
A
S

TR
O

N
-F

O
-0

17
 2

.0

 UniBoard
Doc.nr.: ASTRON-RP-1399
Rev.: 0.2
Date: 22-01-2014
Class.: Public

1 / 18

 Selection and Reorder modules

 Organisatie / Organization Datum / Date
 Auteur(s) / Author(s):

Harm Jan Pepping ASTRON 1 August 2013

Controle / Checked:

Eric Kooistra ASTRON

Goedkeuring / Approval:

Andre Gunst ASTRON

Autorisatie / Authorisation:

Handtekening / Signature
Andre Gunst

ASTRON

© ASTRON 2011
All rights are reserved. Reproduction in whole or in part is
prohibited without written consent of the copyright owner.

 UniBoard
Doc.nr.: ASTRON-RP-1399
Rev.: 0.2
Date: 22-01-2014
Class.: Public

2 / 18

Distribution list:

Group: Others:

Andre Gunst
Eric Kooistra
Daniel van der Schuur

Gijs Schoonderbeek
Sjouke Zwier
Harro Verkouter (JIVE)
Jonathan Hargreaves (JIVE)
Salvatore Pirruccio (JIVE)

Document history:

Revision Date Author Modification / Change

0.1 2013-08-01 Harm Jan Pepping Creation

0.2 2014-01-22 Harm Jan Pepping Added paragraph 3.5 explaining the
create_settings method in the python driver.

 UniBoard
Doc.nr.: ASTRON-RP-1399
Rev.: 0.2
Date: 22-01-2014
Class.: Public

3 / 18

Table of contents:

1 Introduction .. 5

1.1 Mode of operation ... 5
1.1.1 ss_reorder ... 5
1.1.2 ss .. 5
1.1.3 ss_wide ... 5
1.1.4 ss_parallel ... 6

2 Firmware interface ... 7

2.1 Clock domains .. 7
2.2 ss_reorder ... 7
2.3 ss .. 8
2.4 ss_wide ... 8
2.5 ss_parallel ... 9

3 Software interface ... 10

3.1 Register span ss_reorder ... 10
3.2 Register span ss ... 11
3.3 Register span ss_wide ... 11
3.4 Register span ss_parallel ... 12

3.4.1 Span width ss_reorder_in ... 12
3.4.2 Span width ss_reorder_out ... 12
3.4.3 Span width of ss_wide .. 12

4 Implementation .. 15

4.1 ss_reorder ... 15
4.2 ss .. 15
4.3 ss_wide ... 16
4.4 ss_parallel ... 16

5 Verification ... 16

5.1 ss_reorder ... 16
5.2 ss .. 16
5.3 ss_wide ... 17
5.4 ss_parallel ... 17

6 Validation ... 17
7 Appendix – list of files.. 18

7.1 Firmware VHDL .. 18
7.2 Testbench ... 18

 UniBoard
Doc.nr.: ASTRON-RP-1399
Rev.: 0.2
Date: 22-01-2014
Class.: Public

4 / 18

Terminology:

EOP Start Of Packet
MM Memory-Mapped
MOSI Master Out Slave In
RAM Random Access Memory
Signal Path Time series signal
SISO Source In Sink Out
SOP Start Of Packet
SOSI Source Out Sink In
Subband Frequency signal

References:

1. $UNB/Firmware/modules/Lofar/ss/tb/vhd
2. Daniel van der Schuur, Uniboard Firmware Compilation Guide: Reference design unb_minimal,

ASTRON-RP-1354, September 2012
3. $UNB/Firmware/modules/Lofar/ss/tb/python
4. $UPE/peripherals/ss_parallel.py

 UniBoard
Doc.nr.: ASTRON-RP-1399
Rev.: 0.2
Date: 22-01-2014
Class.: Public

5 / 18

1 Introduction
The ss (subband select) library offers components to be used in applications that require on the fly selection
and reordering of data. The name subband select suggests that the components only apply to a stream that
contain subbands but that is not the case. In fact any time of data can be selected or reordered. The next
paragraph shows the different operation types of the modules included in the ss library. Note that the
modules presented in this document should be used as building blocks for selection and/or reorder solutions
for any type of streaming application.

1.1 Mode of operation

1.1.1 ss_reorder

The ss_reorder unit composes output streams based on samples that are available on the input streams. A
writable selection memory holds an output configuration for every clock sample within a frame. Figure 1
shows an example of ss_reorder instantiation, based on 4 inputs, 6 outputs and an input and output
frame_size of 5. On the left the input frames are show and on the right the output frames are shown. The
selection array in the symbol gives the output configuration (for all 6 outputs) for every clock cycle in the
frame. The selection register must be interpreted from right to left.

0

1

2

3

0

1

2

3

4

5

ss_reorder

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

00 01 02 03 04

00 01 02 13 24

10 11 12 13 14

30 31 22 13 04

30 31 32 33 34

00 11 22 33 340: 330100
1: 331100
2: 232100
3: 133110
4: 033120

selection:

Figure 1 ss_reorder unit with 4 inputs and 6 outputs

1.1.2 ss

When considering the input frames and the output frames of Figure 1, it can be said that the ss_reorder unit
facilitates the vertical movement from input to output. Horizontal movement however is facilitated by the ss
unit. The ss unit uses a dual paged memory to store an incoming frame and simultaneously read the other
page creating the output stream. The frame-size of the output stream can be different from the input
frame_szie. The read order of the memory is defined by a writable and readable selection memory. Figure 2
shows an ss unit with an input frame and an output frame. The selection string in the symbol represents the
content of the selection memory. Note that the ss unit works with a single stream.

ss
00 01 02 03 04 05 06 07 06 05 04 03 02 01

654321

selection:

Figure 2 ss unit input frame_size = 8, output frame_size = 6

1.1.3 ss_wide

The ss_wide unit facilitates horizontal movement of samples within a frame on multiple streams. It can be
considered as a set of stacked ss units. For each stream a unique selection memory is available. Note that it

 UniBoard
Doc.nr.: ASTRON-RP-1399
Rev.: 0.2
Date: 22-01-2014
Class.: Public

6 / 18

is not possible to move data from one stream to another, although each stream has it’s own unique selection
memory. Figure 3 shows a ss_wide unit with four inputs, input frame-size of 8 and output frame_size of 6.
The content of the selection memory is given in the symbol.

ss_wide
00 01 02 03 04 05 06 07 06 05 04 03 02 01

0: 654321

selection:
10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37

15 15 15 13 13 13

20 22 26 24 25 27

31 32 34 33 32 31

1: 555333
2: 026457
3: 124321

Figure 3 ss_wide unit with 4 inputs

1.1.4 ss_parallel

When ss_wide is combined with one or two instances of ss_reorder is becomes possible to make both
horizontal and vertical movements in one go, which provides the ability to transform any input matrix to any
desired output matrix. In this context a matrix is defined as a number of input streams (nof_inputs) by a
number of samples in a frame (frame_size). This combination of ss_wide and ss_reorder units is the basic
principal of the ss_parallel unit. An example is shown in Figure 4 that converts a 4x2 matrix to a 2x4 matrix.

ss_parallel

00 01 02 03

03 02

10 11 12 13

00 11

01 13

ss_reorder
IN

0: 1000
1: 0010
2: 1000

selection:

ss_wide

0: 32

selection:

1: 01
2: 13

ss_reorder
OUT

0: 3210
1: 3210

selection:

10 12

3: 0100
3: 02

Figure 4 ss_parallel unit

 UniBoard
Doc.nr.: ASTRON-RP-1399
Rev.: 0.2
Date: 22-01-2014
Class.: Public

7 / 18

2 Firmware interface
This chapter covers all firmware interface related topics for the modules of interest in the ss library. Every
module is described in terms of parameters and interface signals.

2.1 Clock domains
All modules described have two clock domains: the mm_clk and the dp_clk domain. Where the mm_clk
domain is used for interfacing with the host/control application and the dp_clk is the clock that drives the
datapath.

2.2 ss_reorder
The parameters that define an instantiation of the ss_reorder module are listed in Table 1.
Generic Type Value Description
dsp_data_w NATURAL 16 Specifies the width of the input data for both real and imaginary

part.
frame_size NATURAL 256 The size of the incoming frames.
nof_inputs NATURAL 8 The number of parallel streaming inputs.
nof_outputs NATURAL 16 The number of parallel streaming outputs.
ram_init_file STRING “UNUSED” String that holds the path and filename to an initialization file for

the selection ram.
pipeline_in NATURAL 1 Specifies the number of pipeline input registers.
pipeline_in_m NATURAL 1 Pipeline registers rfor M-fold fan out.
pipeline_out NATURAL 1 Specifies the number of pipeline output registers.

Table 1: ss_reorder parameters

The interface signals of the ss_reorder module are shown in Figure 5 and Table 2 lists the general
specifications of these interfaces.

Figure 5: interface signals ss_reorder

Interface Type Size or Span Description
input_sosi_arr t_dp_sosi_arr nof_inputs Array of streaming inputs.
output_sosi_arr t_dp_sosi_arr nof_outputs Array of streaming outputs.
output_siso_arr t_dp_siso_arr nof_outputs Array of streaming outputs.
ram_ss_reorder_mosi t_mem_mosi frame_size A mosi interface to read and

write the selection settings.
ram_ss_reorder_miso t_mem_miso frame_size A miso interface to read and

write the selection settings.
dp_clk std_logic na Datapath clock
dp_rst std_logic na Datapath reset
mm_clk std_logic na Memory mapped interface clock
mm_rst std_logic na Memory mapped interface reset

Table 2: interface signals ss_reorder

ss_reorder
(ss_lib)

mm_rst
mm_clk

dp_rst
dp_clk

input_sosi_arr
output_siso_arr
output_sosi_arr

ram_ss_reorder_mosi
ram_ss_reorder_miso

 UniBoard
Doc.nr.: ASTRON-RP-1399
Rev.: 0.2
Date: 22-01-2014
Class.: Public

8 / 18

2.3 ss
The parameters that define an instantiation of the ss module are listed in Table 3.
Generic Type Value Description
dsp_data_w NATURAL 16 Specifies the width of the input data for both real and

imaginary part.
use_output_rl_adapter BOOLEAN FALSE When TRUE adapt output Ready Latency to 1 else the

output Ready Latency is equal to 2 which is fine if no
flow control is needed.

nof_ch_in NATURAL 512 The frame_size of the incoming stream.
nof_ch_sel NATURAL 384 The frame_size of the outgoing stream. Value must be

smaller than nof_c_in.
select_file_prefix STRING “UNUSED” String containing path to initialization files for the

selection ram.

Table 3: ss_reorder parameters

The interface signals of the ss module are shown in Figure 6 and Table 4 lists the general specifications of
these interfaces.

ss
(ss_lib)

mm_rst
mm_clk

dp_rst
dp_clk

input_sosi
output_siso
output_sosi

ram_ss_ss_mosi
ram_ss_ss_miso

Figure 6: interface signals ss

Interface Type Size or Span Description
input_sosi t_dp_sosi na Streaming input.
output_sosi t_dp_sosi na Streaming output.
output_siso t_dp_siso na Streaming output.
ram_ss_ss_mosi t_mem_mosi nof_ch_sel A mosi interface to read and write the

selection settings.
ram_ss_ss_miso t_mem_miso nof_ch_sel A miso interface to read and write the

selection settings.
dp_clk std_logic na Datapath clock
dp_rst std_logic na Datapath reset
mm_clk std_logic na Memory mapped interface clock
mm_rst std_logic na Memory mapped interface reset

Table 4: interface signals ss

2.4 ss_wide
The parameters that define an instantiation of the ss_wide module are listed in Table 5.
Generic Type Value Description
wb_factor NATURAL 4 The wideband factor, defining the number of parallel

input and output streams.
dsp_data_w NATURAL 16 Specifies the width of the input data for both real and

imaginary part.
nof_ch_in NATURAL 512 The frame_size of the incoming streams.
nof_ch_sel NATURAL 384 The frame_size of the outgoing streams. Value must be

smaller than nof_c_in.

 UniBoard
Doc.nr.: ASTRON-RP-1399
Rev.: 0.2
Date: 22-01-2014
Class.: Public

9 / 18

select_file_prefix STRING “UNUSED” String containing path to initialization files for the
selection rams.

Table 5: ss_wide parameters

The interface signals of the ss module are shown in Figure 7 and Table 6 lists the general specifications of
these interfaces.

ss_wide
(ss_lib)

mm_rst
mm_clk

dp_rst
dp_clk

input_sosi_arr
output_siso_arr
output_sosi_arr

ram_ss_ss_wide_mosi
ram_ss_ss_wide_miso

Figure 7: interface signals ss_wide

Interface Type Size or Span Description
input_sosi_arr t_dp_sosi na Array of streaming inputs.
output_sosi_arr t_dp_sosi na Array of streaming outputs.
output_siso_arr t_dp_siso na Array of streaming outputs.
ram_ss_ss_wide_mosi t_mem_mosi nof_ch_sel A mosi interface to read and write the

selection settings for all ss units within
ss_wide.

ram_ss_ss_wide_miso t_mem_miso nof_ch_sel A miso interface to read and write the
selection settings for all ss units within
ss_wide.

dp_clk std_logic na Datapath clock
dp_rst std_logic na Datapath reset
mm_clk std_logic na Memory mapped interface clock
mm_rst std_logic na Memory mapped interface reset

Table 6: interface signals ss_wide

2.5 ss_parallel
The parameters that define an instantiation of the ss_parallel module are listed in Table 7.
Generic Type Value Description
dsp_data_w NATURAL 16 Specifies the width of the input data for both real and imaginary

part.
frame_size_in NATURAL 256 The size of the incoming frames.
frame_size_out NATURAL 192 The size of the outgoing frames.
nof_inputs NATURAL 8 The number of parallel streaming inputs.
nof_outputs NATURAL 16 The number of parallel streaming outputs.
nof_internals NATURAL 16 String that holds the path and filename to an initialization file for

the selection ram.

Table 7: ss_parallel parameters

The interface signals of the ss_parallel module are shown in Figure 8 and Table 8 lists the general
specifications of these interfaces.

 UniBoard
Doc.nr.: ASTRON-RP-1399
Rev.: 0.2
Date: 22-01-2014
Class.: Public

10 / 18

ss_parallel
(ss_lib)

mm_rst
mm_clk

dp_rst
dp_clk

input_sosi_arr
output_siso_arr
output_sosi_arr

ram_ss_reorder_in_mosi
ram_ss_reorder_in_miso

ram_ss_reorder_out_mosi
ram_ss_reorder_out_miso

ram_ss_ss_wide_mosi
ram_ss_ss_wide_miso

Figure 8: interface signals ss_parallel

Interface Type Size or Span Description
input_sosi_arr t_dp_sosi_arr nof_inputs Array of streaming inputs.
output_sosi_arr t_dp_sosi_arr nof_outputs Array of streaming outputs.
output_siso_arr t_dp_siso_arr nof_outputs Array of streaming outputs.
ram_ss_reorder_in_mosi t_mem_mosi frame_size_in A mosi interface to read and write the

selection settings for the input reorder
unit.

ram_ss_reorder_in_miso t_mem_miso frame_size_in A miso interface to read and write the
selection settings for the input reorder
unit.

ram_ss_reorder_out_mosi t_mem_mosi frame_size_out A mosi interface to read and write the
selection settings for the output reorder
unit.

ram_ss_reorder_out_miso t_mem_miso frame_size_out A miso interface to read and write the
selection settings for the output reorder
unit.

ram_ss_ss_wide_out_mosi t_mem_mosi nof_internals*
frame_size_out

A mosi interface to read and write the
selection settings for the ss unit.

ram_ss_ss_wide_out_miso t_mem_miso nof_internals*
frame_size_out

A miso interface to read and write the
selection settings for the ss unit.

dp_clk std_logic na Datapath clock
dp_rst std_logic na Datapath reset
mm_clk std_logic na Memory mapped interface clock
mm_rst std_logic na Memory mapped interface reset

Table 8: interface signals ss_parallel

3 Software interface
This chapter describes the software interface for all ss modules.

3.1 Register span ss_reorder
The register span of the ss reorder module consists of a number of 32-bit registers. The exact number of
registers depends of the input frame size, the nof_inputs and the nof_outputs. The bitwidth of a selection
word is defined as follows: bitwidth_selection_word = ceil_log2(nof_inputs)*nof_outputs. In case it is larger
than 32-bit the selection word is divided over multiple 32-registers. The register definition for an ss_reorder
unit with nof_input = 8 and nof_output = 4 is shown in Figure 9. The register consists of 4 times 3 bits that
define the connection between input ports and output ports.

 UniBoard
Doc.nr.: ASTRON-RP-1399
Rev.: 0.2
Date: 22-01-2014
Class.: Public

11 / 18

11 0

Output 0Output 1Output 2Output 3

235689..

Figure 9 Register definition ss_reorder

Table 9 shows the register map for a ss_reorder with input frame_size = 4, nof_inputs = 8 and nof_outputs =
12. So each selection_word is 36-bit and therefore the number of registers per selection word is 2.
Name Address

(words)
Size
(bits)

Read/
Write

Description

selection_0_lsb 0x0 32 r/w Register that holds the 32 least significant bits of
the selection word for sample 0 from input frame.

selection_0_msb 0x1 4 r/w Register that holds the 4 most significant bits of the
selection word for sample 0 from input frame.

selection_1_lsb 0x2 32 r/w Register that holds the 32 least significant bits of
the selection word for sample 1 from input frame.

selection_1_msb 0x3 4 r/w Register that holds the 4 most significant bits of the
selection word for sample 1 from input frame.

selection_2_lsb 0x4 32 r/w Register that holds the 32 least significant bits of
the selection word for sample 2 from input frame.

selection_2_msb 0x5 4 r/w Register that holds the 4 most significant bits of the
selection word for sample 2 from input frame.

selection_3_lsb 0x6 32 r/w Register that holds the 32 least significant bits of
the selection word for sample 3 from input frame.

selection_3_msb 0x7 4 r/w Register that holds the 4 most significant bits of the
selection word for sample 3 from input frame.

Table 9 ss_reorder register (ram) span

3.2 Register span ss
Table 10 shows the register span for the ss module with the following parameters: nof_chan_in=256 and
nof_ch_sel=8. The size of the register is defined by ceil_log2(nof_chan_in). The number of registers is
defined by nof_ch_sel.

Name Address

(words)
Size
(bits)

Read/
Write

Description

selection_0 0x0 8 r/w Address that specifies sample 0 in the output frame.
selection_1 0x1 8 r/w Address that specifies sample 1 in the output frame.
selection_2 0x2 8 r/w Address that specifies sample 2 in the output frame.
selection_3 0x3 8 r/w Address that specifies sample 3 in the output frame.
selection_4 0x4 8 r/w Address that specifies sample 4 in the output frame.
selection_5 0x5 8 r/w Address that specifies sample 5 in the output frame.
selection_6 0x6 8 r/w Address that specifies sample 6 in the output frame.
selection_7 0x7 8 r/w Address that specifies sample 7 in the output frame.

Table 10 ss register (ram) span

3.3 Register span ss_wide
The register span of an ss_wide module is simply a concatenation of a series of ss modules register spans.
The span of each individual ss module is always a power of 2. Table 11 shows the register span for an
ss_wide unit with wb_factor=4, nof_ch_in =4, nof_ch_sel=3. Note the jumps in the addresses when going
from one channel to the next channel.

Name Address

(words)
Size
(bits)

Read/
Write

Description

 UniBoard
Doc.nr.: ASTRON-RP-1399
Rev.: 0.2
Date: 22-01-2014
Class.: Public

12 / 18

selection_0_0 0x0 2 r/w Address that specifies sample 0 in the output frame
of output channel 0.

selection_0_1 0x1 2 r/w Address that specifies sample 1 in the output frame
of output channel 0.

selection_0_2 0x2 2 r/w Address that specifies sample 2 in the output frame
of output channel 0.

selection_1_0 0x4 2 r/w Address that specifies sample 0 in the output frame
of output channel 1.

selection_1_1 0x5 2 r/w Address that specifies sample 1 in the output frame
of output channel 1.

selection_1_2 0x6 2 r/w Address that specifies sample 2 in the output frame
of output channel 1.

selection_2_0 0x8 2 r/w Address that specifies sample 0 in the output frame
of output channel 2.

selection_2_1 0x9 2 r/w Address that specifies sample 1 in the output frame
of output channel 2.

selection_2_2 0xA 2 r/w Address that specifies sample 2 in the output frame
of output channel 2.

selection_3_0 0xC 2 r/w Address that specifies sample 0 in the output frame
of output channel 3.

selection_3_1 0xD 2 r/w Address that specifies sample 1 in the output frame
of output channel 3.

selection_3_2 0xE 2 r/w Address that specifies sample 2 in the output frame
of output channel 3.

Table 11 ss_wide register (ram) span

3.4 Register span ss_parallel
The register span for an ss_parallel unit is a compilation of two ss_reorder spans and one ss_wide span.
Each register span has its own memory interface and therefor the span format of the ss_reorder_in and the
ss_reorder_out span can be found in paragraph 3.1 and the span definition for the ss_wide part is in
paragraph 3.3.

3.4.1 Span width ss_reorder_in

The register span of the ss_reorder_in part consists of a number of 32-bit registers. The exact number of
registers depends of the frame_size_in, the nof_inputs and the nof_internals. The bitwidth of a selection
word is defined as follows: bitwidth_selection_word = ceil_log2(nof_inputs)*nof_internals. In case it is larger
than 32-bit the selection word is divided over multiple 32-registers.

3.4.2 Span width ss_reorder_out

The register span of the ss_reorder_out part consists of a number of 32-bit registers. The exact number of
registers depends of the frame_size_in, the nof_internals and the nof_outputs. The bitwidth of a selection
word is defined as follows: bitwidth_selection_word = ceil_log2(nof_internals)*nof_outputs. In case it is larger
than 32-bit the selection word is divided over multiple 32-registers.

3.4.3 Span width of ss_wide

The total span of the ss_wide module is defined as nof_internals*ceil_log2(frame_size_out).

3.5 Python control for ss_parallel
In order to obtain the desired data at the output of the ss_parallel unit an algorhythm is developed that
determines the settings for ss_parallel(ss_reorder_in, ss_wide and ss_reorder_out) based on the desired

 UniBoard
Doc.nr.: ASTRON-RP-1399
Rev.: 0.2
Date: 22-01-2014
Class.: Public

13 / 18

output. The python peripheral used to control the ss_parallel unit has a method called create_settings. The
create_settings method uses two arguments to generate the return values result, Rin, Dram, Dsel, Rout and
Errout. The function of ss_parallel is to create an output matrix based on a given input matrix. Both in- and
output matrixes have ‘time’ and ‘number of streams’ as dimensions as shown in Figure 4.

3.5.1 Din and Dout

Argument Din represents the input matrix and it consists of elements that represent the coordinates of each
element. Every element has to have a unique coordinate. From the example in Figure 4 the following Din is
determined:

[[[0,0],[0,1],[0,2],[0,3]],
[[1,0],[1,1],[1,2],[1,3]]]

The Dout argument represents the desired output matrix based on the available elements from Din. From the
same example it follows that the Dout argument should be as follows:

[[[0,3],[0,2]],
[[0,0],[1,1]],
[[0,1],[1,3]],
[[1,0],[1,2]]]

Note that Dout can only contain elements (coordinates) that appear in Din. It is also possible to select a
certain element multiple times.

3.5.2 Method create_settings

Based on the provided Din and Dout the create_settings method will try to find the settings for the ss_parallel
unit. This includes settings for ss_reorder_in, ss_wide and ss_reorder_out. Create_settings uses four
internal matrixes to keep track of the progress: Rin, Rout, Dram and Dsel. Rin and Rout hold the settings for
both the ss_reorder_in and ss_reorder_out unit. Dram reflects the content of the dataram in the ss_wide unit
and Dsel contains the settings for the selection ram in the ss_wide units. This is displayed in Figure 10.

ss_parallel

Din(j,i)

J-1

0 I-1

Rin(k,i)

K-1

0 I-1
Dram(k,i)

K-1

0 I-1

Dsel(n,m)

N-1

0 M-1

N-1

0 M-1
Rout(n,m)

N-1

0 M-1
Dout(n,m)

I = frame_size_in
J = nof_input_streams
K = nof_internal_streams
M = frame_size_out
N = nof_output_streams

Figure 10 Matrixes in create_settings

The create_settings initializes the matrixes Rin and Rout with all zeros and matrixes Dram and Dsel with the
value -1. Then it iterates over the columns (M) and within each column it iterates over the number of outputs
(N). Within every iteration it first checks if the required Dout element is already placed in one of the rows of
the Dram. This is done with the method “locate_value”. If the value already exists in the Dram the settings for
Dsel and Rout can be derived from the found Dram location. The Dsel location must hold the column of the
found location and the Rout setting is based on the found row number. This is displayed in the upper row of
Figure 11.

 UniBoard
Doc.nr.: ASTRON-RP-1399
Rev.: 0.2
Date: 22-01-2014
Class.: Public

14 / 18

In case the current value is not found in the Dram ii must be found in Din. When the value is found in Din a
free and valid row in the Dram is needed. When this is found the settings for Rin, Dsel and Rout can be
derived as shown in the second row in Figure 11
.

Check if Dout[n][m]
is already in Dram

Dsel[x][m] = [y]
Rout[n][m] = [x]

Yes, in [x][y]

No

Check if Dout[n][m]
is in Din

Yes, in [p][q]

No

Dout[n][m] not
found in Din!!!

Find a free and valid
row in column [q]

of Dram

Yes, in [z] Rin[z][q] = [p]
Dsel[z][m] = [q]
Rout[n][m] = [z]

No

No valid spot found.
Mapping is not

possible

Figure 11 create_settings iteration

The python code looks like this and can be found in [4].

Rin = self.init_array(self.nofInternals, self.frameSizeIn, 0)
Rout = self.init_array(self.nofOutputs, self.frameSizeOut, 0)
Dram = self.init_array(self.nofInternals, self.frameSizeIn, [-1,-1])
Dsel = self.init_array(self.nofInternals, self.frameSizeOut, -1)

for m in range(self.frameSizeOut):
 for n in range(self.nofOutputs):
 location = self.locate_value(Dout[n][m], Dram, 0, 0)
 if(location != [-1, -1]):
 Dsel[location[0]][m] = location[1]
 Rout[n][m] = location[0]
 else:
 location = self.locate_value(Dout[n][m], Din, 0, 0)
 if(location == [-1, -1]):
 print "Value " + str(Dout[n][m]) + " not found in Din..."
 else:
 mem_row = self.find_free_spot(Dram, Dout[n][m], location[1], Dout, m, 0)
 if mem_row != -1 :
 Rin[mem_row][location[1]] = location[0]
 Dsel[mem_row][m] = location[1]
 Rout[n][m] = mem_row
 else:
 print "Not Found, not able to map"

 UniBoard
Doc.nr.: ASTRON-RP-1399
Rev.: 0.2
Date: 22-01-2014
Class.: Public

15 / 18

4 Implementation

4.1 ss_reorder
The ss_reorder unit is based on the common_select_m_symbols unit and a dual port selection memory as
shown in Figure 10. A counter is used to generate the read addresses for the selection words. The
common_select_m_symbols unit requires a concatenated input format where real and imaginary data of all
inputs is concatenated to one wide input word. The output is similar. The address counter increases as long
as valid data enters and at the end of a frame the counter is cleared using the eop signal. At the output the
data of the common_select_m_symbols unit is merged with the pipelined delayed sosi signals form the input.
The selection memory can

common_select_
m_symbols

(common_lib)

dual port ram
(common_lib)

input_sosi_array

counter
(common_lib)

ram_ss_reorder_mosi

ram_ss_reorder_miso

in_data

selectdat_b

adr_b

port a

count

valid cnt_ena
cnt_clreop

in_data

in_select

out_data out_data

output_sosi_array
pipeline reg_out

Figure 12 ss_reorder block diagram

4.2 ss
The ss unit was originally designed for the Lofar project and later on adapted to the Uniboard firmware
design environment. A block diagram is shown in Figure 11. The ss_store unit converts the incoming sosi
stream to a memory mapped mosi interface in order to store the data in the first page of the data memory.
When the last word of a frame is written the ss_retreive unit is notified by assertion of the store_done signal.
The ss_store unit will then continue writing in the second page. Meanwhile the ss_retreive unit reads out the

SELECTION

dual port ram
(common_lib)

DATA

dual paged
ram

(common_lib)

ss_store
(ss_lib)

input_sosi store_mosi retreive_mosi

retreive_miso

ss_retrieve
(ss_lib)

select_mosi

select_miso

retreive_sosi

retreive_siso

ram_ss_ss_mosi

ram_ss_ss_miso

dp
latency
adapter
(dp_lib)

dp paged
sop eop

reg
(dp_lib)

output_sosi

output_siso
nxt_page retreive_done

store_done

Figure 13 ss unit block diagram

 UniBoard
Doc.nr.: ASTRON-RP-1399
Rev.: 0.2
Date: 22-01-2014
Class.: Public

16 / 18

data from the first page based on the addresses in the selection memory. The retrieved data is composed
into a streaming output and then merged with the other sosi fields (eop, sop, bsn). The dp_latency adapter is
used to adapt the ready latency in case that is required. The selection memory holds the addresses of the
data to be read from the data memory. Note that the order of the addresses in the selection memory
determines the order of the data in the outgoing frame. The selection memory can be read and written via
the ram_ss_ss_mosi interface.

4.3 ss_wide
Two or more ss units placed in parallel are considered an ss_wide unit. Figure 12 shows an ss_wide unit
where two ss units are combined. A common_mem_mux unit is used to combine the memory mapped
interface to one single memory mapped interface.

ss
(ss_lib)

common_mem
_mux

(common_lib)

ram_ss_ss_mosi_arr(0)

ram_ss_ss_miso_arr(0)

input_sosi_arr(0)

output_sosi_arr(0)

ss
(ss_lib)

ram_ss_ss_mosi_arr(1)

ram_ss_ss_miso_arr(1)

input_sosi_arr(1)

output_sosi_arr(1)

ram_ss_ss_wide_mosi

ram_ss_ss_wide_miso

output_siso_arr(0)

output_siso_arr(1)

Figure 14 ss_wide unit block diagram

4.4 ss_parallel
The ss_parallel unit combines two ss_reorder blocks and an ss_wide unit as show in in Figure 13.

ss_wide
(ss_lib)

ss_reorder
(ss_lib)

input_sosi_arr

ram_ss_reorder_in_mosi

ram_ss_reorder_in_miso

ss_wide_in_sosi_arr

ram_ss_ss_wide_mosi

ram_ss_ss_wide_miso

ss_reorder
(ss_lib)

ss_wide_out_sosi_arr

ram_ss_reorder_out_mosi

ram_ss_reorder_out_miso
output_sosi_arr

output_siso_arr

Figure 15 ss_parallel block diagram

5 Verification

5.1 ss_reorder
Verification of the ss_reorder module is performed using the co-simulation approach that is also used in the
unb_minimal design. See [2] for more detail. The VHDL testbench can be found in [1] and is called
tb_mmf_ss_reorder.vhd. The accompanying python test case can be found in [3] and is called
tc_ss_reorder.py. The simulation is started by running ss_reorder.py that is also located in [3]. The script
automatically starts Modelsim. The script should be called as follows:

python ss_reorder.py --hold

The --hold arguments ensures that the konsole that outputs the ModelSim is not closed when the simulation
has finished.

5.2 ss
Simulation of the ss module is done using a “normal” VHDL testbench. The testbench can befound in [1] and
is called tb_ss. The tb_ss for the ss module verifies the data. It is also possible to simulate multiple instances

 UniBoard
Doc.nr.: ASTRON-RP-1399
Rev.: 0.2
Date: 22-01-2014
Class.: Public

17 / 18

with different settings for the ss module. This is done using the tb_tb_ss testbench that can also be found in
[1]. The header of the vhd file contains methods for proper usage.

5.3 ss_wide
The ss_wide module is simulated with a VHDL testbench called tb_ss_wide that can be found in [1]. The
header of the vhd file contains methods for proper usage.

5.4 ss_parallel
Verification of the ss_parallel module is performed using the co-simulation approach that is also used in the
unb_minimal design. See [2] for more detail. The VHDL testbench can be found in [1] and is called
tb_mmf_ss_parallel.vhd. The accompanying python test case can be found in [3] and is called
tc_ss_parallel.py. The simulation is started by running ss_parallel.py that is also located in [3]. The script
automatically starts Modelsim. The script should be called as follows:

python ss_parallel.py --hold

The script can be run with default settings. The default settings are the settings that are applied to the
bn_filterbank design for the Apertif project.

6 Validation
Validation of the selection and reorder modules is performed in several designs. In the bn_filterbank image
the ss_parallel module is instantiated.

 UniBoard
Doc.nr.: ASTRON-RP-1399
Rev.: 0.2
Date: 22-01-2014
Class.: Public

18 / 18

7 Appendix – list of files

7.1 Firmware VHDL
All VHDL source files that are used for the st module can be found in the following directory:

$UNB/Firmware/modules/Lofar/ss/src/vhdl

The next table gives an overview of the VHDL source files:

VHDL File Description
ss.vhd Subband select toplevel file for a single stream. Contains

ss_store, ss_retreive, selection memory and data memory.
ss_parallel.vhd Toplevel for a parallel subband select on multiple streams, based

on ss_wide and ss_reorder.
ss_reorder.vhd Contains reorder function for a parallel stream.
ss_retreive.vhd Building block for the ss unit for reading selected data back from

the data memory.
ss_store.vhd Building block for the ss unit for writing incoming data to the data

memory.
ss_wide.vhd A parallel configuration based on multiple ss units.

7.2 Testbench
The testbench files for simulation are in the following directory:

$UNB/Firmware/modules/Lofar/ss/tb/

	1 Introduction
	1.1 Mode of operation
	1.1.1 ss_reorder
	1.1.2 ss
	1.1.3 ss_wide
	1.1.4 ss_parallel

	2 Firmware interface
	2.1 Clock domains
	2.2 ss_reorder
	2.3 ss
	2.4 ss_wide
	2.5 ss_parallel

	3 Software interface
	3.1 Register span ss_reorder
	3.2 Register span ss
	3.3 Register span ss_wide
	3.4 Register span ss_parallel
	3.4.1 Span width ss_reorder_in
	3.4.2 Span width ss_reorder_out
	3.4.3 Span width of ss_wide

	3.5 Python control for ss_parallel
	3.5.1 Din and Dout
	3.5.2 Method create_settings

	4 Implementation
	4.1 ss_reorder
	4.2 ss
	4.3 ss_wide
	4.4 ss_parallel

	5 Verification
	5.1 ss_reorder
	5.2 ss
	5.3 ss_wide
	5.4 ss_parallel

	6 Validation
	7 Appendix – list of files
	7.1 Firmware VHDL
	7.2 Testbench

