ASTRON-FO-017 2.0

ASTRON

Netherlands Institute for Radio Astronomy

Heater Logic Module Description

Organisatie / Organization

Datum / Date

Auteur(s) / Author(s):
Eric Kooistra ASTRON
Controle / Checked:
Andre Gunst ASTRON
Goedkeuring / Approval:
Andre Gunst ASTRON
Autorisatie / Authorisation:

ASTRON

Handtekening / Signature
Andre Gunst

© ASTRON 2008
All rights are reserved. Reproduction in whole or in part is
prohibited without written consent of the copyright owner.

UniBoard

1/16

DESP

Doc.nr.: ASTRON-RP-416
Rev.:

Date:

Class.: Public

Distribution list:

ASTRON

Group:

Others:

Andre Gunst (AG, ASTRON)

Daniel van der Schuur (DS, ASTRON)
Rajan Raj Thilak (RT, ASTRON)
Arpad Szomoru (JIVE)
Jonathan Hargreaves (JH, JIVE)
Salvatore Pirruccio (SP, JIVE)

Gijs Schoonderbeek (GS, ASTRON)
Sjouke Zwier (SZ, ASTRON)

Document history:

Revision Date Author Modification / Change
0.1 2010-11-09 Eric Kooistra Creation.
0.2 2010-11-10 Eric Kooistra Improved the order of the sections.
0.3 2010-11-15 Eric Kooistra Added util_logic.
. . Updated after review on Nov 25, 2010 with EK, DS, JH, SP.
0.4 2010-11-30 Eric Kooistra Refer to ASTRON-RP-426 for basic node design features.
. : Moved clock domain section to hardware interface chapter.
0.5 2010-12-01 Eric Kooistra Used tables to list the files in the appendix.
1.0 2011-02-03 Eric Kooistra Added known issues section to fit the template.
Doc.nr.: ASTRON-RP-416
UniBoard DESP Rev:
Date:
Class.: Public

2/16

ASTRON

Table of contents:

SO [T [0 o3 1o TP 5
PR B Uy o To] SRR 5
1.2 MOAUIE OVEIVIBW.ottt oot et e e e et e e e et e e et et e e e e e e e e e e e e s e e eaeaaeseeeaeeeeeanaees 5

2 SOMWAIE INTEITACE ... oo ettt et e e e et e e e et e e e e e e e e e e e et e e e eae e e eenaeeenees 6
22 B © == 1T o SR 6
D |V [V I (=T 1) (=T £ PSPPSR OTPPROt 6

221 (oo (T =T] (= USSP 6
PG T o) i V=TI 0] (1 [o TR 7

N & P2 1o (Y =TS 1 (=) g 2= (o= RO TR 8
G T I 01 [Yo Qe (o] 1 4 = 11 1RO 8
T o= T = 1< (= = T 8
G TG T |V 11V T (=Y s 7= (o= R 8
G T A I 101 =5 7= o7 < 9
3.5 OHNEIINTEITACES ... et e ettt e e e e e e e e e e et e e e e e e e e eaenaaaeas 9

Y o] o] 1 To= 1 1T o TSR 10
o B (0] O3 (=11 T | o SRS 10
Y 11 L= L SRR PR TP 10

421 =TT To] o I PSPPSR 10
422 1Y, FoTe [V] L= TR 11
R I S 101 (Y= 1= 11 1= 11 VTR 11
S (101 T T TSTST U =TT 11

LT 0 =T T | o PP PPURRN 12
LT Y AN o o1 (=Y 11 = YR 12

ORI 1 411 1T 0 4 1=T o1 7= o] o [O PPRPPRN 13
(ST B O] (o] NPT 13
SV o 1= Y= 1 (<Y =1 (<10 0 1<) o) T TP 13

A VA= 411071 (o] T UUT T TP 14
% =110 1101 £= (o o T 14

711 Test bench for the heater MOAUIE............ooue e e e e eaas 14
7.1.2 Test bench for the unb_base SOPC design with the heater moduleccccocciiiiiine 14
A - 11 11 4 F= 10 1= = PSRRI 14

8 APPENAIX: LISt OF TIlES oot e et e e e e e e e be e e e e e e et e e e e e e e e e aaaaaes 15

T I T4 0 017721 (=T 1 0 15
8.1.1 [(Y=Y (= 0100 Yo [0[RI 15
8.1.2 Heater eXample AESIGNuuiiiiii et e e e e e e e e e e e s e s b e e e e e e e e e e e aaeeeas 15

T 1o i 11 V2= Y (= O - IR 15
8.2.1 MOAUIE ..ot ettt e e e et e e e e e e e e e e aaaes 15
8.2.2 1 F=Y o AT TR RO TRRRURRRRRRR 15

TR T Y10 0101 F= (o) o ST 16

8.4 SYNTNESIS ... e e b e e e e e b e e e e e e b ae e e e ba e e e e abeeeeeaan 16

Doc.nr.: ASTRON-RP-416
UniBoard DESP e

Date:

Class.: Public
3/16

Terminology:

ASTRON

DP Data Path

DSP Digital Signal Processing

DUT Device Under Test

FF Flip Flop (clocked or registered logic)
FIFO First In First Out

FPGA Field Programmable Gate Array

GUI Graphical User Interface

HDL Hardware Description Language

10 Input Output

IP Intellectual Property

LUT Look Up Table (combinatorial logic)

MAC Multiply and Accumulate

MAS Master

MISO Master In Slave Out

MM Memory-Mapped

MOSI Master Out Slave In

Nof Number of

PHY Physical layer

PIO Parallel 1O

PRSG Pseudo Random Sequence Generator
RAM Random Access Memory

ROM Read Only Memory

RTL Register Transfer Level

SLA Slave

SISO Source In Sink Out

SOPC System On a Programmable Chip (Altera)
SOSI Source Out Sink In

ST Streaming

UNB Path to UniBoard Firmware directory
UTIL Utility

WDI Watchdog Interrupt

References:

1. www.altera.com, stratix4 _handbook.pdf

2. www.altera.com, quartusii_handbook.pdf

3. www.altera.com, mnl_avalon_spec.pdf

4. https://svn.astron.nl/UniBoard FP7/UniBoard/trunk, the UniBoard FP7 SVN repository, see below.
5. “Common Library Memory and Register Component Descriptions”, ASTRON-RP-415, E. Kooistra
6. “UNB_Common Module Description”, ASTRON-RP-426, Eric Kooistra

Relevant directories in the UniBoard FP7 SVN repository:

$UNB: Firmware/doc/howto/ = How to descriptions
$UNB: Firmware/modules/ - HDL modules

$UNB: Firmware/designs/ - FPGA HDL designs

$UNB: Firmware/software/modules/src/ > C, H modules
$UNB: Firmware/software/apps/ - C main applications

UniBoard DESP

4/16

Doc.nr.: ASTRON-RP-416
Rev.:

Date:

Class.: Public

ASTRON

1 Introduction

1.1 Purpose

This document is a user guide and a description of the heater VHDL module.

The purpose of the heater module is to provide an easy way to use almost all of the internal resources on an
FPGA; meaning logic, multipliers and RAM. The heater module has no functional purpose. Instead the
heater module can be used to verify power consumption of the internal resources of the FPGA and to verify
the performance of the FPGA 10 like DDR3 access and transceiver links at higher temperatures.

Section 2 describes the software interface of the module and contains sufficient information for on chip
microprocessor software development.

Section 3 describes the hardware interface of the module and contains sufficient information for using the
module in an SOPC Builder system or for instantiating it manually in a VHDL design.

Section 4 describes an example application and contains sufficient information for synthesizing the module in
a design and to run a software main() application.

The subsequent sections describe the VHDL design, implementation and verification of the heater module
and its internal details. These sections contain sufficient information for maintaining the module.

1.2 Module overview

Figure 1 shows the interfaces of the heater module. On the application side the heater module is a MM slave
with one register that allows dynamically control of switching more or less of the internal resources on or off.
The streaming interface only consists of a ST clock and reset input that are used to clock and reset the
internal streaming resources. The used internal resources are logic (LUTs and FFs), DSP multipliers (*) and
block RAM. The heater module has no streaming data 10, because it implements a dummy function.

Heater module

*
ST interface LUT, FF, ", RAM
_reg
MM interface
Figure 1: Heater module interfaces
Doc.nr.: ASTRON-RP-416
UniBoard DESP Rev:

Date:

Class.: Public
5/16

ASTRON

2 Software interface

2.1 Operation

The heater module is a MM slave with only one MM register and no interrupt. The heater module consists of
a number of identical elements. The total amount of available elements in an instance of the heater module
is fixed and defined by g_nof _mac4 in the HDL. At run time the clock enable for each element can be set on
or off via a bit in the MM heater register. When the clock enable is on then the corresponding element runs
on the ST clock and dissipates power. When the clock enable is switched off then the corresponding element
does not change state so then it dissipates almost no power.

2.2 MM registers

The Nios Il architecture is little endian. Words and half words are stored in memory with the more-significant
bytes at higher addresses. Bit 31 indicates the MSBit and bit 0 indicates the LSBit of a word. The heater
module MM interface has to be accessed per word. Access per byte is not supported. The heater register is
little endian. Table 1 lists the registers (only one) that are available in the heater module.

Name Address | Size Read/ | Description
(words) | (words) | Write
Heater 0 16 RW Enable heater elements

Table 1: Heater module registers

2.2.1 Heater register

Table 2 defines the bits in the heater register for a maximum of 352 mac4 elements. The maximum number
of effective bits is equal to g_nof_mac4. The remaining bits and words in the heater register are empty.
Setting a bit to ‘1’ enables the element and setting it to ‘0’ disables the element. Reading a bit yields a
varying and undefined result when the element is enabled and a stable result when the element is disabled.

Offset (bytes) | Bits 31:0

0 HEATER_ELEMENT_ENI[31:0]

4 HEATER _ELEMENT_ENI[63:32]

8 HEATER _ELEMENT_ENI[95:64]
12 HEATER _ELEMENT_ENI[127:96]
16 HEATER _ELEMENT_EN[159:128]
20 HEATER_ELEMENT_EN[191:160]
24 HEATER_ELEMENT_EN[223:192]
28 HEATER _ELEMENT_EN[255:224]
32 HEATER ELEMENT EN[287:256]
36 HEATER ELEMENT EN[319:288]
40 HEATER ELEMENT EN[351:320]
44 -

48 -

52 -

56 -

60 -

Table 2: Heater register (g_nof _mac4 = 352)

Doc.nr.: ASTRON-RP-416
UniBoard DESP e

Date:

Class.: Public
6/16

ASTRON

Each mac4 element uses 4 18x18 multipliers. The Stratix [V GX230 has 1288 18x18 multipliers, so in total it
can fit maximally 322 mac4 elements. For the heater register this implies the maximum that can be used for
g_nof_mac4 = 322 and that the register bits [351:322] are then void. The heater register has 352/32 = 11
words. This implies that the register address width is 4 bit and that the words at [15:11] do not exist.

2.3 Software functions

The heater module software consists of avs_util_heater.c/h and avs_util_heater regs.h and provides a
public function to control the heater peripheral. Table 3 lists the software functions that are available for
controlling the heater peripheral.

Function

Description

UTIL_HEATER_Control()

Specify the number of heater elements that need to be switched on. Specifying 0
causes all elements to be switched off. Switching on a specific element is not
supported, because all elements are equivalent.

Table 3: Heater functions in the avs_util_heater.c/h software module

UniBoard

7116

Doc.nr.: ASTRON-RP-416

DESP Rev.:

Date:

Class.: Public

ASTRON

3 Hardware interface

3.1 Clock domains

Figure 2 shows the two clock domains that are used by the heater module:

- mm_clk = MM clock for the memory-mapped bus with the NIOS Il processor
- st clk = ST clock for the heater module elements

Heater module

st_clk — LUT, FF, *, RAM

mm_clk

Figure 2: Clock domains of the heater module

3.2 Parameters

Table 4 lists the VHDL generics that can be when the heater module is instantiated in another HDL design or
in an SOPC system.

Generic Type Description

g_nof_mac4 NATURAL | >= 1, number of multiply 18x18 and accumulate 4 elements in the heater <=
c_util_heater_nof _mac4 _max = 352. Use this to define the number of heater
elements in the heater instance.

g_pipeline NATURAL | >= 0, number of pipelining register stages. Use this to define the amount of
logic (FFs or RAM dependent on the synthesis) that is used per heater
element.

g_nof_ram NATURAL | >= 0, number of 1 kByte RAM blocks. Use this to define the amount of RAM
that is used per heater element

g_nof_logic NATURAL | >= 0, number of logic register stages. Use this to define the amount of logic

(LUTs and FFs) that is used per heater element.

Table 4: Heater module parameters

The Stratix4 GX230 PFGA has 1288 multipliers, so it can fit maximum g_nof _mac4 = 322. The maximum
values for RAM and logic also depend on the size of the FPGA.

3.3 MM interface

Table 5 defines the clock and reset for the MM interface.

Doc.nr.: ASTRON-RP-416
UniBoard DESP e

Date:

Class.: Public
8/16

ASTRON

Signal Type Description
mm_clk CLOCK | Clock input for the MM interface side of the heater module
mm_rst RESET Reset input for the MM interface side of the heater module

Table 5: Heater MM interface clock and reset

Table 6 defines the interface signals for the heater MM slave register of Table 2.

Signal Type Description

sla_out.rddata[31:0] | MISO Read data word, valid 1 clock cycle after rd
sla_in.address[3:0] | MOSI Word address range to fit the module registers of Table 1
sla_in.wrdata[31:0] | MOSI Write data word, must be valid with wr

sla_in.wr MOSI Write strobe

sla_in.rd MOSI Read strobe

Table 6: Heater MM register interface

In an SOPC system the MM interface signals from Table 5 and Table 6 get connected automatically.

3.4 ST interface

Table 5 defines the clock and reset for the ST interface.

Signal Type Description
st_clk CLOCK Clock input for the ST interface side of the heater module
st _rst RESET Reset input for the ST interface side of the heater module

Table 7: Heater ST interface clock and reset

The ST interface clock and reset are used for running the heater elements. The ST interface of the heater
does not source or sink external data.

In an SOPC system the ST interface signals from Table 7 can be connected to an internal clock (e.g. from a
PLL in the SOPC system) or via conduit [3] input pins.

3.5 Other interfaces

The heater module has no other interfaces than MM or ST.

Doc.nr.: ASTRON-RP-416
UniBoard DESP e

Date:

Class.: Public
9/16

ASTRON

4 Application

4.1 SOPC design

Thanks to a VHDL wrapper component and a hardware description TCL file, see Appendix 8, the heater
module is also available within SOPC Builder [2]. Figure 3 shows the heater module called avs_util_heater in
an SOPC system. From the SOPC Builder GUI it is possible to set the heater module parameters that were
described in section 3.2.

The example sopc_base SOPC system is instantiated in the unb_base.vhd node design. For more
information on instantiating an SOPC system in a UniBoard node design see [6].

Fie Edit Module System View Tools Niosll Help

System Contents | System Generation

Component Library Target Clock Seftings
Project Devioe Feamily Name Source WHz
-~ New component clk_0 External 25,0
Library sys_clk [altpll_0.c0 125,0
- © udp_packet_assdis
-Avalon Verification Suite
-Bridges and Adapters
Interface Protocols Use | Conn..| Module Hame Description Clock Base End Tags RQ
Legacy Components B sysid System 1D Peripheral
#-Memories and Memory Controler: — control_slave |Avalon Memory Mapped Slave sys_clk 0x000438£0 (0200043857
-Peripherals B altpll_0 |Avalon ALTPLL sys_chk ™ ays_util_heater - avs_util_heater 0
FPLL f—] pll_slave |Avalon Memory Mapped Slave clk_0 0x000438a0 (0200043825
FecesSorAions B onchip_memory2_0 |On-Chip Memory (RAM or ROM) “ avs util heater
.“Z’L“SEE““’S — 5 &1 |Avalon Memory Mapped Slave sys_clk 0x00020000 |0x0003£££5 avs_ull_hester
jtag_uart_0 WTAG UART ”
Uniboard > avalon_jtag_slave |Avalon Memory Mapped Slave sys_clk 0x00043820 (0200043227 || [~ Block Diagram
' avs_common_reg_r_w B cpu_0 Nios Il Processor
* avs_eth — instruction_master |Avalon Memory Mapped Master sys_clk
' avs_i2c_master — data_master |Avalon Memory Mapped Master IRQ 0] IRO canduit
* avs_mdio > tag_debug_module [Avalon Memory Mapped Slave 0x00042800 (0x00042£55 conduit
* avs_util_heater B timer_0 Interval Timer clock
* eth_gen = &1 |Awvalon Memory Mapped Slave sys_clk 0x00043880 |0x0004383% reset
* eth_mon B pio_system_info PIO (Parallel O} avalon
+Wideo and Image Processing [— =1 Avalon Memory Mapped Slave sys_clk 0x000436b0 (0200043805
Bl pio_wdi PIO (Paralel VO} ~ Parameters
[— 1 |Avalon Memory Mapped Slave sys_clk 0x000438d0 (0x000432dE o_nof_mace: [3
Bl pio_debug_wave PIO (Paralel VO}
[— =1 |Avalon Memory Mapped Slave sys_clk 0x000438c0 (0x00043825 g_pipsine: |
Bl avs_i2c_master_sens |avs_i2c_master g_nof_ram |1
[— control |Avalon Memory Mapped Slave sys_clk 0x00043828 |0x000438e
[— pratocol |Awalon Memory Mapped Slave 0x00023000 ERae 10
[— result |svalon Memory Mapped Slave 0x00043400
B avs_eth_0 avs_eth
[— mms_tse \Avalon Memory Mapped Slave sys_clk 0x00040000 (0x00040££5
[— mms_reg \Avalon Memory Mapped Slave 0x00043800 (0x0004383F
[— mms_ram |Avalon Memory Mapped Slave 0x00041000 [0x00041EEE
< | = |_heater_0
req |Avalon Memory Mapped Slave sys_clk 0x00043840 |0x00043)
L Ix
Edt Al emove | [£ =|[«][~][= Fiter: Defaut

/i, Warning: cpu_0.data_masterlavs_i2c_master_sens.protocol: avs_i2c_master_sens.protocol does not have byteenables. Narrow (less than 32-bit) writes from cpu_0.data_master will resutt in spurious writes to avs_i2c_master_sens.protocol
/i, Warning: cpu_0.data_masteriavs_i2c_master_sens.result avs_i2c_master_sens.result does not have byteenables. Narrow (less than 32-bit) writes from opu_0.data_master wil result in spurious writss to avs_i2c_master_sens.result
@ Info: pio_system_info: PIC inputs are not hardwired in test bench. Undefined values wil be read from PIO inputs during simulation.

< | [

oo [renr) o]

Figure 3: SOPC Builder system sopc_base with the heater module

4.2 Synthesis

4.2.1 Design

The example unb_base design with the sopc_base SOPC system including the heater can run on all of the 8
FPGA nodes of the UniBoard. Appendix 8 list the Quartus Il project and settings files for synthesizing the
unb_base design.

Doc.nr.: ASTRON-RP-416
UniBoard DESP e

Date:

Class.: Public
10/16

ASTRON

4.2.2 Module

There is also a Quartus Il project for synthesizing the avs_util_heater.vhd without pin assignments. This is
useful to quickly verify the effect of the generics on the synthesis result.

4.3 Software main

The sopc_base SOPC Builder system of Figure 3 also contains a Nios Il microprocessor. Therefore the
software that runs on the Nios Il determines how the unb_base example design behaves. The
unb_base_heater/main() example from Appendix 8 can run on the design. Other software can also run on
the design, it is not necessary to synthesize the logic again when the software has changed. The compiled
software image is loaded into the on chip memory component that is connected to the Nios Il in Figure 3.

4.4 Known issues

There are no known issues with the heater module.

Doc.nr.: ASTRON-RP-416
UniBoard DESP e

Date:

Class.: Public
11/16

ASTRON

5 Design

5.1 Architecture

Figure 4 shows the block diagram of the heater module. Each MAC4 heater element contains 4 multipliers
that get their input from a set of PRSG sources. The output of the heater element is narrowed down to a
single bit signal that can be read via the MM register. Using the output ensures that the heater element will
not get optimized away by synthesis.

PRSG
0 P MAC4 heater element [0]
1 pr MAC4 heater element [1]
wr: en
rd: xor
reg
g_nof_mac4-1 > MAC4 heater element [g_nof _mac4-1]
MM I

Figure 4: Top level block diagram of the heater module

Doc.nr.: ASTRON-RP-416
UniBoard DESP e

Date:

Class.: Public
12/16

ASTRON

6 Implementation

6.1 Control

The control register in Figure 4 uses the common_reg_r_w.vhd component from the $UNB common library
[4].

The enable bits written to the control register are put across the mm_clk domain to the st_clk domain shown
in Figure 2 by passing each bit via a common_async.vhd synchronization component. Similar the
corresponding XOR bits that can be read via the control register are put across from the st_clk domain to the
mm_clk domain via a common_async.vhd synchronization component. It is not necessary to use
common_reg_cross_domain.vhd, see [5], because the register bits are used independently (i.e. not
interpreted as numbers > 1).

6.2 Heater element

Figure 5 shows the block diagram of a heater element as used in Figure 4. The MAC4 uses 4 18x18
multipliers, the pipeline uses flip flops (or RAM blocks), the FIFO uses RAM blocks and the logic uses LUTs
and flip flops, so together with the number of heater elements this allows the heater module to use an
arbitrary mix of internal FPGA resources. The configuration is done via generics as defined in Table 4.

en
! 5l macd |l pipeline || FIFO || XOR || logic

Xor

g_pipeline g_nof_ram g_nof_logic

Figure 5: Block diagram of the heater element

The MACA4 block uses the RTL implementation of common_mult_add4.vhd. The generics for the
common_mult_add4 are set such that the MAC4 maps efficiently on the Stratix IV DSP blocks [1]. The
pipeline block uses the common_pipeline.vhd. For larger g_pipeline settings the synthesis tool may
implement this logic in RAM blocks. The FIFO block uses the common_fifo_sc.vhd, Typically g_nof ram
should be a power of 2, possibly because of the internal (Gray-encoded) addressing in the FIFO. The logic
block uses util_logic.vhd. The difference between common_pipeline and util_logic is that in util_logic each
register stage input is the XOR of its own feed back output and the output from the preceding register stage.
This is necessary to avoid that the synthesis tool may implement the logic in RAM blocks. The final XOR is
used to reduce the multi-bit vector signal into a single bit element output signal and is available as a function
in the common(pkg).vhd. The common components come from the common library [4].

Doc.nr.: ASTRON-RP-416
UniBoard DESP e

Date:

Class.: Public
13/16

ASTRON

7 Verification

7.1 Simulation

7.1.1 Test bench for the heater module

The tb_util_heater is a VHDL test bench to verify the util_heater module in Modelsim. The test bench uses
the procedures listed in Table 8 to more easily access the MM register in the heater module.

Item Description

proc_mm_access() Used by proc_util_heater_wr() and proc_util_heater_rd() to do the low level control
for a write or a read access.

proc_util_heater wr() | Write a word to an address in the heater register.

proc_util_heater rd() | Read a word from an address in the heater register.

Table 8: Heater register access procedures

The p_mm_stimuli process in the VHDL test bench of Figure 6 uses the procedures from Table 8 to access
the MM register in the heater module. The test bench is not self checking. The proper behaviour of the
internal heater elements needs to be observed in the Modelsim Wave window.

DUT

util_heater

0

p_mm_stimuli

MM

Figure 6: Architecture of tb_util_heater to verify the heater module

7.1.2 Test bench for the unb_base SOPC design with the heater module

By running the unb_base_heater/main.c program from Appendix 8 on the Nios Il it is possible to run a design
with the heater module as Nios Il peripheral in simulation. This main() program calls the heater control
function from Table 3 to switch the heater elements on or off at regular intervals. The VHDL test bench
tb_unb_base can be used to verify the unb_base design in simulation, see [6] for more information.

7.2 Target hardware

By enabling more or less heater elements in a design that runs on the 8 FPGAs of the UniBoard it is possible
to verify the power consumption for different loads. By changing the ST clock frequency (< the maximum
clock frequency constraint that was set for synthesis, see Appendix 8) it is possible to verify the power
consumption in relation to the clock frequency.

The power consumption can be derived from the voltage and current readings of the 48 V power supply or
by reading the measurements from the I°C hot swap controller sensor via UniBoard back node 3.

Doc.nr.: ASTRON-RP-416
UniBoard DESP e

Date:

Class.: Public
14 /16

ASTRON

8 Appendix: List of files

Not all files for the heater module and the unb_base example design in the SVN repository [4] are listed in
this section, only the top level files, packages, test benches and the project files. For more general
information on how to use the files see [6].

8.1 Firmware VHDL

8.1.1 Heater module

The heater module hardware files are kept at: $UNB/Firmware/modules/util

File Description

util_heater.vhd Heater module implementation of Figure 4 and Figure 5

tb_util heater.vhd Test bench of Figure 6 to verify the heater module in the Modelsim Wave window
avs_util_heater.vhd Heater module wrapper for standard Avalon Interface 10 [3].

avs_util_heater hw.tcl Hardware description file to make the module available in SOPC builder

Table 9: Source files for the heater module

8.1.2 Heater example design

The unb_base design serves as example design for the heater module and is kept at:

$UNB/Firmware/designs/unb_base/

File Description

sopc_base.sopc SOPC Builder system of Figure 3
unb_base.vhd Example SOPC design with the heater module
tb_unb_base.vhd VHDL test bench for unb_base.vhd.

Table 10: Source files for the unb_base example design that uses the heater module

8.2 Software C, H

8.2.1 Module

The heater module software files are kept at: $UNB/Firmware/software/modules/src

File Description

avs_util_heater_regs.h Constants and macros to MM access the heater module.
avs_util_heater.h Public functions to control the heater module.
avs_util_heater.c Implements for avs_util_heater.h

Table 11: Module software C, H files

8.2.2 Main

The heater module software main files are kept at: $UNB/Firmware/software/apps

Doc.nr.: ASTRON-RP-416
UniBoard DESP e

Date:

Class.: Public
15/16

ASTRON

File

Description

unb_base heater/main.c

Enable or disable the heater elements.

Table 12: Application software main C files

8.3 Simulation

The simulation project files are located in:

SUNB/Firmware/modules/util/build/sim/modelsim/ = for heater module util_lib library.
SUNB/Firmware/designs/unb_base/build/synth/quartus/sopc_base_sim/ - for the unb_base design.

File

Description

util.mpf

Modelsim project file that builds the util_lib module library and provides the
simulation configurations for the heater module test benches of Table 9.

unb_base.mpf

Modelsim project file for the unb_base design. Builds the unb_base work library
and provides the simulation configurations for the test bench.

Table 13: Simulation project files

8.4 Synthesis

The synthesis files are kept at:

SUNB/Firmware/modules/util/build/synth/quartus - for heater module.
$UNB/Firmware/designs/unb_base/build/synth/quartus/ - for the unb_base design.

File

Description

avs_util_heater.gpf, gsf

Quartus Il Project and Settings File for avs_util_heater.

unb_base.qpf, gsf

Quartus Il Project and Settings File for unb_base

Table 14: Synthesis project and settings files

UniBoard

16/16

Doc.nr.: ASTRON-RP-416

DESP Rev.:

Date:

Class.: Public

