ASTRON

Netherlands Institute for Radio Astronomy

UniBoard XAUI firmware module

Organisatie / Organization Datum / Date
Auteur(s) / Author(s):
Daniel van der Schuur ASTRON 11 September 2012
Controle / Checked:
Eric Kooistra ASTRON
Goedkeuring / Approval:
Andre Gunst ASTRON
Autorisatie / Authorisation:
Handtekening / Signature ASTRON
Andre Gunst

© ASTRON 2012
All rights are reserved. Reproduction in whole or in part is
prohibited without written consent of the copyright owner.

ASTRON-FO-017 2.0

Doc.nr.: ASTRON-RP-1348
Rev.: 0.1

Date: 11-9-2012

Class.: Public

UniBoard

1/16

Distribution list:

ASTRON

Group:

Others:

Andre Gunst
Eric Kooistra

Harm-Jan Pepping

Gijs Schoonderbeek

Sjouke Zwier

Harro Verkouter (JIVE)
Jonathan Hargreaves (JIVE)
Salvatore Pirruccio (JIVE)

Document history:

Revision Date Author Modification / Change
0.1 2012-09-11 Daniel van der Schuur Draft
Doc.nr. ASTRON-RP-1348
. Rev.: 0.1
UniBoard

2/16

Date: 11-9-2012
Class.: Public

ASTRON

Table of contents:

R [oo (U1 i o o F PP 5
1.1 PUIDOSE .ttt e e oo e e e e e e e e e e et e e e e as 5
1.2 T3 1 = L4 3 1RSSR 5

R R © 1o VS I A=V To B = RSP 5
1.2.2 SOMPCS XAUI TP ittt ettt et e ettt e e e ettt e e e e st e e e e e sntae e e e entaeaesansaeeeansbeeeeanees 5
1.3 MOAUIE OVEIVIBWttt ettt et e e o4 oo e bbbttt e e e e e e e anbbeee e e e e e e s e annbbeaeee e e e snnnbnbeeeaans 6

2 HAIOWAIE INTEITACE ..ottt et e oo e oottt e et e e e e e e s bbte e e e e e e e e e anbbeeeeaaeeesaannnbaneeeas 7
2.1 (O [oTo3 Q= T a0 I (=TT=T AT T | = | PSP 7
2.2 P AIAMEBLEIS ... e 7
2.3 a1 0=T = (ot o | F= LU PRRPRR 8

IS 10 1V T £] (=] o = ot PRSP 9
3.1 0TS0 =T [T 1S oSS 9
3.2 1Y L PRI 9

O B T o | E O O PO P PP OTPRR P 10
4.1 DN LI =T T D] | PSR 10
4.2 RX channel @ligNmMENt ...ttt e e et e e e e e e e st b ee e e e e e e sasbrneeeaeas 10
4.3 Y] L PSPPSR PRI 10

LI 0 4] o] (=T 0 4 [T 01 7= Vi o o PP PPRPRTN 11
5.1 LU €= LU T = 121 USRI 11
5.2 LU e T T (=)= 10 1 = PSRRI 11
5.3 o TTo T o] 0) VZ2 = | PP OTURRRPPPRI 12

I = =T (= g ToT o (=] To | o [P R O P PP PPRRRRRN 13

A 4= 1 1ex= L1 To] TSP PP 14
7.1 L1 0T 0)20 G- T 14
7.2 tb_tr_xaui_framer and th_tr_Xaui_deframer...........cccooiiiiiiiii e 14
7.3 L1 T - LU PRSP PPPP 14
7.4 Lo T gL Te (=R U o] o T - LU O TP T PP OU PP PPPP 14
7.5 Lo T 1 o T ¢ - L T 14
7.6 th MM _NOAE UND_ XAUI ...uiieiiiii e e e nnnnnnnne 14

Y Z 1o £ i o] o DO TSP PPUPPRPRTN 15
8.1 UND_tr Xaui — reVISION TN T XAUI....uuuieiieiiiiiiiiiieie e s e e e e s e s st e e e e e e e s e snnrraeeeeeeeseaanns 15
8.2 unb_tr_Xaui — revision UND 1 XAUIccciiiiiiiec e e e e e 15
8.3 (UL g Lo = L TR oAV 1S o) o R (G- LU SRR 15

LS T I 1 o) 1= SRR 16
9.1 Y710 To L1 L= £ - L TS 16
9.2 DESIGN UND T XU ...eeieiiiiie ettt e et e e e st e e e st b e e e e sttt e e s abneeeesabeeeeeas 16
9.3 PYLNON TEST CASE ...ttt e e st bt e e st b et e e s bb e e e sabe e e e s sabeeeeeas 16
9.4 /= T X o RS S 16

Doc.nr.: ASTRON-RP-1348
Rev.: 0.1

Date: 11-9-2012

Class.: Public

UniBoard

3/16

Terminology:

ASTRON

BN Back Node

BN_BI Back node — Backplane Interface

CcMU Clock Multiplier Unit

FN Front Node

FN_BN Front Node — Back Node

FPGA Field Programmable Gate Array

FSM Finite State Machine

Nof Number of

PCS Physical Coding Sublayer

PHY Physical layer

PMA Physical Media Attachment

RX Receive

SI_FN Serial Interface — Front Node

SOPC System On a Programmable Chip (Altera)

TR Transceiver

TX Transmit

XGB 10 Gigabit Breakout board

XGMII 10 Gigabit Media Independent Interface

XAUI 10 Gigabit Attachment Unit Interface

References:

1. ‘DP Streaming Module Description’, ASTRON-RP-382, Eric Kooistra
2. $UNB/Firmware/modules/diagnostics

3. https://svn.astron.nl/UniBoard_FP7/UniBoard/trunk, the UniBoard FP7 SVN repository (SUNB)
4. ‘Firmwarespecificatie voor 10G XAUI en 10GbE’, ASTRON-SP-048, Eric Kooistra
5. “DIAG module description”, ASTRON-RP-1313, Harm Jan Pepping
6. $UNB/Software/python/README.txt

4/16

UniBoard

Doc.nr.:
Rev.:
Date:

Class.:

ASTRON-RP-1348
0.1

11-9-2012

Public

ASTRON

1 Introduction

1.1 Purpose

The tr_xaui module provides the user with up to 3 duplex XAUI links with an equal number of 64-bit
streaming [1] TX inputs and RX outputs on the user side. In addition, an MDIO PHY can be instantiated for
each XAUI core, in case the XAUI cores interface to MDIO-compliant PHY chips — such as the Vitesse
transceiver chips on the front-node side of the UniBoard.

An internal mms_diagnostics instance is used to allow the user to send diagnostics data across the XAUI
links instead of user data. This mms_diagnostics instance is controlled with an MM interface.

1.2 Limitations

The number of XAUI PHY cores is limited to 3 per FPGA and can only be used on the front SI_FN interfaces
and the back BN_BI interfaces.

1.2.1 Only SI_FN and BN_BI

The FN_BN interface cannot be used because only 3 out of 4 lanes per bundle in the UniBoard mesh
(FN_BN) connect to hard-PCS transceivers. Altera’s XAUI IP currently only supports 4 hard-PCS
transceivers to be combined into one XAUI PHY. Also, one cannot combine randomly chosen hard-PCS
transceivers into one XAUI PHY; additional limitations exist with respect to the transceiver blocks the hard-
PCS transceivers belong to.

1.2.2 Soft-PCS XAUI IP

A quarter of the UniBoard FPGA transceivers lack a hard PCS. The VHDL supports the instantiation of a
fourth, soft-PCS XAUI core that might work with the fourth, PMA-only (no PCS) transceiver bundles, such as
[SI. FN_3 0..SI_FN_3 3]and [BN_BI 3 0..BN_BI 3 3]. This however has not been tested.

Doc.nr.: ASTRON-RP-1348
Rev.: 0.1

Date: 11-9-2012

Class.: Public

UniBoard

5/16

ASTRON

1.3 Module overview

mms_tr_xaui

XAUI'IP

Streaming TX interfaces [0..2] [0..2]

mms_diagnostics

Test data stream [0..2]

IXAUI PHY TX [0..2— =
<« XAUI PHY RX [0..2}

-4—MM interfac

h J

Test data stream [0..2]

Streaming RX interfaces [0..2]

MDIO PHY
[0..2] -4—MDIO PHY interfaces [0..2]—

. ar

«4———————————— MM interfaces [0..2] (optional)

Figure 1 — mms_tr_xaui overview

Figure 1 shows the top-level of mms_tr_xaui and its main components. The XAUI data paths are self-
regulating, i.e. there is no explicit control and/or monitoring required other than the flow control and status
signals within the streaming interfaces. The MDIO cores, re-used from LOFAR, are controlled automatically
(by VHDL) by an internal MDIO master, or externally via an optional array of MM interfaces.

The instantiated XAUI IP cores are generated by Altera’s MegaWizard, but could be replaced with IP from
any vendor.

Doc.nr.: ASTRON-RP-1348
Rev.: 0.1

Date: 11-9-2012

Class.: Public

UniBoard

6/16

2 Hardware interface

2.1 Clock

and reset signals

ASTRON

Figure 2 shows the clock and reset signals that exist in the tr_xaui module. The mm_rst signal is user
provided, the rx_rst and tx_rst signals are generated within mms_tr_xaui.

mms_tr_xaui

cal_rec_clk >XAU| IP[0..2]

Streaming TX interfaces [0..2]

tX_Clk————> mms_diagnostics
-t rst——— -

mm_clki

XAUI PHY TX 0.2 ——»

Test data stream [0..2]

A\

mm_rst;

4 rX_rst——yp——
4—rx_clk——r——

Test data stream [0..2]

XAUI PHY RX 0..2]

|

Streaming RX interfaces [0..2]

tr_clk———

MDIO
PHYI[0..2] |«—MDIO PHY interfaces [0..2]—#

Figure 2 —mms_tr_xaui clock clock and reset signals

Table 1 summarizes the clock signals for tr_xaui.

Name Frequency (MHz) Description

tr_clk 156.25 Reference clock for XAUI PHY and MDIO PHY

tx_clk 156.25 User-provided clock to clock in parallel TX data

rx_clk 156.25 Generated clock to clock out parallel RX data

mm_clk 50 MM clock for the memory-mapped bus shared with e.g. a NIOS
Il processor

cal_reconf_clk 37,5-50 Used to clock the calibration block inside the XAUI PHY

components. The frequency must be between 37.5 and 50MHz.

Table 1: tr_xa

ui clock signals

2.2 Parameters

Available parameters when instantiating the tr_xaui module are listed in Table 2.

7116

Doc.nr.: ASTRON-RP-1348
Rev.: 0.1

Date: 11-9-2012

Class.: Public

UniBoard

ASTRON

Generic Type Description

g_nof_xaui NATURAL The number of XAUI cores / interfaces

g_mdio BOOLEAN TRUE instantiates an MDIO core for each XAUI PHY

g_mdio_mm_ctrl | BOOLEAN TRUE enables external MM control of the MDIO cores (only when
g_mdio=TRUE); prevents the default auto MDIO master mdio_ctrl.vhd
from being instantiated.

Table 2: tr_xaui parameters

2.3

Interface signals

The interface signals of tr_xaui are listed in Table 3.

Interface Type Description

tx_sosi_arr t dp_sosi_arr Array (g_nof_gx-1..0) of streaming TX data ports, source to
sink (tr_xaui module). Data width = 64.

tx_siso_arr t dp_siso_arr Array (g_nof_gx-1..0) of flow control signals from tr_xaui TX
ports, sink to source.

rx_sosi_arr t dp_sosi_arr Array (g_nof_gx-1..0) streaming RX data ports, source (tr_xaui
module) to sink.

rx_siso_arr t dp_siso_arr Array (g_nof_gx-1..0) flow control signals to tr_xaui RX ports,
sink to source. Data width = 64.

xaui_rx t_xaui_arr Array of g_nof_xaui times 4 XAUI serial receiver lanes

xaui_tx t_xaui_arr Array of g_nof_xaui times 4 XAUI serial transmitter lanes

diagnostics_mosi | t_ mem_mosi MOSI interfaces to the mms_diagnostics instance

diagnostics_miso | t mem_miso MISO interfaces from the mms_diagnostics instance

mdio_mosi_arr

t mem_mosi_arr

interfaces to the MDIO cores.

mdio_miso_arr

t_ mem_miso_arr

interfaces from the MDIO cores

mdio_mdc

STD_LOGIC_VECTOR

SL array of g_nof xaui Management Data Clock outputs

mdio_mdat_in

STD_LOGIC_VE

CTOR | SL array of g_nof xaui Management Data inputs

mdio_mdat_out

STD_LOGIC_VE

CTOR

SL array of g_nof_xaui Management Data outputs

Table 3: interface signals

8/16

Doc.nr.. ASTRON-RP-1348
. Rev.: 0.1
U ni B O ard Date: 11-9-2012
Class.: Public

Optional (if g_mdio_mm_ctrl=TRUE) array of g_nof_xaui MOSI

Optional (if g_mdio_mm_ctrl=TRUE) array of g_nof_xaui MISO

ASTRON

3 Software interface

An mms_tr_xaui instance provides MM buses to control its internal mms_diagnostics module, and allows the
user to manually control the internal MDIO cores.

3.1 mms_diagnostics

[4] lists the register layout and contents of mms_diagnostics. Generic g_nof_streams equals the number of
instantiated XAUI modules: g_nof_xaui.

3.2 MDIO

The MM registers available for optional manual control of the MDIO instances are listed in Table 4. The
mdio_phy reg provides an MM interface for the mdio_phy module and, when instantiated by setting generic
g_mdio_mm_ctrl to TRUE, prevents instantiation of the default MDIO controller (mdio_phy_ ctrl.vhd) which
auto executes a predefined list of MDIO commands.

Name Address | Size Read/ | Description
(words) | (words) | Write
HDR 0 1 W TX header
EN_EVT 0 1 W Implicit write enable when TX header is written.
TX_DAT 1 1 w TX data
RX_DAT 2 1 R RX data
DONE 3 1 R Done
DONE_ACK _EVT 4 1 W Done acknowledge

Table 4: mdio_phy_reg

More information on MDIO access sequences can be found in paragraph 5.3.

Doc.nr.: ASTRON-RP-1348
Rev.: 0.1

Date: 11-9-2012

Class.: Public

UniBoard

9/16

ASTRON

4 Design

This chapter describes the structure of tr_xaui (Figure 3). As mms_tr_xaui only instantiates the
mms_diagnostics in addition to tr_xaui, this chapter focusses on the tr_xaui entity only.
The following chapter covers the components mentioned here in more detail.

tr_xaui

tr_xaui_framer phy_xaui
. ; [g_nof_xaui-1..0] xgmii_tx_d [g_nof_xaui-1..0——|
‘ tx_sosi_arr [g_nof_xaui-1..0] xgmii_tx_c [g_nof_xaui-1..0]———m

--tx_siso_arr [g_nof xaui-1..0}

aui_tx [g_nof_xaui-1..0—m

tr_xaui_align_dly
[g_nof_xaui-1..0]

A

aui_rx [g_nof_xaui-1..0]

-——rx_channelaligned [g_nof_xaui-1..0]———

tr_xaui_deframer
[g_nof_xaui-1..0]

- - |«————xgmii_rx_d [g_nof_xaui-1..0}
rx_sosi_arr [g_nof_xaui-1..0] <———xgmii_rx_c [g_nof_xaui-1..0]

mdio_phy_ctrl mdio_en_evt [g_nof_xaui-1..0——mdio_phy
[g_nof_xaui-1..0] ——mdio_done_ack_evt [g_nof_xaui-1..0]—»|
-7 mdio_hdr [g_nof_xaui-1..0]———m
mdio_tx_dat [g_nof_xaui-1..0]———m
--——mdio_done [g_nof_xaui-1..0]

[g_nof_xaui-1..0]

g_mdio=TRUE
g_mdio_mm_ctrl=FALSE

——mdio_mdc [g_nof_xaui-1..0]—m
7md:io_mdat_oen [g_nof_xaui-1..0w
mdio_en_evt [g_nof_xaui-1..0}——»| r-mdio_mdat_in [g_nof_xaui-1..0}—
——mdio_done_ack_evt [g_nof_xaui-1..0]—m
mdio_hdr [g_nof_xaui-1..0]———|

mdio_phy reg
—mdio_mosi_arr [g_nof_xaui-1..01m{ [g_nof_xaui-1..0]
-¢-mdio_miso_arr [g_nof_xaui-1..0}—

9_mdio=TRUE mdio_tx_dat [g_nof_xaui-1..0]—m»{
- -¢—mdio_done [g_nof_xaui-1..0]
g_mdio_mm_ctrl=TRUE | 4 mdio_rx_dat [g_nof xaui-1..0]

Figure 3 - tr_xaui design

4.1 XAUIIP and XGMII

The XAUI IP cores are located in phy_xaui. These XAUI IP cores accept TX data and control signals in the
form of a 72-bit wide XGMII interface — 64 bits of data and 8 control bits. The tr_xaui_framer converts its
streaming input data to separate XGMII data and control signals. In addition, it adds the required START,
TERMINATE and IDLE control words that the XAUI IP cores require. The XAUI cores transmit the START
and TERMINATE words as they are, but converts the IDLE words to XAUI-compliant control characters to
manage the XAUI bus in terms of e.g. XAUI lane alignment.

4.2 RXchannel alignment

A status signal emerging from each XAUI core, rx_channelaligned, indicates whether the incoming RX data
is properly locked on to. This signal is delayed in tr_xaui_dly by roughly one second to indicate when a
connecting receiver can be assumed to be rx_channelaligned as well. This delayed signal is fed back to the
TX stream as XON and overrides the READY TX flow control signal until high.

4.3 MDIO

As mentioned in the previous chapters, MDIO PHY cores are instantiated if the user sets g_mdio to TRUE. If
this is the case, automatic MDIO controllers, mdio_phy_ctlr instances, are used by default. After powerup,
these auto execute a list of MDIO commands passed as a generic to initialize MDIO devices such as the
Vitesse chips used on the UniBoard. Alternatively, the user can decide to instantiate manually MM
controllable mdio_phy_reg instances instead of mdio_phy_ctrl.

Doc.nr.: ASTRON-RP-1348
Rev.: 0.1

Date: 11-9-2012

Class.: Public

UniBoard

10/16

ASTRON

5 Implementation

5.1 tr_xaui_framer

The tr_xaui_framer component passes the incoming streaming data to its XGMII data output, but inserts an
XGMII START word (S= 0x00000000000000FB) to the output XGMII data at the transition from invalid input
data to valid input data, where 0xFB stands for Frame Begin. At the transition from valid to invalid, it adds an
XGMII TERMINATE word (T=0x07070707FD000000), where OxFD stands for Frame Delimiter. If the
streaming input remains invalid for longer than one cycle, its puts IDLE words (I=0x0x070707070707070) on
the XGMII data bus.

In parallel to the assignment of XGMII data words, XGMII control bits are put on the xgmii_tx_c bus. For
each of the 8 bytes on the XGMII data bus, an XGMII control bit indicates whether or not the corresponding
byte should be interpreted as a control byte. For instance, in parallel to the 64-bit XGMII START word
0x00000000000000FB, control bits b’00000001 indicate that only byte 0 is a control byte.

As START and TERMINATE words need to be inserted, gaps in the TX input stream are necessary. In
addition to this, XAUI packets require a minimum inter packet gap that allow XAUI control characters to be
sent in between packets to maintain the XAUI link. To provide TX data in a user selectable data-to-gap ratio,
the input TX stream is fed into a dp_gap instance first. An FSM uses these invalid cycles to put the correct
XGMII data words and control bits on the output buses. The following table illustrates how this is performed.

gap_sosi G G DO D1 D2 D3 | G G G G G D4 D5 D6
prev_gap sosi | G G G DO D1 D2 D3 G G G G G D4 D5
nxt tx data | | S DO | D1 | D2 D3 | T I I T S D4 | D5
state G G G D D D D G G G G G D D

Table 5: tr_xaui_framer FSM replacing gaps with XGMIl words

The FSM has only two states: Gap or Data. Registered output nxt_tx_data either equals the registered input
prev_gap_sosi, an IDLE word or a START or TERMINATE word based on the transition between the two
states.

5.2 tr_xaui_deframer

In addition to performing the reverse of tr_xaui_framer, the tr_xaui_deframer compensates for the
misalignment that might occur on the RX side. The XAUI word boundary is 32 bits, which means that even
though the TX inputs and RX outputs are 64 bits wide, it is processed by the XAUI IP core as two interleaved
32-bit XAUI interfaces. This in turn means that, depending on the moment that the RX locks to the incoming
signal and starts de-interleaving the 32-bit bus into one 64-bit bus at half the speed, the 32-bit LS word in the
64-bit received word might have been transmitted as the 32-bit MS word. The possibility of the 32-bit word
boundary being incorrect is accounted for and corrected in tr_xaui_deframer, ensuring that the 64 data bits
emerge as RX stream exactly as they have been input as TX stream. The following tables show how this
correction operates. First, Table 6 shows the simple FSM function when misalignment is not accounted for,
meaning nothing more than replacing IDLE, START and TERMINATE cycles with gaps (de-asserting
rx_sosi.valid).

rx_data I I S DO |D1 |D2 |D3 | T I I T S D4 | D5
nxt_rx_sosi G G G DO |D1 |D2 |D3 |G G G G G D4 | D5
state G G G D D D D G G G G G D D

Table 6: tr_xaui_deframer FSM, not accounting for word misalignment

Doc.nr.: ASTRON-RP-1348
Rev.: 0.1

Date: 11-9-2012

Class.: Public

UniBoard

11/16

ASTRON

Table 7 shows the situation where the RX data is interpreted respecting its 32-bit word boundary, and the
alignment happens to be correct: on a START, the LS RX data word matches the LS portion of the START
word (0xO000000FB).

rx_data_hi | hi|l hi|S hi|DO hi|D1hi|D2hi|D3hi|Thi|lhi|lhi|Thi|[S hi|D4nhi
rx_data_lo llo|llo|Slo| DO lo|Dl1lo|D21lo|D3lo|Tlo|llo]|llo|Tlo|S lo|D4lo
nxt rx_sosi hi | G G G DO hi | D1 hi | D2 hi | D3 hi| G G G G G D4 hi
nxt rx_sosi lo | G G G DO lo| Dl lo|D21lo|D3lo|G G G G G D4 lo
state G G G D D D D D G G G G D

Table 7: tr_xaui_deframer FSM, RX data aligned

Table 8 show the necessary steps when the incoming RX data is misaligned. Misalignment is determined
when the LS portion of the START word occurs on the MS RX data word. As the desired high and low data
words are not present at the same cycle, the received high portion is buffered (prev_rx_data_hi) so it can be
assigned to the low portion of nxt_rx_sosi along with the unbuffered rx_data_lo which will be assigned to the
high portion of nxt_rx_sosi.

rx_data_hi | lo|Slo|DOJlo|Dllo|D2lo|D3lo|[Tlo |[llo |llo|Tlo|Slo|D4lo
rx_data_lo I_hi|l hi | S hi | DO hi| D1 hi|D2 hi|D3hi|Thi|lhi|lhi |Thi|[S hi
prev_rx_data_hi | lo |Slo |DOlo|D1lo|D2lo|D3lo|Tlo|llo|llo |Tlo|Slo
nxt_rx_sosi_hi G G G DO _hi | D1 _hi | D2 _hi | D3 hi | G G G G G
nxt_rx_sosi_lo G G G DO lo| D1 lo|D2lo|D3lo|G G G G G
state G G D D D D D G G G G G

Table 8: tr_xaui_deframer FSM, RX data misalighed

5.3 mdio_phy_ctlr

This MDIO PHY controller takes an MDIO command list (t_mdio_cmd_arr) as generic parameter and auto
executes all of these commands in sequence after powerup. This MDIO command array is an array of
t mdio_cmd, a record type consisting of the following MDIO access parameters:

e Write or

read;

e Device address;
e Device register;
e Write data.

12/16

UniBoard

Doc.nr.:
Rev.:
Date:

Class.:

ASTRON-RP-1348
0.1

11-9-2012

Public

ASTRON

6 Reference design

A reference design, unb_tr_xaui, instantiates mms_tr_xaui along with yet another mms_diagnostics module
(besides the mms_diagnostics module inside mms_tr_xaui). This second mms_diagnostics module emulates
an external user data stream, whereas the internal mms_diagnostics is able to override this user data stream
with a test data stream that can be verified independently from the user stream.

unb_tr_xaui

ctrl_unb_common

node_unb_tr_xaui

mms_diagnostics mms_tr_xaui

XAUI 1P
[0..2]

Streaming TX interfaces [0..2]

mms_diagnostics
Test data stream [0..2]

AUI PHY TX 0..2}
| i
~4——XAUI PHY RX 0..2}

Test data stream [0..2]

T

< Streaming RK interfaces [0..2]

MDIO PHY
[0..2] ~4—MDIO PHY interfaces [0..2]—#

do) [z°0] saoepaIl NN

sopc_unb_tr_xaui

Figure 4 - design unb_tr_xaui

The second instance of mms_diagnostics operates in exactly the same way as the internal instance, with the
exception that the internal one, when enabled, overrides the external diagnostics stream.

The NIOS Il processor in the SOPC can run a dedicated C application, see Chapter 9, or unb_osy to allow
Python programs to target the design.

There are three revisions of this design, which are discussed in Chapter 8.

Doc.nr.: ASTRON-RP-1348
Rev.: 0.1

Date: 11-9-2012

Class.: Public

UniBoard

13/16

ASTRON

7 Verification

7.1 tb_phy_xaui

This test bench provides very basic, static XGMII data and control signals to the XAUI IP under test, and
demonstrates the need for a sequence of IDLE words to be fed to the TX side before switching to user data.
It also demonstrates lucky alignment or unlucky misalignment, depending on the number of cycles after
which the XAUI IP is released from reset.

7.2 tb_tr xaui_framer and tb_tr_xaui_deframer

Tb_tr_framer only feeds a generated, gapped DP stream to the framer after which the resulting XGMII output
data and control bits can be observed in the wave window.

Tb_dp_deframer add a deframer to the above setup, and a verification process monitoring the resulting
framed->deframed RX data stream. In addition, misalignment is introduced deliberately by swapping the LS
and MS portions of the XGMII framed data (as described in Chapter 5) before feeding them to the deframer
that takes care of re-alignment.

7.3 tb_tr_xaui

This test bench instantiates the higher level tr_xaui and interfaces it to a diagnostics module. This is not an
MMS slave, so its control signals are asserted directly (non-MM) by the test bench.

7.4 tb_node_unb_xaui

The node function of design unb_tr_xaui is looped back on serial interface level and tested. The external
(user) stream is enabled and monitored and a simulation model of an MDIO slave (mmd_slave) is written to
and read back via the MM interface.

7.5 tb_unb_tr xaui

This test bench instantiates the full design, including the SOPC with its NIOS and can run the dedicated C
application.

7.6 tb_mmf_node_unb_xaui

This test bench instantiates a (variable) number of daisy-chained node_unb_tr_xaui instances, but uses
mm_file instances to interface MM buses to files that can be accessed by Python. This allows the user to run
the same test cases and utility Python programs for both verification and validation.

Doc.nr.: ASTRON-RP-1348
Rev.: 0.1

Date: 11-9-2012

Class.: Public

UniBoard

14/16

ASTRON

8 Validation

Design unb_tr_xaui contains three revisions based on type of nodes the design can run on. These revisions
are discussed in this chapter. The MM register map per revision does not change, but beware that the MDIO
MM buses remain unconnected if no mdio_reg is instantiated, such as in the non-FN revisions and in the
default FN revision that uses the auto executing MDIO controller instead of manual MM control.

Python program tc_tr_xaui_dgn.py is used to target these designs. In addition, the dedicated C application
main.c can be used.

8.1 unb_tr_xaui —revision fn_tr_xaui

This revision can be un on the front nodes only and target the SI_FN interface to and from the Vitesse
XAUI<->XFI transceiver chips. The generic set in the Quartus settings file sets g_fn to TRUE which in turn
instantiates an MDIO core for each XAUI core.

8.2 unb_tr_xaui —revision unb_tr_xaui

This revision is only provided for completeness, as the mesh FN_BN interconnect on the UniBoard does not
allow the 4-lane XAUI protocol to be used as only 3 out of 4 lanes are usable because of 1 of 4 transceivers
lacking a PCS layer. Future updates of Quartus might allow the PMA-only transceivers to be incorporated as
part of a XAUI PHY.

8.3 unb_tr_xaui —revision bn_tr_xaui

The backplane transceiver lanes (BN_BI) have the same layout as the SI_FN transceiver lanes. This revision
however does not instantiate the MDIO cores as MDIO compliant chips such as the Vitesse chips on the FN
side are absent. This revision can be used with a UniBoard 10Gb breakout board (XGB) and CX4 cables or
in a UniBoard-APERTIF rack system, interconnecting the back nodes via its backplane (AUB).

Doc.nr.: ASTRON-RP-1348
Rev.: 0.1

Date: 11-9-2012

Class.: Public

UniBoard

15/16

ASTRON

9 List of files

9.1 Module tr_xaui

All files of the tr_xaui module are located in:

SUNB/Firmware/modules/tr_xaui

9.2 Design unb_tr_xaui

Design unb_tr_xaui can be found at:

$UNB/Firmware/designs/unb_tr_xaui

9.3 Python test case

The test case that targets design unb_tr_xaui or one of its revisions, and also targets simulation
tb_mmf_node_unb_tr xaui, is located at:

$UNB/Software/python/peripherals/tc_tr_xaui_dgn.py
The main peripheral used by this script is found in;
$UNB/Software/python/peripherals/pi_diagnostics.py

More information on targeting simulations using Python can be obtained by reading [6]:

9.4 Main.c

A dedicated C application is located at:

$UNB/Firmware/software/apps/unb_tr_xaui

Doc.nr.: ASTRON-RP-1348
Rev.: 0.1

Date: 11-9-2012

Class.: Public

UniBoard

16/16

