Window in the Quartus GUI and then saved into the
TCL script:

$UNB/designs/bn_capture/src/tcl/ bn_capture_logic_lock_regions.tcl

That gets sourced by the node_bn_capture.qip file that included automatically in the bn_capture Quartus
project, because all module QIP and node QIP files get included via:

$UNB/synth/quartus/unb_libraries.qip

2.4.3.6 Synthesis

Each PLL phase setting or IOE delay setting requires a separate FPGA image (i.e. a bn_capture.sof file).
Synthesis of bn_capture without the DDR3 functionality takes about 15 minutes and can be done in a batch
file using unb_qcomp). To be sure that indeed the file change due to a different setting is recognized by
Quartus it is best to overwrite the bn_capture.qsf with the original project file with the original from SVN
before starting a new synthesis.

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

25 / 50

2.4.4 Validation

The validation of the ADUH module with the UniBoard and ADU hardware is done with the bn_capture
design [4].

2.4.4.1 Correct data

The sample data can be clocked in reliably, as demonstrated with the bn_capture design [4] on March 26,
2012. On 10 December 2012 the measurements were repeated using the bn_capture design on all 16 BN in
the Apertif subrack and using the Python script tc_bn_capture_adc_bist.py:

> python apps/bn_capture/tc_bn_capture_adc_bist.py --unb 0:3 --bn 0:3 --sp 0:3 --rep 1 -n 300 -v 3

Figure 24 shows the BIST measurement results for all 64 SP and for 8 different settings of the input delay
D3. One D3 unit ≈ 370 ps. Each BIST measurement was ran for at least 5 minutes and some for 1 hour. The
dots in the table indicate that no sample bit errors occurred, so verify_res[7:0] = 0 (see section 3.2). The
hexadecimal values denote the verify_res[7:0] value when sample bit errors did occur. From the
measurements it follows that D3 = 2 is a proper value for ADU-AB for all BN and D3 = 3 is a proper value for
ADU-CD for all BN. The range of D3 settings shows the eye-diagram of the data, with the error free region
and the transition region.

Figure 25 repeats the ADU  BN data interface BIST measurements using the optimum timing settings from
Table 2. The sclk period is 1250 ps (800 MHz). The BIST measurements reveal that the eye-opening of
stable data is about 800 ps wide and the transition region is about 450 ps wide. The Stratix IV FPGA LVDS
interface is specified to operate at up to 1.6 Gbps. A sample period of 1/(1.6 GHz) = 625 ps with a transition
region of 450 ps will still yield a (small) data eye-opening of 175 ps. Therefore based on the BIST
measurements the ADUH can probably also work reliably for sample frequencies up to 1.6 GHz.

The BIST measurements were repeated several times for all 64 SP and no bit errors were ever detected. A
test for 24 hours on 30/31 January 2013 also showed no bit errors. The log file of this test is printed in
appendix 7.

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

26 / 50

Figure 24: BIST measurement results for ADU  BN data interface using dclk and varying D3

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

27 / 50

Figure 25: BIST measurement results for ADU  BN data interface using dclk and varying D3 and D2

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

28 / 50

2.4.4.2 Correct timing

The correct timing was measured for the set of SP marked in gray in Figure 3 by measuring the zero-
crossings of the captured RF signal. The zero-crossings were measured for 32 different phase settings of the
dp_clk PLL (see section 2.4.3.5) to cover the entire range of one dp_clk period, so 0 to 360 degrees in steps
of 11.25 degrees (= 156 ps at 200 MHz). Figure 26 shows the nearest integer sample number at which the
signal path zero-crossing occurred for 200 restarts of the ADCs using the tc_bn_capture_adc_plot.py
Python script, e.g. like in:

> python apps/adu_tests/tc_bn_capture_adc_plot.py --unb 0 --bn 0 --sp 0,1,2,3 --rep 200 -v 3 –s try

The PLL phases for which the zero-crossing stayed at the same sample are grouped in Figure 26. The ‘x’
denote results for which the zero-crossing occurred at various sample phases. The ‘.’ denote that at least
once the zero-crossing occurred at another sample phase.

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

29 / 50

Figure 26: Sample phase measurements for different settings of the dp_clk PLL phase (D5=0)

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

30 / 50

Note that around PLL phase 292.5 degrees the sample phase gets a jump of 4 samples. This is due to that
for that PLL setting the rising edge of external PPS lies close to the rising edge of the dp_clk that is used to
clock in the PPS [6]. This PLL phase setting needs to be avoided for clocking in the PPS, or alternatively the
falling edge of the dp_clk should be used to clock in the PPS. Clearly stable clocking in of the PPS has a
large eye-diagram as shown in Figure 27, because only 3 out of the 32 PLL phases in Figure 26 coincide
with the PPS rising edge. The PPS input delay setting for Figure 26 was D3=3, however the measurements
reveal that it is fine to choose D3=0. With D3=0 there is even more margin with respect to the rising edge,
because then the PPS transition will move to by about 1100 ps to the left in Figure 27 (one D3 unit ≈ 370 ps)
and is then expected to occur at about 180 degrees.

Figure 27: PPS eye-diagram for clocking with dp_clk and PPS input delay D3 = 3

From Figure 26 it follows that PLL phase setting of 11.25 degrees is suitable as common setting for all BN,
because it yields a ± 11.25 degrees margin. Similar also 101.25 and 191.25 are suitable, because they lie 90
degrees or 1 sample period further. One would expect a much larger margin because all traces lengths
throughout the subrack are matched (see section 2.4.1.2). However it appeared that the traces of the dp_clk
and pps on the UniBoard are matched with respect to each other, but not between the BN0:3. Comparing in
Figure 28 the actual trace delays on the UniBoard with the measurement results of Figure 26 clarifies why
the margin across all BN is so small.

Figure 28: Correspondence in timing difference and trace length difference between BN3:0

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

31 / 50

For a next UniBoard the traces to the BN0:3 will be matched an then the margin can expected to be as large
as the smallest group of PLL phases with stable zero-crossings in Figure 26. The smallest group for BN2
spans from PLL phase 78.75 to 146.25, so about 67.5 degrees or about 0.9 ns. This eye-opening of about
0.9 ns is quite large compared to the sample clock period of 1250 ps, so also from a timing point of view it is
expected that the ADUH can probably also work reliably for sample frequencies up to 1.6 GHz.

In Figure 26 the output delay setting for the dclk_rst signal is D5=0. In another set of measurements D5 was
varied from 0 to 14 with dp_clk PLL phase fixed at 0 degrees. On BN1 D5=0:7 yielded sample phase 6,
D5=9:14 yielded sample phase 5 and the transition occurred at D5=8 as shown in Figure 29. One D5 unit is
about 45 ps and 8*45 ps = 360 ps falls within the region that was also measured for BN1 in Figure 26. For
dp_clk PLL phase 11.25 the output delay setting for dclk_rst D5 = 0 is suitable.

Figure 29: Sample phase measurements for PLL phase 0 and D5=0:14 for dclk_rst

For applications that instantiate node_bn_capture.vhd for using the ADUH with the Apertif subrack the
optimum timing settings are listed in Table 2 (all other IOE delays are 0).

Signal Setting
dp_clk PLL phase = 11.25 degrees
dclk_rst output delay D5 = 0
ADC_BI_A[7:0] input delay D3 = 2
ADC_BI_B[7:0] input delay D3 = 2
ADC_BI_C[7:0] input delay D3 = 3
ADC_BI_D[7:0] input delay D3 = 3
PPS input delay D3 = 0

Table 2: Optimum settings for ADUH in Apertif subrack

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

32 / 50

2.5 Alternative solutions

2.5.1 Hardware aspects

Instead of using dclk_rst so control the phase of the sclk  dclk division one can accept the phase that
occurs and then measure and compensate for it if it is not the desired phase. To measure the phase of the
dclk with respect to the sclk requires clocking a central timing pulse from the sclk domain into the dclk
domain. For this the PPS signal can be used. It is not necessary that the PAC board also distributes the PPS
via the ADU boards to the BN, because the path delay is fixed (via traces and buffers) and the path delay
value is not relevant as long as it is fixed. Therefore the PPS that already arrives from PAC at each UniBoard
can also be used to reveal the phase of the dclk from ADU-0 and the dclk from ADU-1. It may be necessary
to provide the PPS to the BN via up to three FPGA pins, because the DDR input logic in an IOE can only be
used for external signals:

 one pin to clock in the PPS with the dp_clk
 one pin to clock in the PPS with the dclk from ADU-0
 one pin to clock in the PPS with the dclk from ADU-1

Instead of the PPS one may also choose to clock in the 200 MHz clk clock with the dclk, because that also
provides the synchronization for the clock dividers. The two dclk_rst lines can then be removed from the
ADU-BN interface.

In this scheme the system can be seen as having two synchronous samplers one for the RF data using the
SDR sclk and one for the external time using the DDR dclk:

 the analogue time is represented by the PPS and is sampled by the 1-bit DDR input cell at both edges of

the dclk
 the analogue RF signal is sampled by the 8-bit ADC at the rising edge of the sclk.

Once the PPS pulse is available in the dclk domain it is passed on along with the data through the mixed
width FIFO into the dp_clk domain. In the dp_clk domain the samples can be shifted such that the PPS start
falls on a 4-sample word boundary to complete the alignment of all SP between all ADU and all BN.

2.5.2 Firmware aspects

A risk with using fixed input and output delays is that these may vary too much with temperature. This could
cause that it is impossible to reliably receive the ADC samples and to set the dclk_rst phase over the
operational temperature range of typically 35 to 85 degrees. An alternative solution for the ADU Handler is
then to use a PLL output to clock in the samples. Typically the input clock for the PLL is the dclk from ADU,
but even the dp_clk could maybe be used, but then the lock detection is no longer available. Instead of
delaying the data with an delay element in the IOE the capture clock phase is then adjusted by selecting the
appropriated clock phase with a PLL. Typically this allows 8 or more clock phases for 1 period. There are
three schemes with a PLL:

 non-DPA  select a fixed phase for the PLL output clock at synthesis
 DPA  Dynamic Phase Alignment, the optimal clock phase is adjusted dynamically based on signal

transitions in the data
 Soft CDR  soft Clock Data Recover is issued when the clock is encoded within the data like e.g. for

SGMII in a 1GbE receiver

Soft CDR is not applicable for ADU. DPA may be feasible, but seems less suitable because DPA requires
that there are data transitions and with ADC data this is not guaranteed (e.g. in case of a DC signal). So non-
DPA remains as PLL scheme.

On the ADU side of the BN FPGA there are 2 PLLs available, these are PLL_R3 for ADC_BI_A_CLK and
PLL_R2 for ADC_BI_D_CLK. Problem is that PLL_R3 is already used for the TSE (Triple Speed Ethernet,

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

33 / 50

i.e. the 1GbE control interface) due to that the TSE data pins are located near PLL_R3. It is possible to use
PLL_R2 also for the data from ADU-AB, but that implies that ADU-AB can then only be used if the
ADC_BI_D_CLK clock of ADU-CD is active (because the ADC_BI_A_CLK is then not available). Two
preliminary VHDL components aduh_pll and lvds_pll are available, but these need further development. It
was considered for a next release of the UniBoard hardware to move the TSE data pins to another PLL, to
free up PLL_R3 for the ADC_BI_A_CLK. However it was decided that compared to the benefit this takes too
much effort regarding PCB layout and simulation and synthesis to check that it fits in the FPGA.

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

34 / 50

3 MMS_ADUH_QUAD

The ADU handler (ADUH) for the 4 ADC input signal paths is called aduh_quad. The mms_aduh_quad
provides the MM register interface to the aduh_quad and is shown in Figure 30.

Figure 30: Block diagram of mms_aduh_quad

3.1 ADUH_QUAD

The aduh_quad component instantiates one aduh_dd component for receiving the ADC samples from two
signal paths from ADU-AB and from two signals paths from ADU-CD. The aduh_dd is described in section 4.
For each of the 4 signal paths the aduh_quad instantiates an aduh_verify component that can automatically
verify the test pattern that the adc08d1020 ADC that is used on ADU can output to validate the ADU-ADC to
UniBoard-BN LVDS interface. The aduh_verify is described in section 5.

3.2 ADUH_QUAD_REG

The aduh_quad can be accessed via the MM bus. The register map is defined by aduh_quad_reg. In a BN
FPGA design the registers can be accessed with Python using the pi_aduh_quad.py peripheral. The register
map supports:

- Report the locked status for ADU-AB and ADU-CD
- Report pattern verification result for each ADC [A,B,C,D]

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

35 / 50

 31 24 23 16 15 8 7 0 wi
|-----------------|-----------------|-----------------|-----------------|
| xxx ab_stable & ab_locked = [1:0]| 0
|---|
| xxx cd_stable & cd_locked = [1:0]| 1
|---|
| xxx a_verify_res_val[12]| xxx a_verify_res[8:0]| 2
|---|
| xxx b_verify_res_val[12]| xxx b_verify_res[8:0]| 3
|---|
| xxx c_verify_res_val[12]| xxx c_verify_res[8:0]| 4
|---|
| xxx d_verify_res_val[12]| xxx d_verify_res[8:0]| 5
|---|

Table 3: Memory map for REG_ADC_QUAD

The ADUH sample receiver monitors the activity of the dclk from ADU. When the dclk is in phase with the
dp_clk then locked = '1'. If locked = ‘1’ for every clock cycle since the last read access to wi = 0 for ADU[0] or
wi = 1 for ADU[1] then stable = ‘1’. Else if stable = ‘0’ then at least once since the last read access the dclk
and dp_clk lost lock. If locked = ‘0’ then the dclk is not in phase with the dp_clk or not connected.

The ADUH verify function implements the build-in self-test (BIST) that continuously verifies the received
samples from the ADU ADCs and reports whether they match the ADU ADC test pattern. If a mismatch
occurs then the result remains indicating this error. A new verification interval starts when the result register
has been read. The verify_res_val = ‘1’ when there was an active dclk from the ADU. The verify_res[7:0] bits
are ‘0’ when the corresponding sample bit matches the test pattern and becomes ‘1’ when the bit
mismatches. The verify_res[8] bit reports the result for the entire 8 bit sample (so it is equivalent to the
vector-or operation of verify_res[7:0]). If verify_res_val = ‘0’ then the verify_res must be ignored.

The Software/python/peripherals/pi_aduh_quad.py Python peripheral script provides methods for accessing
the ADUH_QUAD registers and the util_ aduh_quad.py provides usage examples.

3.3 Verification

The test bench tb_mms_aduh_quad verifies the mms_aduh_quad by using the adc08d1020 test pattern
mode. The test bench uses a behavioral model in VHDL of the National adc08d1020 ADC on the ADU
(adc08d1020.vhd and adu_half.vhd) and an aduh_quad_scope in VHDL to more easily view the 800 MHz
ADC signal as an analogue signal in the Modelsim Wave window.

The $UNB/Firmware/software/apps/bn_capture/main.c program also verifies the ADC test pattern for the
samples that are captured in the ADU monitor buffer using the aduh_verify_adc_test_pattern() function in the
aduh.c module. This software function is now no longer used, because the aduh_verify VHDL component
can now do the verification continuously in real time for all samples at the sample rate.

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

36 / 50

4 ADUH_DD - ADC data receiver

4.1 ADUH_DD

The ADUH_DD use DDIO input (no PLL) to receive the samples from the LVDS Rx interface between a BN
and two ADCs on one ADU.

4.1.1 Hardware interface

The aduh_dd interface parameters and ports are given in respectively Table 4 and Table 5.

Generic field Type Description
nof_sp natural Fixed support 4 signal paths A,B,C,D, whether they contain active data

depends on nof_adu.
nof_adu natural When 2 ADUs then use all 4 ports A,B,C,D, one ADU on ports A,B and

one ADU on ports C,D, when 1 ADU then only use ports C,D.
nof_ports natural Fixed 2 ADC BI ports per ADU.
port_w natural Fixed 8 bit ADC BI port width, the ADC sample width is also 8 bit.
dd_factor natural Fixed 2. Fixed double data rate factor for lvds data (800 MSps) and lvds

clock (400 MHz).
rx_factor natural Default 2. When 1 then the data path processing clock frequency is 400

MHz (= lvds clock / 1), when 2 then the data path processing clock
frequency is 200 MHz (= lvds clock / 2).

clk_rst_enable natural Default true for initial DCLK_RST pulse to control the ADC DCLK phase,
else false for no DCLK_RST pulse.

clk_rst_invert natural Default false because DCLK_RST pulse on ADU is active high, use true
for active low pulse to compensate for P/N cross

deskew t_c_aduh_delays Input de-skew buffer delays. Default all 0 because the input delays are
set via IOE constraints during synthesis.

Table 4: aduh_dd parameter g_ai fields of the record type t_c_aduh_dd_ai

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

37 / 50

Signal IO Type Description
ADC_BI_A[7:0] IN std_logic_vector Input sample from ADC-I on ADU-AB
ADC_BI_B[7:0] IN std_logic_vector Input sample from ADC-Q on ADU-AB
ADC_BI_C[7:0] IN std_logic_vector Input sample from ADC-I on ADU-CD
ADC_BI_D[7:0] IN std_logic_vector Input sample from ADC-Q on ADU-CD
ADC_BI_A_CLK IN std_logic Input 400 MHz DDR lvds clock from the ADC on ADU-AB
ADC_BI_D_CLK IN std_logic Input 400 MHz DDR lvds clock from the ADC on ADU-CD
ADC_BI_A_CLK_RST OUT std_logic Reset pulse to synchronises ADU_AB lvds clock divider
ADC_BI_D_CLK_RST OUT std_logic Reset pulse to synchronises ADU_CD lvds clock divider
ab_locked
cd_locked

OUT std_logic When active then the dp_clk in the BN and the lvds clock
from the ADU are currently synchronous and the data
samples are being received. Idem for ADU-CD.

ab_stable
cd_stable

OUT std_logic When active then the ab_locked has been continuously
active since the last time that ab_stable_ack was pulsed,
else when inactive then ab_locked has gone active at
least once. Idem for ADU-CD.

ab_stable_ack
cd_stable_ack

IN std_logic A pulse restarts a new period of monitoring ab_locked via
ab_stable. Idem for ADU-CD.

dp_rst IN std_logic Data path reset
dp_clk IN std_logic Data path clock (200 MHz)
src_out_arr[0:3] OUT t_dp_sosi_arr Output sample for signal inputs [A,B,C,D] = [0:3]. The

data field contains 4 time series 8 bit ADC samples
packed in big-endian format as [t0&t1&t2&3] = [31:0]. The
valid field indicates whether the data is valid. The other
sosi fields are not used.

Table 5: aduh_dd IO

4.1.2 Design

The aduh_dd receives ADC samples for 4 signals paths as shown in Figure 31. Each BN on UniBoard
processes 4 signals paths but it gets these from two ADUs, therefore the aduh_dd instantiates two lvdsh_dd
components, one for each ADU.

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

38 / 50

in_dat[15:0] rx_val

rx_locked

lvdsh_dd
dp_rst
dp_clk

obin_dat_ab[]

obin_val_ab
in_clk

in_clk_rst

rx_dat[63:0]

rx_clk

rx_rst

rx_stable_ack

rx_stable

ADC_BI_A[7:0]
ADC_BI_B[7:0]

compensate
PCB rewire

Compensate
offset binary

src_out_arr[0:3]

ab_locked
ab_stable
ab_stable_ack

ADC_BI_A_CLK

ADC_BI_A_CLK_RST

in_dat[15:0] rx_val

rx_locked

lvdsh_dd

in_clk

in_clk_rst

rx_dat[63:0]

rx_clk

rx_rst

rx_stable_ack

rx_stable

ADC_BI_C[7:0]
ADC_BI_D[7:0]

cd_locked
cd_stable
cd_stable_ack

ADC_BI_D_CLK

ADC_BI_D_CLK_RST

aduh_dd

Figure 31: Block diagram of aduh_dd

The aduh_dd takes care of:

- Receiving the ADC samples for signal paths A, B, C and D using the lvdsh_dd
- Compensating of PCB rewiring of the ADC data of signal paths B and D on ADU
- Converting the offset binary format of the ADC data into two-complement data by inverting the MSbit
- Default it outputs the CLK_RST pulse to the ADC as active high

4.1.3 Implementation

The ADUH_DD uses Double Data rate IO (so no PLL) to capture the LVDS input data. Using the DDR in the
IOE and static IO delay settings was chosen because it is feasible to directly use the data clock and because
it feasible to use static IO delay settings. The ADUH_DD also provides:

 Input locked status indicates whether the input clock is currently in phase with the processing clock
 Input locked stable indicates whether the input locked status has been locked since the last time that the

host read the input locked status
 Apply dclk_rst pulse when input clock activity has been detected.

The input locked functionality and dclk_rst functionality depend on the input FIFO fill level. If an ADU is
removed and reinserted then the input will lock automatically and the dclk_rst pulse will also be applied
automatically, i.e. no involvement by the control computer is needed for this. The control computer can know
that something happened by monitoring the input locked stable status bit.

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

39 / 50

4.2 LVDSH_DD

4.2.1 Design

Figure 32 shows a block diagram of the lvdsh_dd. The common_acapture instances get a logic-lock region
constraint to ensure that the signal is transferred with fixed time delay between the dclk = in_clk domain and
the dp_clk = rx_clk domain as explained in section 2.4.3.5.

Figure 32: Block diagram of lvdsh_dd

4.2.2 Verifcation

The test bench tb_lvdsh_dd.vhd verifies the lvdsh_dd.

4.3 ADUH_PLL

Preliminary component for the alternative solution using a PLL, see section 2.5.

4.4 LVDSH_PLL

Preliminary component for the alternative solution using a PLL, see section 2.5.

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

40 / 50

5 ADUH_VERIFY - ADC test pattern verification

5.1 Hardware interface

The aduh_verify interface parameters and ports are given in respectively Table 6 and Table 7.

Generic Type Description
g_symbol_w natural Fixed 8 bit. The ADC sample width.
g_nof_symbols_per_data natural Fixed, big endian in_sosi.data, t0 in MSSymbol, so [h:0] =

[31:0] = [t0]&[t1]&[t2]&[t3]
deskew t_c_aduh_delays Input de-skew buffer delays. Default all 0 because the input

delays are set via IOE constraints during synthesis.

Table 6: aduh_verify parameters

Signal IO Type Description
rst IN std_logic Data path reset
clk IN std_logic Data path clock 200 MHz
in_sosi IN t_dp_sosi Signal path data with 4 800MHz 8b samples in time per one 32b

word @ 200MHz
pattern_sel IN natural Selects ADC port from which the data comes, 0 = DI, 1 = DQ
verify_res[8:0] OUT std_logic_vector The verify_res[8] contains the verify result for the aggregate

symbol values, and verify_res[7:0] contains the result per
corresponding symbol bit [7:0].

verify_res_val OUT std_logic When high then verify_res is valid else it is undefined.
verify_res_ack IN std_logic The duration of the test pattern verification interval depends on

verify_res_ack, each time verify_res_ack pulses a new
verification interval starts.

Table 7: aduh_verify IO

5.2 Design

The aduh_verify uses multiple instances of the aduh_verify_bit to verify the adc08d1020 test pattern “0 1 0 0
1 1 0 0 1 0” per LVDS data bit. The adc08d1020 on ADU has two ADCs I and Q, so it outputs two signal
paths. Both ADC I and Q use different test patterns, therefore via pattern_sel one can select whether to
verify for the I signal path or the Q signal path. The test pattern data is periodic over 10 samples:

 TP_I TP_Q TP_OV
 T0 02h 01h 0
 T1 FDh FEh 1
 T2 02h 01h 0
 T3 02h 01h 0
 T4 FDh FEh 1
 T5 FDh FEh 1
 T6 02h 01h 0
 T7 02h 01h 0
 T8 FDh FEh 1
 T9 02h 01h 0

The verification is always ready to accept data, therefore it has no in_siso output. The verification is always
enabled. After reset and when verify_res_ack pulses then verify_res_val = '0'. The verification needs two
words to initialize its local reference pattern generator and then the next words can be verified. At the third

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

41 / 50

valid input word the verify_res_val goes active '1' and remains active until the next verify_res_ack pulse. If
the received data is a mismatch with the local reference pattern then the verify_res goes high '1' and remains
'1' until the next verify_res_ack pulse. The verify_res[8] contains the matching result for the aggregate
symbol values, and verify_res[7:0] contains the result per corresponding symbol bit [7:0]. Via verify_res[7:0]
the skew between LVDS input lines can be measured. Via verify_res[8] it becomes clear whether the skew is
sufficiently small to have an open sampling eye for the entire symbol value. The duration of the verification
interval depends on verify_res_ack, each time verify_res_ack pulses a new verification interval starts. The
ADC overflow bit is not verified.

5.3 Implementation

The TP_I and TP_Q test symbols effectively only contain two values (0x02, 0xFD) or (0x01, 0xFE)
respectively. Hence these can be mapped on single bit values '0' and '1' as is done via the signal symb. The
TP_I and TP_Q symbols are verified per bit and for the entire symbol via the mapped symb signal. The 8
symbol bits and the mapped symb signal all have the test pattern of 10 values: “0 1 0 0 1 1 0 0 1 0”. The
data arrives with g_nof_symbols_per_data=4 symbols per data, so a sequence of two test patterns (2*10
divides by 4) can appear at 10 different phases as:

 Phase Pattern Pattern Nibble hex values
 0 0100 1100 1001 0011 0010 = 4 C 9 3 2
 1 1001 1001 0010 0110 0100 = 9 9 2 6 4
 2 0011 0010 0100 1100 1001 = 3 2 4 C 9
 3 0110 0100 1001 1001 0010 = 6 4 9 9 2
 4 1100 1001 0011 0010 0100 = C 9 3 2 4
 5 1001 0010 0110 0100 1001 = 9 2 6 4 9
 6 0010 0100 1100 1001 0011 = 2 4 C 9 3
 7 0100 1001 1001 0010 0110 = 4 9 9 2 6
 8 1001 0011 0010 0100 1100 = 9 3 2 4 C
 9 0010 0110 0100 1001 1001 = 2 6 4 9 9

Hence for phase 0 to 9 the 4-bit nibbles can either be repeated <4 C 9 3 2> or <9 9 2 6 4>. E.g. if the first
two data words map to 4 C then the next expected data word is 9. One data word (i.e. 4 symbols of the 10) is
not enough to know the next test pattern data word. Two data words (i.e. 8 symbols of the 10) are sufficient
to know the next test pattern data word. This is implemented by func_tp_seq in aduh_verify_bit.

5.4 Verifcation

The test bench tb_aduh_verify.vhd verifies the aduh_verify.

5.5 Validation

The adc08d1020 can be programmed into test pattern mode with Python using the
pi_adu_i2c_commander.py peripheral and an i2c_commander VHDL instance in the FPGA design (as in
bn_capture [4]). The pi_aduh_quad.py peripheral then provides the methods to check verify_res as done
with util_aduh_quad.py.

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

42 / 50

6 MMS_ADUH_MONITOR

6.1 ADUH_MONITOR

For one input signal path the aduh_monitor provides provides MM access to:

- Mean sum
- Power sum
- Data buffer time samples stored in big endian order:

The new mean_sum and the power_sum stored at a sync pulse. Hence the sync pulse interval determines
the integration time. The data buffer is filled at a sync pulse.

The mean sum is calculated by the aduh_mean_sum component and the power sum is calculated by the
aduh_power_sum component. Both components are capable of handling g_nof_symbols_per_data >= 1,
e.g. 4 samples per data word.

6.2 ADUH_MONITOR_REG

The register map for the aduh_monitor is defined by the aduh_monitor_reg VHDL component and can be
accessed in Python using pi_aduh_monitor.py.

Table 8 shows register map for reading the mean and power statistics of the signal samples. The mean sum
accumulates the ADC sample values during a sync interval. The power sum accumulates the squares of the
ADC sample values during a sync interval.

 31 24 23 16 15 8 7 0 wi
|-----------------|-----------------|-----------------|-----------------|
| mean_sum[31:0] | 0
|---|
| mean_sum[63:32] | 1
|---|
| power_sum[31:0] | 2
|---|
| power_sum[63:32] | 3
|---|

Table 8: Memory map REG_ADUH_MON for mean and power statistics

Table 9 shows the register map for the samples monitor buffer. The samples monitor buffer is a small
internal FPGA buffer that can store 1024 samples per signal path and gets triggered to do so by the sync
pulse at the start of every sync interval. The time samples are stored in big endian order, so when the 32-bit
word is read in hexadecimal format it shows the sample values in time from left to right.

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

43 / 50

 31 24 23 16 15 8 7 0 wi
|-----------------|-----------------|-----------------|-----------------|
| t0[7:0] t1[7:0] t2[7:0] t3[7:0]| 0
|---|
| t4[7:0] t5[7:0] t6[7:0] t7[7:0]| 1
|---|
| ... | ..
|---|
| t1020[7:0] t1021[7:0] t1022[7:0] t1023[7:0]|255
|---|

Table 9: Memory map RAM_ADUH_MON for data buffer monitor

The Software/python/peripherals/pi_aduh_monitor.py Python peripheral script provides methods for
accessing the ADUH_MONITOR registers and the util_aduh_monitor.py provides usage examples.

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

44 / 50

7 Appendix : Data value measurement results using the BIST

This appendix shows the log file of a successful BIST measurement with test pattern data from ADUs on all
64 signal paths in the Apertif subrack. Note that it is better to repeat a test 24 times for 1 hour than to run it
once for 24 hours. By measuring for shorter intervals one gets an impression of the bit error distribution in
time in case they occur.

> python apps/bn_capture/tc_bn_capture_adc_bist.py --unb 0:3 --bn 0:3 --sp 0:3 --rep 24 -n 3600 -v 3

[2013:01:30 12:27:01] - (3) TC_BN_CAPTURE –
>>> Title : Test case to run the ADC-[ABCD] BIST on UNB-[0, 1, 2, 3], BN-[0, 1, 2, 3], SP-[0, 1, 2, 3]:

SENS - UNB-0, BN-0: FPGA temperature = 31 [degrees]
SENS - UNB-0, BN-1: FPGA temperature = 33 [degrees]
SENS - UNB-0, BN-2: FPGA temperature = 32 [degrees]
SENS - UNB-0, BN-3: FPGA temperature = 31 [degrees]
SENS - UNB-1, BN-0: FPGA temperature = 31 [degrees]
SENS - UNB-1, BN-1: FPGA temperature = 32 [degrees]
SENS - UNB-1, BN-2: FPGA temperature = 31 [degrees]
SENS - UNB-1, BN-3: FPGA temperature = 31 [degrees]
SENS - UNB-2, BN-0: FPGA temperature = 32 [degrees]
SENS - UNB-2, BN-1: FPGA temperature = 33 [degrees]
SENS - UNB-2, BN-2: FPGA temperature = 29 [degrees]
SENS - UNB-2, BN-3: FPGA temperature = 0 [degrees]
SENS - UNB-3, BN-0: FPGA temperature = 31 [degrees]
SENS - UNB-3, BN-1: FPGA temperature = 32 [degrees]
SENS - UNB-3, BN-2: FPGA temperature = 30 [degrees]
SENS - UNB-3, BN-3: FPGA temperature = 31 [degrees]
ADUH_QUAD - UNB-0, BN-0: ADUH-AB is locked and stable (3)
ADUH_QUAD - UNB-0, BN-0: ADUH-CD is locked and stable (3)
ADUH_QUAD - UNB-0, BN-1: ADUH-AB is locked and stable (3)
ADUH_QUAD - UNB-0, BN-1: ADUH-CD is locked and stable (3)
ADUH_QUAD - UNB-0, BN-2: ADUH-AB is locked and stable (3)
ADUH_QUAD - UNB-0, BN-2: ADUH-CD is locked and stable (3)
ADUH_QUAD - UNB-0, BN-3: ADUH-AB is locked and stable (3)
ADUH_QUAD - UNB-0, BN-3: ADUH-CD is locked and stable (3)
ADUH_QUAD - UNB-1, BN-0: ADUH-AB is locked and stable (3)
ADUH_QUAD - UNB-1, BN-0: ADUH-CD is locked and stable (3)
ADUH_QUAD - UNB-1, BN-1: ADUH-AB is locked and stable (3)
ADUH_QUAD - UNB-1, BN-1: ADUH-CD is locked and stable (3)
ADUH_QUAD - UNB-1, BN-2: ADUH-AB is locked and stable (3)
ADUH_QUAD - UNB-1, BN-2: ADUH-CD is locked and stable (3)
ADUH_QUAD - UNB-1, BN-3: ADUH-AB is locked and stable (3)
ADUH_QUAD - UNB-1, BN-3: ADUH-CD is locked and stable (3)
ADUH_QUAD - UNB-2, BN-0: ADUH-AB is locked and stable (3)
ADUH_QUAD - UNB-2, BN-0: ADUH-CD is locked and stable (3)
ADUH_QUAD - UNB-2, BN-1: ADUH-AB is locked and stable (3)
ADUH_QUAD - UNB-2, BN-1: ADUH-CD is locked and stable (3)
ADUH_QUAD - UNB-2, BN-2: ADUH-AB is locked and stable (3)
ADUH_QUAD - UNB-2, BN-2: ADUH-CD is locked and stable (3)
ADUH_QUAD - UNB-2, BN-3: ADUH-AB is locked and stable (3)
ADUH_QUAD - UNB-2, BN-3: ADUH-CD is locked and stable (3)
ADUH_QUAD - UNB-3, BN-0: ADUH-AB is locked and stable (3)
ADUH_QUAD - UNB-3, BN-0: ADUH-CD is locked and stable (3)

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

45 / 50

ADUH_QUAD - UNB-3, BN-1: ADUH-AB is locked and stable (3)
ADUH_QUAD - UNB-3, BN-1: ADUH-CD is locked and stable (3)
ADUH_QUAD - UNB-3, BN-2: ADUH-AB is locked and stable (3)
ADUH_QUAD - UNB-3, BN-2: ADUH-CD is locked and stable (3)
ADUH_QUAD - UNB-3, BN-3: ADUH-AB is locked and stable (3)
ADUH_QUAD - UNB-3, BN-3: ADUH-CD is locked and stable (3)
Rep = 0
Rep = 1
Rep = 2
Rep = 3
Rep = 4
Rep = 5
Rep = 6
Rep = 7
Rep = 8
Rep = 9
Rep = 10
Rep = 11
Rep = 12
Rep = 13
Rep = 14
Rep = 15
Rep = 16
Rep = 17
Rep = 18
Rep = 19
Rep = 20
Rep = 21
Rep = 22
Rep = 23

>>> Test case result: PASSED (run time 86405 s)

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

46 / 50

8 Appendix : Data timing measurement results using a CW

8.1 SP 0, 1, 2, 3

Results of Figure 6, Figure 9, Figure 12, Figure 15 and Figure 18.

[2012:12:11 21:57:42] - (3) TC_BN_CAPTURE_AND_PLOT –

>>> Title : Test case to plot the ADC-[ABCD] data for UNB-[0], BN-[0], SP-[0, 1, 2, 3]:

Rep-0
Rep-600
Rep-1200
Rep-1800
Rep-2400
Rep-2999
SENS - UNB-0, BN-0: FPGA temperature = 36 [degrees]
ADU_I2C - UNB-0, BN-0, ADU-AB: Read temperature = 42 [degrees]
ADU_I2C - UNB-0, BN-0, ADU-CD: Read temperature = 45 [degrees]
PPS - UNB-0, BN-0: read_ppsh_stable = OK
>>> Clock-CW DCs:
 Channel : Mean Std Max Min Diff Nof>1S Nof>2S Nof>3S Nof>4S Nof>5S
 CH0 : -0.42816 0.07029 -0.14648 -0.67676 0.53027 912 153 10 1
 CH1 : -0.60260 0.08457 -0.32031 -0.91211 0.59180 974 141 7
 CH2 : -0.04799 0.08183 0.28809 -0.38770 0.67578 926 153 16 2
 CH3 : -0.86403 0.07613 -0.59277 -1.11719 0.52441 973 124 7
>>> Clock-CW phases:
 Channel : Mean Std Max Min Diff Nof>1U Nof>2U Nof>3U Nof>4U Nof>5U
 CH0 : 4.32410 0.00388 4.34020 4.30777 0.03244
 CH1 : 4.38830 0.00445 4.40386 4.37333 0.03053
 CH2 : 4.86471 0.00417 4.87885 4.84813 0.03071
 CH3 : 4.96129 0.00376 4.97684 4.94975 0.02708
>>> Clock-CW amplitudes:
 Channel : Mean Std Max Min Diff Nof>1S Nof>2S Nof>3S Nof>4S Nof>5S
 CH0 : 50.31613 0.09430 50.74535 49.94976 0.79559 895 140 18 2
 CH1 : 49.53958 0.11676 49.86494 49.17608 0.68886 985 125 4
 CH2 : 48.86487 0.19931 49.25119 48.25059 1.00060 1177 66 1
 CH3 : 48.25007 0.17036 48.74476 47.83433 0.91043 1141 50
>>> Clock-CW noise peaks:
 Channel : Mean Std Max Min Diff Nof>1S Nof>2S Nof>3S Nof>4S Nof>5S
 CH0 : 1.17836 0.09860 1.70369 0.68915 1.01454 741 150 40 11 3
 CH1 : 1.14815 0.18439 1.66091 0.68075 0.98016 1017 103
 CH2 : 1.12295 0.13106 1.88777 0.66579 1.22198 905 129 27 3 1
 CH3 : 1.14555 0.14022 1.64152 0.72222 0.91929 858 178 13
>>> Clock-CW SNRs:
 Channel : Mean Std Max Min Diff Nof>1S Nof>2S Nof>3S Nof>4S Nof>5S
 CH0 : 48.27535 1.03312 51.62446 44.23722 7.38724 932 134 11
 CH1 : 46.69371 0.59305 49.17417 44.91437 4.25980 918 143 16 1
 CH2 : 46.84892 1.37192 52.79533 43.98593 8.80941 901 124 26 2
 CH3 : 47.21466 0.83819 50.55478 44.13033 6.42445 914 160 21

>>> Test case result: PASSED (run time 32232 s)

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

47 / 50

8.2 SP 0, 1, 4, 5, 8, 9, 12, 13

Results of Figure 7, Figure 10, Figure 13, Figure 16 and Figure 19.

[2012:12:12 06:54:55] - (3) TC_BN_CAPTURE_AND_PLOT -

>>> Title : Test case to plot the ADC-[ABCD] data for UNB-[0], BN-[0, 1, 2, 3], SP-[0, 1]:

Rep-0
Rep-600
Rep-1200
Rep-1800
Rep-2400
Rep-2999
SENS - UNB-0, BN-0: FPGA temperature = 36 [degrees]
SENS - UNB-0, BN-1: FPGA temperature = 37 [degrees]
SENS - UNB-0, BN-2: FPGA temperature = 36 [degrees]
SENS - UNB-0, BN-3: FPGA temperature = 35 [degrees]
SENS - UNB-0, BN-3: ETH PHY temperature = 45 [degrees]
SENS - UNB-0, BN-3: UNB supply current = 2.3 [A]
SENS - UNB-0, BN-3: UNB supply voltage = 48.0 [V]
ADU_I2C - UNB-0, BN-0, ADU-AB: Read temperature = 42 [degrees]
ADU_I2C - UNB-0, BN-1, ADU-AB: Read temperature = 44 [degrees]
ADU_I2C - UNB-0, BN-2, ADU-AB: Read temperature = 45 [degrees]
ADU_I2C - UNB-0, BN-3, ADU-AB: Read temperature = 44 [degrees]
PPS - UNB-0, BN-0: read_ppsh_stable = OK
PPS - UNB-0, BN-1: read_ppsh_stable = OK
PPS - UNB-0, BN-2: read_ppsh_stable = OK
PPS - UNB-0, BN-3: read_ppsh_stable = OK
>>> Clock-CW DCs:
 Channel : Mean Std Max Min Diff Nof>1S Nof>2S Nof>3S Nof>4S Nof>5S
 CH0 : -0.42166 0.06745 -0.12695 -0.68359 0.55664 900 143 11 1
 CH4 : -0.40579 0.08039 -0.08496 -0.64941 0.56445 952 151 9
 CH8 : -0.74735 0.07549 -0.50098 -1.04102 0.54004 958 133 8
 CH12 : 0.06128 0.07991 0.38184 -0.21875 0.60059 949 140 15 1
 CH1 : -0.59847 0.08563 -0.30176 -0.88379 0.58203 937 141 12
 CH5 : -0.98074 0.07399 -0.69434 -1.22949 0.53516 857 170 16
 CH9 : -0.73414 0.06548 -0.48340 -0.95898 0.47559 930 143 12
 CH13 : -0.83064 0.07483 -0.49414 -1.04102 0.54688 943 127 13 1
>>> Clock-CW phases:
 Channel : Mean Std Max Min Diff Nof>1U Nof>2U Nof>3U Nof>4U Nof>5U
 CH0 : 4.32474 0.00365 4.33943 4.31112 0.02831
 CH4 : 6.05196 0.20631 6.07471 2.05571 4.01900 8 8 8
 CH8 : 6.15314 0.00419 6.16635 6.14143 0.02492
 CH12 : 5.61170 0.16321 5.63089 1.61028 4.02060 5 5 5 1
 CH1 : 4.38938 0.00429 4.40402 4.37660 0.02742
 CH5 : 5.96139 0.20626 5.98090 1.96564 4.01526 8 8 8
 CH9 : 5.83563 0.00327 5.84836 5.82575 0.02261
 CH13 : 5.83409 0.16320 5.85251 1.83114 4.02137 5 5 5 1

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

48 / 50

>>> Clock-CW amplitudes:
 Channel : Mean Std Max Min Diff Nof>1S Nof>2S Nof>3S Nof>4S Nof>5S
 CH0 : 50.34319 0.09487 50.73568 50.01909 0.71659 937 126 15 2
 CH4 : 50.20358 0.12725 50.57093 49.73871 0.83222 1013 109 3
 CH8 : 49.97079 0.10461 50.25407 49.61202 0.64205 965 127 10
 CH12 : 48.97348 0.12000 49.34748 48.58651 0.76098 987 133 4
 CH1 : 49.56749 0.11922 49.90042 49.15701 0.74341 953 136 7
 CH5 : 51.83209 0.10727 52.15844 51.47277 0.68566 949 138 8
 CH9 : 50.77951 0.09822 51.06158 50.48255 0.57902 990 124 2
 CH13 : 49.36934 0.11015 49.77744 49.02657 0.75087 955 129 9
>>> Clock-CW noise peaks:
 Channel : Mean Std Max Min Diff Nof>1S Nof>2S Nof>3S Nof>4S Nof>5S
 CH0 : 1.19086 0.10103 1.74160 0.75911 0.98249 781 154 40 7 2
 CH4 : 1.18496 0.12818 1.68664 0.62256 1.06409 739 196 42 1
 CH8 : 1.27158 0.13843 1.77412 0.79933 0.97479 947 153 5
 CH12 : 1.02602 0.13047 1.58846 0.67570 0.91276 936 141 14 1
 CH1 : 1.12587 0.19398 1.64108 0.60528 1.03580 1128 65
 CH5 : 1.11056 0.17152 1.95001 0.61687 1.33314 990 107 8 1
 CH9 : 1.15135 0.12463 1.47293 0.66588 0.80706 1073 92 1
 CH13 : 1.13606 0.09286 1.49225 0.77115 0.72110 877 152 22
>>> Clock-CW SNRs:
 Channel : Mean Std Max Min Diff Nof>1S Nof>2S Nof>3S Nof>4S Nof>5S
 CH0 : 48.31803 1.00302 51.93488 44.83623 7.09865 925 150 11
 CH4 : 47.31698 1.03429 52.03864 44.24759 7.79105 876 149 31 4
 CH8 : 46.41384 0.66143 49.08686 44.18999 4.89687 970 122 11 1
 CH12 : 47.28212 1.06900 52.57789 44.61828 7.95961 825 145 39 3
 CH1 : 46.67066 0.55985 49.25505 44.67974 4.57531 876 148 16 1
 CH5 : 47.70795 1.23518 52.20200 45.05191 7.15009 947 130 17
 CH9 : 48.29352 0.65363 51.12801 45.97680 5.15121 917 144 8 1
 CH13 : 47.75528 1.09545 52.22555 44.65296 7.57258 965 145 8 2

>>> Test case result: PASSED (run time 6505 s)

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

49 / 50

8.3 SP 0, 2, 16, 18, 32, 34, 48, 50

Results of Figure 8, Figure 11, Figure 14, Figure 17 and Figure 20.

[2012:12:12 11:25:48] - (3) TC_BN_CAPTURE_AND_PLOT –

>>> Title : Test case to plot the ADC-[ABCD] data for UNB-[0, 1, 2, 3], BN-[0], SP-[0, 2]:

Rep-0
Rep-600
Rep-1200
Rep-1800
Rep-2400
Rep-2999
SENS - UNB-0, BN-0: FPGA temperature = 36 [degrees]
SENS - UNB-1, BN-0: FPGA temperature = 35 [degrees]
SENS - UNB-2, BN-0: FPGA temperature = 37 [degrees]
SENS - UNB-3, BN-0: FPGA temperature = 34 [degrees]
ADU_I2C - UNB-0, BN-0, ADU-AB: Read temperature = 42 [degrees]
ADU_I2C - UNB-1, BN-0, ADU-AB: Read temperature = 45 [degrees]
ADU_I2C - UNB-2, BN-0, ADU-AB: Read temperature = 47 [degrees]
ADU_I2C - UNB-3, BN-0, ADU-AB: Read temperature = 46 [degrees]
ADU_I2C - UNB-0, BN-0, ADU-CD: Read temperature = 45 [degrees]
ADU_I2C - UNB-1, BN-0, ADU-CD: Read temperature = 45 [degrees]
ADU_I2C - UNB-2, BN-0, ADU-CD: Read temperature = 48 [degrees]
ADU_I2C - UNB-3, BN-0, ADU-CD: Read temperature = 44 [degrees]
PPS - UNB-0, BN-0: read_ppsh_stable = OK
PPS - UNB-1, BN-0: read_ppsh_stable = OK
PPS - UNB-2, BN-0: read_ppsh_stable = OK
PPS - UNB-3, BN-0: read_ppsh_stable = OK
>>> Clock-CW DCs:
 Channel : Mean Std Max Min Diff Nof>1S Nof>2S Nof>3S Nof>4S Nof>5S
 CH0 : -0.42577 0.06896 -0.14648 -0.69727 0.55078 922 137 18 2
 CH16 : -0.69219 0.07422 -0.44727 -0.97656 0.52930 988 118 9
 CH32 : -0.40899 0.07613 -0.16602 -0.70703 0.54102 956 141 8
 CH48 : -0.43202 0.06049 -0.20508 -0.64453 0.43945 904 150 14
 CH2 : -0.05317 0.08180 0.22266 -0.37988 0.60254 882 166 18
 CH18 : -0.99522 0.07741 -0.73828 -1.27344 0.53516 930 140 8
 CH34 : -0.63700 0.05879 -0.44629 -0.85352 0.40723 958 141 10
 CH50 : -0.37889 0.06706 -0.12402 -0.63281 0.50879 948 146 15
>>> Clock-CW phases:
 Channel : Mean Std Max Min Diff Nof>1U Nof>2U Nof>3U Nof>4U Nof>5U
 CH0 : 4.32232 0.07313 4.33899 0.32277 4.01623 1 1 1
 CH16 : 4.75675 0.00400 4.77385 4.74367 0.03018
 CH32 : 4.71390 0.00449 4.73176 4.70050 0.03125
 CH48 : 5.27260 0.00317 5.28424 5.25292 0.03132
 CH2 : 4.86304 0.07305 4.87637 0.86919 4.00718 1 1 1
 CH18 : 5.07039 0.00537 5.08685 5.05363 0.03322
 CH34 : 4.96372 0.00343 4.97590 4.94757 0.02833
 CH50 : 4.69188 0.00451 4.70595 4.67605 0.02990

UniBoard DESP

Doc.nr.: ASTRON-RP-1323
Rev.: 0.2
Date:
Class.: Public

50 / 50

>>> Clock-CW amplitudes:
 Channel : Mean Std Max Min Diff Nof>1S Nof>2S Nof>3S Nof>4S Nof>5S
 CH0 : 50.34196 0.09420 50.79154 49.93703 0.85451 937 139 10 3
 CH16 : 45.49816 0.13811 45.92758 45.09665 0.83093 1102 77 1
 CH32 : 46.33243 0.11063 46.67618 45.89428 0.78190 939 143 10
 CH48 : 45.57226 0.14221 46.00609 45.19072 0.81537 1049 90 2
 CH2 : 48.88303 0.18579 49.25254 48.24772 1.00482 1132 74 5
 CH18 : 45.97415 0.11086 46.44006 45.62167 0.81839 1016 113 6 1
 CH34 : 46.46270 0.06692 46.78317 46.26832 0.51485 954 141 7 2
 CH50 : 45.67884 0.09150 45.96296 45.24268 0.72027 921 149 10 2
>>> Clock-CW noise peaks:
 Channel : Mean Std Max Min Diff Nof>1S Nof>2S Nof>3S Nof>4S Nof>5S
 CH0 : 1.18490 0.09738 1.82447 0.74560 1.07888 786 135 41 12 2
 CH16 : 1.07799 0.11703 1.69871 0.71594 0.98277 777 155 37 9 1
 CH32 : 1.12134 0.14826 1.66092 0.65529 1.00563 931 160 3
 CH48 : 1.18854 0.09665 1.56249 0.78805 0.77444 885 143 17 1
 CH2 : 1.13225 0.13454 1.72437 0.64760 1.07677 849 150 27 2
 CH18 : 1.15346 0.17133 1.83011 0.68263 1.14749 901 179 9
 CH34 : 1.18868 0.09997 1.76560 0.73559 1.03001 790 156 37 4 1
 CH50 : 1.08560 0.13703 1.55193 0.73914 0.81279 962 129 12
>>> Clock-CW SNRs:
 Channel : Mean Std Max Min Diff Nof>1S Nof>2S Nof>3S Nof>4S Nof>5S
 CH0 : 48.24802 1.02914 51.49920 45.01627 6.48293 958 146 6
 CH16 : 47.99723 1.02514 53.44261 44.93290 8.50971 725 165 46 9 2
 CH32 : 47.31024 1.10166 52.37393 44.91421 7.45972 996 110 15 2
 CH48 : 48.72019 1.24740 52.92224 44.96558 7.95667 946 143 7
 CH2 : 46.82169 1.39027 52.93042 43.71416 9.21626 913 136 26 3
 CH18 : 47.20291 0.89450 53.14993 44.61008 8.53985 663 163 59 20 9
 CH34 : 48.30816 0.68355 50.65132 45.10364 5.54768 864 150 20 4
 CH50 : 47.57653 0.56884 50.74996 45.73132 5.01865 780 151 38 12 2

>>> Test case result: PASSED (run time 9756 s)

