
A
S

TR
O

N
-F

O
-0

17
 2

.0

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

1 / 42

 UniBoard Beamformer module for APERTIF

 Organisatie / Organization Datum / Date
 Auteur(s) / Author(s):

Harm Jan Pepping ASTRON 24 February 2012

Controle / Checked:

Eric Kooistra ASTRON

Goedkeuring / Approval:

Andre Gunst ASTRON

Autorisatie / Authorisation:

Handtekening / Signature
Andre Gunst

ASTRON

© ASTRON 2011
All rights are reserved. Reproduction in whole or in part is
prohibited without written consent of the copyright owner.

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

2 / 42

Distribution list:

Group: Others:

Andre Gunst
Eric Kooistra
Daniel van der Schuur

Gijs Schoonderbeek
Sjouke Zwier
Harro Verkouter (JIVE)
Jonathan Hargreaves (JIVE)
Salvatore Pirruccio (JIVE)

Document history:

Revision Date Author Modification / Change

0.1 2012-01-30 Harm Jan Pepping Creation

0.2 2012-03-07 Harm Jan Pepping
Processed comments of Eric. Moved chapter
about the diag_block_gen to separate
document (ASTRON-RP-1313).

0.3 2012-03-13 Harm Jan Pepping Finished the implementation of the
bf_switch.

0.4 2012-04-04 Harm Jan Pepping Added the verification and validation
chapters.

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

3 / 42

Table of contents:

1 Introduction .. 6

1.1 Purpose .. 6
1.2 Module overview ... 6
1.3 Mode of operation ... 6

2 Firmware interface ... 8

2.1 Clock domains .. 8
2.2 Parameters ... 8
2.3 Interface signals ... 9

2.3.1 IN_SOSI_ARR interface ... 10
2.3.2 OUT_RAW_SOSI_ARR and OUT_QUA_SOSI_ARR interfaces ... 11
2.3.3 MM_WEIGHT_MOSI interface ... 11
2.3.4 MM_BST_MOSI interface ... 11
2.3.5 MM_OFFSETS_MOSI interface ... 12
2.3.6 Clocks and resets ... 12

3 Software interface ... 13

3.1 Offsets span.. 13
3.2 Weight factors span .. 14
3.3 Beamlet statistics span ... 15

4 Module Design .. 17

4.1 Algorithm ... 17
4.2 Architecture... 17

4.2.1 bf module .. 17
4.2.2 bf_switch ... 18
4.2.3 bf_unit ... 18

5 Implementation .. 20
5.1 bf_switch ... 20

5.1.1 Input format ... 20
5.1.2 Output format .. 20
5.1.3 Architecture: bf_switch_a_direct ... 21
5.1.4 Architecture: bf_switch_a_sort_distribute ... 22

5.2 bf_unit ... 27
5.2.1 bf_unit first stage .. 27
5.2.2 bf_unit second stage .. 28
5.2.3 bf_unit control process ... 30
5.2.4 Multiplexing mm interfaces ... 32

5.3 Bitwidths, bitgrowth and quantization ... 33

6 Verification ... 34
6.1 tb_bf_unit .. 34

6.1.1 fifo overflow and underflow check .. 34
6.1.2 p_init_offsets_register .. 34
6.1.3 p_weight_memory_write ... 34
6.1.4 Stimuli (input_data) ... 34
6.1.5 p_verification ... 35
6.1.6 p_tester ... 35

6.2 tb_bf .. 35
6.2.1 p_init_offsets_register .. 35
6.2.2 p_init_weight_memory .. 35
6.2.3 gen_input_streams ... 36

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

4 / 42

6.2.4 p_read_bst_memory ... 36
6.2.5 gen_verification... 36
6.2.6 gen_testers ... 36

7 FN_BF Reference design .. 37

7.1 Design ... 37
7.2 Verification .. 37

7.2.1 tb_node_fn_bf ... 37
7.2.2 tb_fn_bf ... 38

7.3 Software .. 38

8 Synthesis and Place & Route .. 39

8.1 Resources and Fmax .. 39
8.2 Timing optimizations ... 39

8.2.1 Pipeline stages ... 39
8.2.2 Optimizing switch architecture .. 39
8.2.3 Synthesis constraints .. 39
8.2.4 LogicLock Regions ... 40

9 Validation ... 41
9.1 Python ... 41

9.1.1 pi_bf_bf.py .. 41
9.1.2 tc_pi_fn_bf.py ... 41
9.1.3 tc_pi_fn_bf.py ... 41

10 Appendix – list of files ... 42

10.1 Firmware VHDL .. 42
10.2 Testbench ... 42
10.3 Software .. 42

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

5 / 42

Terminology:

Beamlet Beamformed subband
BF Beamformer
DIAG Diagnostics (VHDL module)
DP Data Path (VHDL module)
DSP Digital Signal Processing
DUT Device Under Test
EOP Start Of Packet
FIFO First In First Out
FPGA Field Programmable Gate Array
HDL Hardware Description Language
IO Input Output
MISO Master In Slave Out
MM Memory-Mapped
MOSI Master Out Slave In
Nof Number of
RAM Random Access Memory
Signal Path Time series signal
SISO Source In Sink Out
SOP Start Of Packet
SOPC System On a Programmable Chip (Altera)
SOSI Source Out Sink In
SRC Source
ST Streaming
Subband Frequency signal

References:

1. ‘DP Streaming Module Description’, ASTRON-RP-382, Eric Kooistra
2. ‘Detailed Design of the Digital Beamformer System for Apertif’, ASTRON-RP-413, G. Schoonderbeek, A.

Gunst, E. Kooistra
3. Digital Beamformer Module for APERTIF, ASTRON-RP-517, H.J. Pepping
4. $UNB/Firmware/modules/common/
5. $UNB/Firmware/modules/Lofar/st/
6. ’DIAG Module Description’, ASTRON-RP-131, H.J. Pepping, E.Kooistra
7. $UNB/Software/python/peripherals/
8. $UNB/Firmware/dsp/bf/tb/vhdl/
9. $UNB/Firmware/designs/fn_bf/
10. $UNB/Firmware/software/apps/fn_bf/
11. ‘Timing Closure Methodology for Advanced FPGA Designs’, AN 584, www.altera.com

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

6 / 42

1 Introduction

1.1 Purpose
The bf module performs a beamformer algorithm on a defined set of input streams where each stream can
contain multiple signals. The output consists of one or more streams that contain series of beamlets. The
beamformer weight factors can be set via a memory mapped interface. For each output stream a beamlet
statistic unit is included and can be read out via the memory mapped interface as well.

1.2 Module overview
A high level overview of the bf module is shown in Figure 1. The bf module has a variable number of input
streams where each stream contains subband samples from one or multiple antenna inputs. The incoming
data streams are first re-ordered and shuffled by the bf_switch in order to make the data suitable for the
bf_units. The bf module displayed in Figure 1 contains four bf_units where each bf_units processes a limited
number of subbands. In case of the Apertif beamformer as discussed in [3] there are four bf_units required to
process all 24 subbands. The bf_unit performs the multiplication of the input data with the weight factors, the
addition of all multiplier results and the quantization of the result. Each bf_unit also contains a beamlet
statistic unit that calculates the power in each beamlet. The output of each bf_unit contains a stream of
beamlets.

bf

bf-switch

STbf_unit

STbf_unit

STbf_unit

STbf_unit

ST

ST

ST

MM interface

Figure 1: Beamformer module overview

The MM interface is used to upload (and read back) the weight factors, to specify the number of beamlets
per subband and to read out the beamlet statistics.

1.3 Mode of operation

The bf module is a data-driven process that performs a series of DSP operations on the incoming data
streams. The process is started as soon as data is offered on the inputs and it stops when the stream of
input data stops. With the instantiation of the bf module for the Apertif project it is possible to calculate 1024
beamlets, based on 64 signal paths, where each signal path carries the data of 24 subbands. The 1024
beamlets can be equally divided over the 24 subbands, resulting in an average of 42 beamlets per subband.
It is also possible to divide the 1024 beamlets in an unequal way over the 24 subbands. A single bf_unit as

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

7 / 42

shown in Figure 1 is responsible for processing 24/4 = 6 subbands. The weight factors that are required to
calculate the beamlets can than be divided over the subbands as shown in Figure 2.

256 weight factors

64
 s

ig
na

l p
at

h
in

pu
ts

offset 0 offset 1 offset 2 offset 3 offset 4 offset 5

6 subbands

256 clock cycles

256 beamlets

Figure 2 Beamlets divided over subbands for one bf_unit

When data is offered to the bf_units the buffer with 256 weight factors will be read in a cyclic way and the
data will be fed to the first input of a single complex multiplier. On the second input of the multiplier the
subband samples will be provided. The offsets in Figure 2 mark the moments in time whereas the next
subband sample must be read from the input fifo and offered to the multiplier. A simple representation of
such a single multiplier process is shown in Figure 3.

0

255

0123

input fifo

weight factors memory

45

Figure 3 One bf multiplier per signal path input

Note 1: the only restriction in this process is that from every subband at least one beamlet must be made. If it
is necessary to calculate beamlets of a single subband than this specific subband should be selected
multiple times in the Subband Select module. The Subband Select module is located befonre the bf module
in the back node. [2]
Note 2: A bf module with 4 bf_units contains a total of 4x64x256 weight factors and 4x64=256 complex
multipliers.

The subband data of all 64 inputs are processed (multiplied with the weight factors) in parallel. After
multiplication the products of all 64 inputs are summed resulting in an output stream that carries the
beamlets. Every bf_unit is equipped with a beamlet statistics module that allows reading out the power of
every beamlet that is integrated over a sync period (= typically 1 second).

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

8 / 42

2 Firmware interface
This chapter covers all firmware interface related topics of the bf module. It describes the functionality of the
in- and output ports.

2.1 Clock domains
There are two clock domains used in the bf module: the mm_clk and the dp_clk domain. Figure 4 shows an
overview of the clock domains in the bf module. The connected units are a set of registers that hold the
offset values for the input fifo, a dual ported ram that holds the weight factors and a dual ported ram that
holds the results of the beamlet statistics. Table 1 lists both clocks and their characteristics.

weights
memory

beamlet
statistics
memory

offsets
register

dp_clk

mm_clk

Figure 4: bf module clock domains

Name Frequency (MHz) Description
DP_CLK 200 MHz Clock for the datapath
MM_CLK 125 MHz Clock for the memory mapped interface.

Table 1: bf module clock signals

2.2 Parameters
The parameters that define an instantiation of the bf module are grouped in a VHDL record that is defined in
the file bf_pkg.vhd. The items in this record are listed in Table 2. The column named “value” specifies the
value that is used in the bf module for the Apertif system.

Generic Type Value Description
nof_signal_paths POSITIVE 64 Specifies the number of input signals that are used in the

beamformer.
nof_input_streams POSITIVE 16 The number of data streams that are provided on the input of

the bf module. Each data stream contains the data of one or
more signal paths.

nof_subbands POSITIVE 24 Specifies the number of subbands per incoming signal path.
nof_weights POSITIVE 256 The number of weight factors that are present in each bf_unit.

This value merely defines the number of beamlets that are
produced in a single bf_unit.

nof_offsets POSITIVE 6 This number represents the number of subbands that are to be
processed within one bf_unit.

nof_bf_units POSITIVE 4 The number of bf_units that are instantiated in the bf module.
Each bf_unit will process nof_subbands/nof_bf_units subbands
which correspond to nof_offsets.

in_dat_w POSITIVE 16 Width in bits of the incoming data. This value specifies the width
of the real and the imaginary part.

in_weight_w POSITIVE 16 The width in bits of the real and imaginary part of the weight
factors.

bst_dat_w POSITIVE 16 The bitwidth of the real and imaginary part of the beamlets that
are fed to the beamlet statistics unit.

out_dat_w POSITIVE 4 The bitwidth of the real and imaginary part of the beamlets that
are sent tot the output stream.

stat_data_w POSITIVE 56 Width of the output of the beamlet statistics unit. This value

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

9 / 42

must be high enough to accommodate the highest possible
bitgrowth in the beamlet statistic unit. Highest integration period
is set to one second.

stat_data_sz POSITIVE 2 This number specifies how many 32-bit registers are required to
read out one accumulated value.

Table 2: bf parameters

2.3 Interface signals
The interface signals of the bf module are shown in Figure 5 and Table 3 lists the general specifications of
these interfaces. More detailed information about the interfaces can be found in the following paragraphs.

in_sosi_arr out_raw_sosi_arr

out_qua_sosi_arr

mm_weight_mosi

mm_weight_miso

mm_bst_mosi

bf
mm_bst_miso

dp_clk

dp_rst

mm_clk

mm_rst

mm_offsets_mosi

mm_offsets_miso

Figure 5: interface signals

Interface Type Size or Span Description
in_sosi_arr t_dp_sosi_arr nof_input_streams Array of input streams where

each stream holds the data of a
number of input signals.

out_raw_sosi_arr t_dp_sosi_arr nof_bf_units Array of output streams
containing un-quantized beamlet
data. Output only used for
verification in simulation.

out_qua_sosi_arr t_dp_sosi_arr nof_bf_units Array of output streams
containing the quantized
beamlet data.

mm_weight_mosi t_mem_mosi nof_bf_units *
nof_signal_paths *
nof_weights

Array of mosi interfaces for
storing the weight factors.

mm_weight_miso t_mem_miso nof_bf_units *
nof_signal_paths *
nof_weights

Array of miso interfaces for
reading back the written weight
factors.

mm_bst_mosi t_mem_mosi nof_bf_units * nof_weights
* stat_data_sz

A mosi interface for each bf_unit
to read out the beamlet statistics
data.

mm_bst_miso t_mem_miso nof_bf_units * nof_weights
* stat_data_sz

A miso interface for each bf_unit
to read out the beamlet statistics
data.

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

10 / 42

mm_offsets_mosi t_mem_mosi nof_bf_units * nof_offsets A mosi interface to write and
read the offsets registers. The
offset registers specify the
offsets for the input data.

mm_offsets_miso t_mem_miso nof_bf_units * nof_offsets A miso interface for reading
back the offset registers.

dp_clk std_logic na Datapath clock
dp_rst std_logic na Datapath reset
mm_clk std_logic na Memory mapped interface clock
mm_rst std_logic na Memory mapped interface reset

Table 3: interface signals

2.3.1 IN_SOSI_ARR interface

The in_sosi_arr is an array of streams where each stream holds the data of one or more input signal paths.
The data is expected to arrive in perfectly aligned packets meaning that every stream starts and ends a
packet at the same clock cycle. The basic format of such a packet must comply with the DP streaming
interface as defined in [1]. For the bf module however a more detailed definition of the data format is
required. The data format for one input stream which is depicted in Figure 6. It shows the format for a bf
module with the following parameters: nof_signal_paths = 64, nof_input_streams = 16, nof_subbands = 24.
These parameters result in a packet format containing 4 (signal paths) x 24 (subbands) = 96 complex
samples.

IN_0[0..23] IN_1[0..23] IN_2[0..23] IN_3[0..23]

SOP

EOP

RE/IM

VALID

SYNC

Figure 6 Input packet format beamformer

Two other requirements regarding the packet format have to be met as well:

- The whole packet must be sent in one burst. This means that the valid signal may not be
interrupted during the transmission of a packet.

- A packet may only be transmitted once every nof_weights clock cycles as shown in Figure 7
in order to avoid fifo overflow in the bf_units.

packet n packet n+1

nof_weights clock cycles

nof_signal_paths * nof_subbands
nof_input_streams

clock cycles

nof_weights clock cycles

block Tn block Tn+1

Figure 7 Minimum frequency of packet transmission

Note that the bf module does not provide a corresponding in_siso_arr, because there is no need for back
pressure. The bf_module is designed in such a way that it can always receive data in case the above
specifications are met.

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

11 / 42

2.3.2 OUT_RAW_SOSI_ARR and OUT_QUA_SOSI_ARR interfaces

The bf module has two output arrays for its data that both comply with the DP streaming interface as defined
in [1]. One output (out_raw_sosi_arr) contains the raw data from the bf_units and the other one
(out_qua_sosi_arr) contains the data after quantization. Both interfaces provide a stream of packets where
each packet contains the data of nof_weight beamlets. The format of the outgoing packets is displayed in
Figure 8 where the nof_weights is set to 256.

BEAMLETS_0[0..255]

SOP

EOP

RE/IM

VALID

SYNC

BEAMLETS_1[0..255] BEAMLETS_2[0..255]

Figure 8 Output packet format beamformer

Note that the packet stream is an uninterrupted stream once it has started and the output arrays are not
accompanied with a corresponding siso array, since the bf module is not required to cope with back
pressure.

2.3.3 MM_WEIGHT_MOSI interface

The bf module has an mm interface to accommodate uploading of the weight factors. The total span of the
mm interface is determined by nof_weights*nof_signal_paths*nof_bf_units. For the Apertif instantiation this
means: nof_weights = 256, nof_signal_paths = 64 and nof_bf_units = 4. This leads to an interface span of
256x64x4= 65536 registers. For both the mosi and miso interface the signals are listed in Table 4.

Signal Type Description
mm_weight_mosi.address[15:0] MOSI Word addresses range for the mm_weight_mosi

interface.
mm_weight_mosi.wrdata[31:0] MOSI Write data word, must be valid when wr is asserted.
mm_weight_mosi.wr MOSI Write strobe.
mm_weight_mosi.rd MOSI Read strobe.
mm_weight_miso.rddata[31:0] MISO Read data word which is valid one clock cycle after

assertion of rd.

Table 4 mm_weight_mosi interface

2.3.4 MM_BST_MOSI interface

The beamlet statistics can be read via the mm_bst_mosi interface. The address span of this interface is
determined by nof_bf_units*stat_data_sz*nof_weights. Table 5 shows the interface signals where
nof_bf_units = 4, nof_weights = 256 and stat_data_sz = 2.

Signal Type Description
mm_bst_mosi.address[10:0] MOSI Word address range for mm_bst_mosi interface,

supporting 4*2*256 = 2048 registers.
mm_bst_mosi.wrdata[31:0] MOSI Write data word, must be valid when wr is asserted.
mm_bst_mosi.wr MOSI Write strobe.
mm_bst_mosi.rd MOSI Read strobe.
mm_bst_miso.rddata[31:0] MISO Read data word which is valid one clock cycle after

assertion of rd.

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

12 / 42

Table 5 mm_bst_mosi interface

2.3.5 MM_OFFSETS_MOSI interface

The offsets for the incoming data can be set via the mm_offsets_mosi interface. The address span is
determined by the nof_offsets and the nof_bf_units. For nof_bf_units = 4 and nof_offsets = 6 this results in
the interface characteristics as shown in Table 6.

Signal Type Description
mm_offsets_mosi.address[4:0] MOSI Word address range for mm_offsets_mosi interface
mm_offsets_mosi.wrdata[31:0] MOSI Write data word, must be valid when wr is asserted.
mm_offsets_mosi.wr MOSI Write strobe.
mm_offsets_mosi.rd MOSI Read strobe.
mm_offsets_miso.rddata[31:0] MISO Read data word which is valid one clock cycle after

assertion of rd.

Table 6 mm_offsets_mosi interface

2.3.6 Clocks and resets

Table 7 shows an overview of the clocks and reset signals that are available on the bf module.

Signal Type Description
dp_clk Clock Clock input for the datapath interface of the bf module.
dp_rst Reset Reset input for the datapath clock domain registers.
mm_clk Clock Clock input for the memory mapped interface parts of the bf module.
mm_rst Reset Reset input for the memory mapped interface parts of the bf module.

Table 7 Clocks and resets

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

13 / 42

3 Software interface
This chapter describes the software interface for the bf module. The bf module contains three different
register spans. The first span holds the offsets for the weight factors. The second span contains the registers
that represent the values of the weight factors. The third span contains the registers that contain the beamlet
statistics data. The size of each span depends on the value of the parameters that are used to configure the
bf module.
The next paragraphs give a detailed overview of all the registers and their addresses. The shown registers
are based on a parameterized bf module. More information on the parameters can be found in paragraph
2.2.

3.1 Offsets span
Table 8 shows the registers that are available in the offsets span whereas nof_offsets = 6 and nof_bf_units =
4. Word size is 32 bit. Note that the first offset value is read only and always zero. These are the criteria for
valid values in all other offset registers:

- Values must be higher than zero.
- No double values are accepted per bf_unit.
- Values must be lower than nof_weights.

Name Address

(words)
Size
(words)

Read/
Write

Description

bf_unit_0_offset_0 0x0 1 ro Register specifies at which weight factor input sample
0 has to be read from the input fifo of bf_unit 0. Value
is fixed to 0x0.

bf_unit_0_offset_1 0x1 1 r/w Register specifies at which weight factor input sample
1 has to be read from the input fifo of bf_unit 0.

bf_unit_0_offset_2 0x2 1 r/w Register specifies at which weight factor input sample
2 has to be read from the input fifo of bf_unit 0.

bf_unit_0_offset_3 0x3 1 r/w Register specifies at which weight factor input sample
3 has to be read from the input fifo of bf_unit 0.

bf_unit_0_offset_4 0x4 1 r/w Register specifies at which weight factor input sample
4 has to be read from the input fifo of bf_unit 0.

bf_unit_0_offset_5 0x5 1 r/w Register specifies at which weight factor input sample
5 has to be read from the input fifo of bf_unit 0.

bf_unit_1_offset_0 0x8 1 ro Register specifies at which weight factor input sample
0 has to be read from the input fifo of bf_unit 1. Value
is fixed to 0x0.

bf_unit_1_offset_1 0x9 1 r/w Register specifies at which weight factor input sample
1 has to be read from the input fifo of bf_unit 1.

bf_unit_1_offset_2 0xA 1 r/w Register specifies at which weight factor input sample
2 has to be read from the input fifo of bf_unit 1.

bf_unit_1_offset_3 0xB 1 r/w Register specifies at which weight factor input sample
3 has to be read from the input fifo of bf_unit 1.

bf_unit_1_offset_4 0xC 1 r/w Register specifies at which weight factor input sample
4 has to be read from the input fifo of bf_unit 1.

bf_unit_1_offset_5 0xD 1 r/w Register specifies at which weight factor input sample
5 has to be read from the input fifo of bf_unit 1.

bf_unit_2_offset_0 0x10 1 ro Register specifies at which weight factor input sample
0 has to be read from the input fifo of bf_unit 2. Value
is fixed to 0x0.

bf_unit_2_offset_1 0x11 1 r/w Register specifies at which weight factor input sample
1 has to be read from the input fifo of bf_unit 2.

bf_unit_2_offset_2 0x12 1 r/w Register specifies at which weight factor input sample
2 has to be read from the input fifo of bf_unit 2.

bf_unit_2_offset_3 0x13 1 r/w Register specifies at which weight factor input sample

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

14 / 42

3 has to be read from the input fifo of bf_unit 2.
bf_unit_2_offset_4 0x14 1 r/w Register specifies at which weight factor input sample

4 has to be read from the input fifo of bf_unit 2.
bf_unit_2_offset_5 0x15 1 r/w Register specifies at which weight factor input sample

5 has to be read from the input fifo of bf_unit 2.
bf_unit_3_offset_0 0x18 1 ro Register specifies at which weight factor input sample

0 has to be read from the input fifo of bf_unit 3. Value
is fixed to 0x0.

bf_unit_3_offset_1 0x19 1 r/w Register specifies at which weight factor input sample
1 has to be read from the input fifo of bf_unit 3.

bf_unit_3_offset_2 0x1A 1 r/w Register specifies at which weight factor input sample
2 has to be read from the input fifo of bf_unit 3.

bf_unit_3_offset_3 0x1B 1 r/w Register specifies at which weight factor input sample
3 has to be read from the input fifo of bf_unit 3.

bf_unit_3_offset_4 0x1C 1 r/w Register specifies at which weight factor input sample
4 has to be read from the input fifo of bf_unit 3.

bf_unit_3_offset_5 0x1D 1 r/w Register specifies at which weight factor input sample
5 has to be read from the input fifo of bf_unit 3.

Table 8: offsets span

3.2 Weight factors span
Each complex weight factor has a 32-bit memory location. The real part is located in the 16 least significant
bits and the imaginary part is located in the 16 most significant bits of the register as shown in Figure 9.

weight.imaginary[15..0] weight.real[15..0]

31 0

Figure 9 Weight factor register

For each signal path there are nof_weight weight factors which results in nof_signal_paths*nof_weights
registers per bf_unit. For the Apertif system nof_signal_paths = 64, nof_weights = 256 and nof_bf_units = 4.
This leads to the address map of Table 9. Note that not all registers are listed in the table in order to save
space.

Name Address

(words)
Size
(words)

Read/
Write

Description

bu_0_sp_0_wf_0 0x0 1 r/w Weight factor 0 on bf_unit 0 for signal path 0
bu_0_sp_0_wf_1 0x1 1 r/w Weight factor 1 on bf_unit 0 for signal path 0
bu_0_sp_0_wf_2 0x2 1 r/w Weight factor 2 on bf_unit 0 for signal path 0
----------------------- ------ --- ----- --
bu_0_sp_0_wf_254 0xFE 1 r/w Weight factor 254 on bf_unit 0 for signal path 0
bu_0_sp_0_wf_255 0xFF 1 r/w Weight factor 255 on bf_unit 0 for signal path 0
bu_0_sp_1_wf_0 0x100 1 r/w Weight factor 0 on bf_unit 0 for signal path 1
bu_0_sp_1_wf_1 0x101 1 r/w Weight factor 1 on bf_unit 0 for signal path 1
----------------------- ------ --- ----- --
bu_0_sp_1_wf_254 0x1FE 1 r/w Weight factor 254 on bf_unit 0 for signal path 1
bu_0_sp_1_wf_255 0x1FF 1 r/w Weight factor 255 on bf_unit 0 for signal path 1
bu_0_sp_2_wf_0 0x200 1 r/w Weight factor 0 on bf_unit 0 for signal path 2
bu_0_sp_2_wf_1 0x201 1 r/w Weight factor 1 on bf_unit 0 for signal path 2
----------------------- ------ --- ----- --
----------------------- ------ --- ----- --
bu_0_sp_63_wf_254 0x3FFE 1 r/w Weight factor 254 on bf_unit 0 for signal path 63
bu_0_sp_63_wf_255 0x3FFF 1 r/w Weight factor 255 on bf_unit 0 for signal path 63
bu_1_sp_0_wf_0 0x4000 1 r/w Weight factor 0 on bf_unit 1 for signal path 0
bu_1_sp_0_wf_1 0x4001 1 r/w Weight factor 1 on bf_unit 1 for signal path 0

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

15 / 42

----------------------- ------ --- ----- --
----------------------- ------ --- ----- --
bu_1_sp_63_wf_254 0x7FFE 1 r/w Weight factor 254 on bf_unit 1 for signal path 63
bu_1_sp_63_wf_255 0x7FFF 1 r/w Weight factor 255 on bf_unit 1 for signal path 63
bu_2_sp_0_wf_0 0x8000 1 r/w Weight factor 0 on bf_unit 2 for signal path 0
bu_2_sp_0_wf_1 0x8001 1 r/w Weight factor 1 on bf_unit 2 for signal path 0
----------------------- ------ --- ----- --
----------------------- ------ --- ----- --
bu_2_sp_63_wf_254 0xBFFE 1 r/w Weight factor 254 on bf_unit 2 for signal path 63
bu_2_sp_63_wf_255 0xBFFF 1 r/w Weight factor 255 on bf_unit 2 for signal path 63
bu_3_sp_0_wf_0 0xC000 1 r/w Weight factor 0 on bf_unit 3 for signal path 0
bu_3_sp_0_wf_1 0xC001 1 r/w Weight factor 1 on bf_unit 3 for signal path 0
----------------------- ------ --- ----- --
----------------------- ------ --- ----- --
bu_3_sp_63_wf_254 0xFFFE 1 r/w Weight factor 254 on bf_unit 3 for signal path 63
bu_3_sp_63_wf_255 0xFFFF 1 r/w Weight factor 255 on bf_unit 3 for signal path 63

Table 9 weight factors span

3.3 Beamlet statistics span
Each bf_unit contains a beamlet statistics unit. The beamlet statistics unit estimates the power of each
beamlet value and integrates these values during a sync period. When a sync period has expired (in other
words: a sync pulse is applied) the registers will be updated with the new integrated power values. The
number of registers is determined by stat_data_sz*nof_weights*nof_bf_units. In the Apertif system
stat_data_sz = 2, nof_weights = 256 and nof_bf_units=4. This leads to 2048 registers which are partly listed
in Table 10. Note that each beamlet statistic value is spread over two 32-bit registers. The actual bit width of
a beamlet statistic is set via parameter stat_data_w, which is set to 56 in the Apertif system. This means that
the upper 8 bits of the “up” register can be discarded.

Name Address

(words)
Size
(words)

Read/
Write

Description

bu_0_bst_0_low 0x0 1 r/w 32 lsb’s of power in beamlet 0 on bf_unit 0
bu_0_bst_0_up 0x1 1 r/w 32 msb’s of power in beamlet 0 on bf_unit 0
bu_0_bst_1_low 0x2 1 r/w 32 lsb’s of power in beamlet 1 on bf_unit 0
bu_0_bst_1_up 0x3 1 r/w 32 msb’s of power in beamlet 1 on bf_unit 0
bu_0_bst_2_low 0x4 1 r/w 32 lsb’s of power in beamlet 2 on bf_unit 0
bu_0_bst_2_up 0x5 1 r/w 32 msb’s of power in beamlet 2 on bf_unit 0
----------------------- ------ --- ----- --
bu_0_bst_255_low 0x1FE 1 r/w 32 lsb’s of power in beamlet 255 on bf_unit 0
bu_0_bst_255_up 0x1FF 1 r/w 32 msb’s of power in beamlet 255 on bf_unit 0
bu_1_bst_0_low 0x200 1 r/w 32 lsb’s of power in beamlet 0 on bf_unit 1
bu_1_bst_0_up 0x201 1 r/w 32 msb’s of power in beamlet 0 on bf_unit 1
bu_1_bst_1_low 0x202 1 r/w 32 lsb’s of power in beamlet 1 on bf_unit 1
bu_1_bst_1_up 0x203 1 r/w 32 msb’s of power in beamlet 1 on bf_unit 1
----------------------- ------ --- ----- --
bu_1_bst_255_low 0x3FE 1 r/w 32 lsb’s of power in beamlet 255 on bf_unit 1
bu_1_bst_255_up 0x3FF 1 r/w 32 msb’s of power in beamlet 255 on bf_unit 1
bu_2_bst_0_low 0x400 1 r/w 32 lsb’s of power in beamlet 0 on bf_unit 2
bu_2_bst_0_up 0x401 1 r/w 32 msb’s of power in beamlet 0 on bf_unit 2
bu_2_bst_1_low 0x402 1 r/w 32 lsb’s of power in beamlet 1 on bf_unit 2
bu_2_bst_1_up 0x403 1 r/w 32 msb’s of power in beamlet 1 on bf_unit 2
----------------------- ------ --- ----- --
bu_2_bst_255_low 0x5FE 1 r/w 32 lsb’s of power in beamlet 255 on bf_unit 2
bu_2_bst_255_up 0x5FF 1 r/w 32 msb’s of power in beamlet 255 on bf_unit 2
bu_3_bst_0_low 0x600 1 r/w 32 lsb’s of power in beamlet 0 on bf_unit 3

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

16 / 42

bu_3_bst_0_up 0x601 1 r/w 32 msb’s of power in beamlet 0 on bf_unit 3
bu_3_bst_1_low 0x602 1 r/w 32 lsb’s of power in beamlet 1 on bf_unit 3
bu_3_bst_1_up 0x603 1 r/w 32 msb’s of power in beamlet 1 on bf_unit 3
----------------------- ------ --- ----- --
bu_3_bst_255_low 0x7FE 1 r/w 32 lsb’s of power in beamlet 255 on bf_unit 3
bu_3_bst_255_up 0x7FF 1 r/w 32 msb’s of power in beamlet 255 on bf_unit 3

Table 10 beamlet statistics span

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

17 / 42

4 Module Design

4.1 Algorithm
For the Apertif system the bf module should implement the following equation:

∑
=

=
S

i
kjijikj nMwnNsnNB

0
,,,,][].[][

There are several ways to implement this equation into an FPGA. The following criteria as stated in [2] have
been used to estimate the most suitable structure for the bf module:

- Does it scale nicely with larger or smaller values for S, K or NFN?
- Does it efficiently use the FPGA DSP-blocks, RAM and logic resources?
- Can it nicely handle different numbers of beamlets per subband?
- Does it easily fit to the way the subbands arrive at the input?

During estimation the structures as described/proposed in [2] have been examined on hardware in order to
find the best solution. Efficient use of the FPGA’s DSP blocks was the prime criteria in this survey. In [3] a
detailed description of this survey can be found. The most important conclusion of the survey is that it is
impossible to use any of the embedded adder-structures in the DSP blocks for accumulating all
nof_signal_paths into a beamlet. The DSP blocks can only be used for complex multiplication and not for the
accumulation and therefor the accumulation part has to be done in logic. This restriction has led to the
architecture described in the following paragraphs.

4.2 Architecture

4.2.1 bf module

Figure 10 shows an overview of the bf module. It is build out of two building blocks: a unique bf_switch and a
number of bf_units. The input consists of a set of input streams providing input data and the output is a set of
data streams that holds beamlets. A memory mapped interface is used for control and monitoring.
The selected structure divides the nof_subbands subbands equally over the bf_units. Each bf_unit then
calculates all the beamlets for that subset of the subbands. For the Apertif system this means that the 24
subbands on the input are divided over 4 bf_units so each bf_unit will calculate the beamlets for 6 subbands.
Taken into account that the bandwidth of one subband is 0.78 MHz and the target clock frequency (the
multiplier frequency) is set to 200 MHz it can be derived that each bf_unit can calculate 256 beamlets out of
the 6 subbands. This makes the average number of beamlets per subband 256/6 = 42.

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

18 / 42

bf

bf-switch

STbf_unit

STbf_unit

STbf_unit

STbf_unit

ST

ST

ST

MM interface

Figure 10 Architecture of the bf module

4.2.2 bf_switch

The bf_switch is predominately a unit that applies re-ordering and shuffling to the incoming data in order to
prepare the data correctly for the bf_units. The number of inputs is defined by the nof_input_streams and
since the switch has to provide all inputs of the bf_units with data, the number of outputs is defined by the
nof_signal_paths*nof_bf_units.

in_sosi_arr[0] out_sosi_arr[0]

in_sosi_arr[nof_input_streams-1] out_sosi_arr[nof_signal_paths*nof_bf_units-1]

bf_switch

Figure 11 Architecture of the bf_switch

The internal architecture of the bf_switch depends on the format of the incoming data packets, since the
format of the outgoing packets is defined by the bf_unit.

4.2.3 bf_unit

The internal architecture of a single bf_unit is shown in Figure 12. For each signal path (nof_signal_paths) a
weight memory is used that can hold nof_weights weight factors, an input fifo is used for the incoming data
and a complex multiplier is there for the multiplication. The results of al multipliers are connected to a
multiple-input adder-tree that summarizes all its inputs. Then a packetizer unit is used to generate a data
stream that consists of packets of nof_weight beamlets. That stream is fed to two quantizers. The first
quantizer prepares the data stream for the beamlet statistics module whereas the second quantizer prepares
the data for the data output stream.
The bf_unit is controlled by a bf_unit controller that takes care of addressing the weight memories, reading
out the input fifos and the synchronization of the packetizer.

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

19 / 42

complex
multiplier

weight
 memory

ST input
fifo

MM

complex
multiplier

weight
 memory

ST input
fifo

MM

adder
tree

complex
multiplier

weight
 memory

ST input
fifo

MM

bf_unit_control

MM

beamlet
statisticsquantizer

 out_qua_sosiquantizer

ctrl

ctrl

ctrl

ctrl

ctrl

ctrl

packetizer

ctrl

Figure 12: Basic architecture of a single bf_unit

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

20 / 42

5 Implementation
This chapter describes the implementation of the bf module. The bf module consists of bf_units and a
bf_switch that are interconnected. Both units are described in detail in the following paragraphs.

5.1 bf_switch
The task of the bf_switch is the reordering of the incoming data streams into data streams that are suitable
for the bf_units. In this description the actual values of the Apertif project are used to explain the working of
the bf_switch. In order to fulfil the requirement there are several possibilities for implementation. A first
approach led to a direct and effective architecture called bf_switch_a_direct. Unfortunately this direct version
was causing timing issues during synthesis and therefor a second architecture was developed called
bf_switch_a_sort_distribute. Both architectures will be described

5.1.1 Input format

The bf_switch expects nof_input_streams (16) data streams. Each stream contains the nof_subbands (24) of
nof_signal_inputs (64) / nof_input_streams (16) = 4 signal paths. The format of the data streams is described
in detail in paragraph 2.3.1.

5.1.2 Output format

The output of the bf_switch will feed all the inputs of all the connected bf_units. That are nof_signal_paths
(64) * nof_bf_units (4) = 256 output streams. As earlier explained each bf_unit will process only
nof_subbands (24) / nof_bf_units (4) = 6 subbands. This should lead to a streaming packet format that is
displayed in Figure 13 which shows a packet that contains the first 6 subband samples (SB[0:5]) of signal
path 0 (SP0). This packet will be offered to the the first input of the first bf_unit.

SP0_SB[0:5]

SOP

EOP

RE/IM

VALID

SP = Signal Path

SB = Subband

Figure 13 Output format of bf_switch

An overview of the packets for all inputs for all bf_units is shown in Figure 14.

SP0_SB[0:5]

SP1_SB[0:5]

SP63_SB[0:5]

SP0_SB[6:11]

SP1_SB[6:11]

SP63_SB[6:11]

SP0_SB[12:17]

SP1_SB[12:17]

SP63_SB[12:17]

SP0_SB[18:23]

SP1_SB[18:23]

SP63_SB[18:23]

bf_unit0_input0

bf_unit0_input1

bf_unit0_input63

bf_unit1_input0

bf_unit1_input1

bf_unit1_input63

bf_unit2_input0

bf_unit2_input1

bf_unit2_input63

bf_unit3_input0

bf_unit3_input1

bf_unit3_input63

SP = Signal Path

SB = Subband

Figure 14 Packet distribution of bf_switch

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

21 / 42

5.1.3 Architecture: bf_switch_a_direct

The direct approach is based on sending every incoming sample straight to the output where it should go, in
other words: the sorting and distribution is done in one step. The bf_switch expects the incoming data to be
in the format as defined in paragraph 2.3.1 and based on that format it performs the serial to parallel
function. Figure 15 shows the bf_switch result of one input stream. The incoming stream is registered and
then passed on to the correct registered output.

3
23-18

bf_switch
(direct)

signal path 3 signal path 2 signal path 1 signal path 0

3
17-12

3
11-6

3
5-0

2
23-18

2
17-12

2
11-6

2
5-0

1
23-18

1
17-12

1
11-6

1
5-0

0
23-18

0
17-12

0
11-6

packet n

3
23-18

3
17-12

3
11-6

3
5-0

2
23-18

2
17-12

2
11-6

2
5-0

1
23-18

1
17-12

1
11-6

1
5-0

0
23-18

0
17-12

0
11-6

0
5-0

packet n-1

in_sosi_arr(0)
0

5-0 out_sosi_arr

16 x output register1 x input register

out_sosi_arr(0)

out_sosi_arr(64)

out_sosi_arr(128)

out_sosi_arr(196)

out_sosi_arr(1)

out_sosi_arr(65)

out_sosi_arr(129)

out_sosi_arr(197)

out_sosi_arr(2)

out_sosi_arr(66)

out_sosi_arr(130)

out_sosi_arr(198)

out_sosi_arr(3)

out_sosi_arr(67)

out_sosi_arr(131)

out_sosi_arr(199)

input:

output:

2
5-0

signal path number

subbands span

Figure 15 In- and output for one input stream of the bf_switch_a_direct architecture

Each outgoing packet is send to one of the elements of the siso output array. The inputs of the bf_units
should be connected as follows:

• out_sosi_arr(63:0)  bf_unit_0(63:0)
• out_sosi_arr(127:64)  bf_unit_1(63:0)
• out_sosi_arr(195:128)  bf_unit_2(63:0)
• out_sosi_arr(255:196)  bf_unit_3(63:0)

Note that the outgoing packets are not aligned in time. It is the responsibility of the bf_units to only start
when the last packet has been written.
The architecture of bf_switch_a_direct is based on a 2-state state-machine. It waits in the idle state until data
is received and it then continues in the run state with the reordering of the incoming samples. In the run state
an address counter is incremented every nof_subbands/nof_bf_untis=6 clock cycles. This address counter is
used to address the correct element of the output array.
Although this implementation looks simple and efficient it is obvious that the routing effort for the place and
route tool is enormous. Every input sample has to be transported to the according bf_unit in only two clock
cycles.

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

22 / 42

5.1.4 Architecture: bf_switch_a_sort_distribute

In order to achieve better timing results the architecture for the bf_switch has been improved. The
improvements have been made by separating the sorting function and the distribution function by creating a
two-step approach. The first step performs the sorting where the sorted data for the output is written into a
fifo. The second step consists of reading out the data from the fifo and distribute it over the inputs of the
bf_units. A schematic overview of this architecture is given in Figure 16.

input
fifo

(common_lib)

input
fifo

(common_lib)

input
fifo

(common_lib)
input
fifo

(common_lib)

input
fifo

(common_lib)

input
fifo

(common_lib)

input
fifo

(common_lib)

input
fifo

(common_lib)
input
fifo

(common_lib)

input
fifo

(common_lib)
reorder_fifo

(common_lib)
bf_sw_fifo_reader

(bf_lib)

out_sosi_arr(255:248)

input
fifo

(common_lib)

input
fifo

(common_lib)

input
fifo

(common_lib)
input
fifo

(common_lib)

input
fifo

(common_lib)
out_sosi_arr(7:0)

sosi_i_arr(31)

bf_sw_distribute
(bf_lib)

in_sosi_arr(0)

input
fifo

(common_lib)

input
fifo

(common_lib)

input
fifo

(common_lib)
input
fifo

(common_lib)

input
fifo

(common_lib)

in_sosi_arr(15)

bf_sw_node
(bf_lib)

input
fifo

(common_lib)

input
fifo

(common_lib)

input
fifo

(common_lib)
input
fifo

(common_lib)

input
fifo

(common_lib)

sosi_i_arr(31) bf_sw_inbuf
(bf_lib)

input
fifo

(common_lib)

input
fifo

(common_lib)

input
fifo

(common_lib)
input
fifo

(common_lib)

input
fifo

(common_lib)
bf_sw_fifo_writer

(bf_lib)
sosi_i_arr(0)

input_fifo
(common_lib)

packet_rdy packet_rdy

packet_rdy
(from bf_sw_fifo_writer)

(to bf_sw_fifo_reader)

16 32 32

32 32 32

sosi_i_arr(0)

Figure 16 Schematic overview of bf_switch_a_sort_distribute

5.1.4.1 bf_sw_node

The first unit in the architecture is the bf_sw_node. Every incoming data stream has one bf_sw_node
connected to it (total number of bf_sw_nodes = 16). The bf_sw_node splits the incoming stream in two new
streams. This parallelization step is necessary in order to be able to do the sorting of the current packet
before the next packet arrives. The parameters and interface signals of the bf_sw_node are listed in Table
11 and Table 12.

Generic Type Value Description
g_nof_outputs POSITIVE 2 Specifies the number of output streams.
g_switch_interval POSITIVE 48 Specifies the alternating frequency, expressed in number of

valid samples.

Table 11 bf_sw_node parameters

Interface Type Size or Span Description
in_sosi t_dp_sosi na The streaming interface that carries the incoming packets.
out_sosi_arr t_dp_sosi_arr g_nof_outputs An array of streaming interfaces where each element

carries a segment of the input stream.
clk std_logic na Datapath clock input.
rst std_logic na Datapath reset input.

Table 12 bf_sw_node interface signals

As soon as there is valid data present on the input the bf_sw_node will send the first g_switch_interval valid
data samples to the first output. The second g_switch_interval valid data samples will be send to the second
output. The next g_switch_interval samples will be send to the first output again etc. For g_nof_outputs=2
and g_switch_interval=48 this result in incoming and outgoing streams as depicted in Figure 17.

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

23 / 42

3
23-18

3
17-12

3
11-6

3
5-0

2
23-18

2
17-12

2
11-6

2
5-0

1
23-18

1
17-12

1
11-6

1
5-0

0
23-18

0
17-12

0
11-6

0
5-0

signal path 0signal path 1

signal path 2signal path 3

1
23-18

1
17-12

1
11-6

1
5-0

0
23-18

0
17-12

0
11-6

0
5-0

signal path 0signal path 1

3
23-18

3
17-12

3
11-6

3
5-0

2
23-18

2
17-12

2
11-6

2
5-0

signal path 2signal path 3

output streams:

input stream:

in

out(0)

out(1)

Figure 17 In- and output streams of bf_sw_node

The packets on all output streams are provided with the valid, sop and eop signals.
Each output stream is connected to a bf_sw_inbuf.

5.1.4.2 bf_sw_inbuf

The bf_sw_inbuf is basically a fifo (from the common_lib) with some extra logic. The incoming data stream is
written to the fifo where the valid signal is used to drive the fifos wr_req signal. The eop field of the incoming
stream is used to notify the bf_sw_fifo_writer that there is a complete packet in the fifo. This is done via the
packet_rdy signal. There are 32 bf_sw_inbuf units.

5.1.4.3 bf_sw_fifo_writer

The 32 bf_sw_fifo_writer units sort the data by reading data from the input fifos and then write the data in the
reoder fifo. The parameters and interface signals of the bf_sw_fifo_writer are shown in the following tables:

Generic Type Value Description
g_nof_input_streams POSITIVE 4 The number of input streams that must be used to

generate the reordered data stream. Used to estimate
the data input span.

g_nof_signals_per_stream POSITIVE 2 The number of signal paths represented in each input
stream.

g_nof_subbands POSITIVE 24 The number of subbands of each signal path.
g_nof_bf_units POSITIVE 4 The total number of bf_units.
g_bf_unit_nr NATURAL 0,1,2

or 3
This value is used for the timing of the fifo_rd_req and
the fifo_wr_req signals.

g_in_dat_w POSITIVE 16 The data width of the input and output data.

Table 13 Parameters of the bf_sw_fifo_writer

Interface Type Size or Span Description
data_in std_logic_vector g_nof_input_streams*

2* g_in_dat_w
The data input span in which
g_nof_input_streams(=4) datastreams are
placed.

packet_rdy_in std_logic na Input signal that is asserted when there is a
complete packet available in the input fifos.

fifo_rd_req std_logic na Read request signal to the input fifo.
fifo_wr_data std_logic_vector 2* g_in_dat_w Output data word to the reoder fifo.
fifo_wr_req std_logic na Write request signal to the reorder fifo.
clk std_logic na Datapath clock input.
rst std_logic na Datapath reset input.

Table 14 Interface signals of bf_sw_fifo_writer

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

24 / 42

Now every bf_sw_fifo_writer is responsible for generating one stream of data. This stream is composed out
of slices of data that come from four consecutive input streams. This is best illustrated by viewing the content
of four input fifos and the output of the first four bf_sw_fifo_writer units in Figure 18. The first four
bf_sw_fifo_writer units all use different slices of data from the first four bf_sw_inbuf fifos.

0
5-0

1
5-0

2
5-0

3
5-0

7
23-18

7
17-12

7
11-6

7
5-0

6
23-18

6
17-12

6
11-6

6
5-0

5
23-18

5
17-12

5
11-6

5
5-0

4
23-18

4
17-12

4
11-6

4
5-0

4
5-0

5
5-0

6
5-0

7
5-0

0
11-6

1
11-6

2
11-6

3
11-6

4
11-6

5
11-6

6
11-6

7
11-6

7
17-12

7
23-18

6
23-18

4
23-18

5
23-18

6
17-12

5
17-12

4
17-12

3
17-12

2
17-12

1
17-12

0
17-12

3
23-18

2
23-18

1
23-18

0
23-18

signal path 4signal path 5

signal path 6signal path 7

3
23-18

3
17-12

3
11-6

3
5-0

2
23-18

2
17-12

2
11-6

2
5-0

1
23-18

1
17-12

1
11-6

1
5-0

0
23-18

0
17-12

0
11-6

0
5-0

signal path 0signal path 1

signal path 2signal path 3

reorder_fifo(0)

reorder_fifo(1)

reorder_fifo(2)

reorder_fifo(3)

bf_sw_inbuf fifo content: bf_sw_fifo_writer output:

bf_sw_inbuf(0)

bf_sw_inbuf(1)

bf_sw_inbuf(2)

bf_sw_inbuf(3)

bf_sw_fifo_writer(0)

bf_sw_fifo_writer(1)

bf_sw_fifo_writer(2)

bf_sw_fifo_writer(3)

Figure 18 Content of input fifo and output of bf_sw_fifo_writer

In order to generate the stream for the reorder fifo the input fifos are read one by one in serial. This is done
by asserting the fifo_rd_req signals one by one. First the data of bf_sw_inbuf(0) is read and written to the
applicable reoder_fifos, then the bf_sw_inbuf(1) is read and distributed to the reorder_fifos, etc. An overview
of the assertions of the fifo_rd_req and the fifo_wr_req signals is shown in Figure 19. This figure also shows
the slices of data that are send to the reorder fifo.

fifo_rd_req(0)

fifo_wr_req(0)

fifo_wr_data(0)
0

5-0
1

5-0
2

5-0
3

5-0
4

5-0
5

5-0
6

5-0
7

5-0

fifo_rd_req(1)

fifo_wr_req(1)

fifo_wr_data(1)

fifo_rd_req(2)

fifo_wr_req(2)

fifo_wr_data(2)

fifo_rd_req(3)

fifo_wr_req(3)

fifo_wr_data(3)

0
11-6

1
11-6

2
11-6

3
11-6

4
11-6

5
11-6

6
11-6

7
11-6

7
17-12

6
17-12

5
17-12

4
17-12

3
17-12

2
17-12

1
17-12

0
17-12

7
23-18

6
23-18

4
23-18

5
23-18

3
23-18

2
23-18

1
23-18

0
23-18

Figure 19 Assertion of fifo_rd_req and fifo_wr_req

As soon as the last data of the current packet is written to the reorder_fifo the bf_sw_fifo_writer unit notifies
the bf_sw_fifi_reader by asserting the packet_rdy.

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

25 / 42

5.1.4.4 reorder_fifo

The reorder fifo is a single clock fifo (common_fifo_sc) that finds its origin in the common_lib, see [4]. The fifo
is parameterized as follows:

• data width = 2*in_dat_w (=32)
• fifo depth = 6 subbands*8 signal paths (=48 words)

5.1.4.5 bf_sw_fifo_reader

The bf_sw_reader reads the data from the reorder fifo and generates a sosi stream that feeds the
bf_sw_distribute unit. The unit also fills in the channel field of the sosi stream. The parameters that configure
the bf_sw_fifo_reader are listed in Table 15 and the interface siganls are listed in

Generic Type Value Description
g_nof_input_streams POSITIVE 4 The number of input streams that were used to generate

the input stream for a single bf_sw_fifo_reader. Used to
estimate the number of signal paths that are in the input
stream.

g_nof_signals_per_stream POSITIVE 2 The number of signals in the streams that were used to
generate the input stream for a single
bf_sw_fifo_reader. Value is used in combination with
g_nof_input_streams to estimate the number of signal
paths that are in the input stream.

g_nof_subbands POSITIVE 24 The number of subbands of each signal path.
g_nof_bf_units POSITIVE 4 The total number of bf_units.
g_in_dat_w POSITIVE 16 The data width of the input and output data.

Table 15 Parameters of bf_sw_fifo_reader

Interface Type Size or Span Description
packet_rdy_in std_logic na Input signal that is asserted when there is a

complete packet available in the reorder fifos.
fifo_rd_req std_logic na Read request signal to the reorder fifo.
fifo_rd_data std_logic_vector 2* g_in_dat_w Read data from the reorder fifo.
out_sosi t_dp_sosi na Streaming output that contains data and channel

numbers.
clk std_logic na Datapath clock input.
rst std_logic na Datapath reset input.

Table 16 Interface signals of the bf_sw_fifo_reader

When the bf_sw_fifo_reader receives the packet_rdy signal from the bf_sw_fifo_writer unit it will start reading
out the data from the reorder_fifo and send it to the connected bf_sw_distribute units. When doing that it also
adds a number to the channel field of the sosi record. The channel number will be used by the
bf_sw_distribute unit to determine to which output the data has to be transported. The data will be labelled
with a channel number according to the example in Figure 20.

0
5-0

1
5-0

2
5-0

3
5-0

4
5-0

5
5-0

6
5-0

7
5-0

channel field

sosi_i_arr(0)

0x70x30x50x10x60x20x40x0

Figure 20 Channel labels

The reason for the non-incremental sequence of the channel numbers is that the bf_sw_distribute unit is
based on single bit encoding which is explained in detail in the next paragraph.

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

26 / 42

5.1.4.6 bf_sw_distribute

The bf_sw_distribute unit splits an incoming datastream into multiple output streams based on the value that
is represented in the channel field. The recursive architecture of the bf_sw_distribute unit creates a tree-like
structure based on a fundamental 1-input 2-output unit (distribution node). In this way it is possible to
generate as much outputs as specified. The parameters that configure the bf_sw_distribute unit are listed in
Table 17. The interface signals are listed in Table 18.

Generic Type Value Description
g_nof_outputs POSITIVE 8 This value defines the number of outputs of the

distributer. Value must be a power of 2.

Table 17 Parameters of the bf_sw_distribute unit

Interface Type Size or Span Description
in_sosi t_dp_sosi na Streaming input interface. Contains data with

channel field numbers.
out_sosi_arr t_dp_sosi_arr g_nof_outputs Array of streaming outputs. The channel field

numbers are not present anymore.
clk std_logic na Datapath clock input.
rst std_logic na Datapath reset input.

Table 18 Interface signals of bf_sw_distribute unit

Figure 21 shows a schematic overview of an 8-output distribution tree with two routing examples. Every
block can be considered as a distribution node. The values of the routing examples are binary represented.
When a data sample enters a node (valid = high) the node reads the least significant bit of the channel field
to determine which output should be selected. Before actually sending the data, the node bitshifts the
channel field one value to the right. A logic ‘0’ is shifted in on the left side. Now the next node will route the
data further based on this “new” least significant bit in the channel field.

in_sosi

out_sosi_arr(0)

out_sosi_arr(1)

out_sosi_arr(2)

out_sosi_arr(3)

out_sosi_arr(4)

out_sosi_arr(5)

out_sosi_arr(6)

out_sosi_arr(7)

0

1

0

1

0

1

0

1

0

1

0

1

0

1

stage 1 stage 2 stage 3

0101(0x5) 0010 0001 0000channel:

0010(0x2) 0001 0000 0000channel:
Figure 21 8-output bf_sw_distribute tree

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

27 / 42

5.2 bf_unit
A single bf_unit consists roughly out of two stages and a control process as shown in Figure 12. The first
stage contains weight memories, input fifo’s and the complex multipliers. The second stage contains the
adder tree, packetizer, quantizer and beamlet statistics unit.

5.2.1 bf_unit first stage

A detailed schematic overview of the first stage is shown in Figure 22. A generate statement is used to
instantiate this sub-design for every input path (nof_signal_paths).

dual port ram
(common_lib)

mm_weight_mosi_arr(I)

mm_weight_miso_arr(I)

mm_clk dsp_clk

weight address

r
e
g

weight memory

fifo
(common_lib)

input fifo

dsp_clk

r
e
g

in_sosi_arr(I).re

in_sosi_arr(I).im

in_sosi_arr(I).valid

rd_req

2x16 bits

2x16 bits

r
e
g

r
e
g

complex
multiplier

(common_lib)

r
e
g

33 bits

prod_re_arr(I)

prod_im_arr(I)
33 bits

Figure 22 bf_unit first stage schematic

5.2.1.1 Weight memory

The weight memory is a dual ported ram block (common_ram_crw_crw) that is instantiated from the
common_lib, see [4]. The size of the ram is defined as follows:

• address width = log2(nof_weights) (=8)
• data width = 2*in_weight_w (=32) (since it are complex weights)

The left side is connected by an mm interface that can be connected to the host (microprocessor) whereas
the right side of the ram is read by the bf_unit control process in order to feed the multiplier with the weight
factors. The data that is read from the right side of the memory is registered in order to achieve better timing
results during synthesis.

5.2.1.2 Input fifo

The input fifo is a single clock fifo (common_fifo_sc) that finds its origin in the common_lib, see [4]. The fifo is
parameterized as follows:

• data width = 2*in_dat_w (=32)
• fifo depth = 2*nof_offsets (=16) (it can hold at least two input packets)

Incoming data from the in_sosi_arr is written to the fifo after being registered. The bf_unit control process
reads out the data by asserting the rd_req signal.

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

28 / 42

5.2.1.3 Complex multiplier

The complex multiplier (common_complex_mult) is also part of the common_lib. By selecting the “stratix4”
architecture the complex multiplier is mapped on an embedded Stratix IV DSP block. The in- and output
registers are also part of the embedded DSP blocks. The complex multiplier is configured as follows:

• architecture = stratix4
• g_in_a_w = in_weight_w (=16)
• g_in_b_w = in_dat_w (=16)
• g_out_p_w = in_weight_w + in_dat_w + 1 (=33)
• g_conjugate = FALSE
• g_pipeline_input = 1
• g_pipeline_product = 0
• g_pipeline_adder = 1
• g_pipeline_output = 1

Note: the +1 that defines the g_out_p_w is due to the addition that is part of the complex multiplier.
The result of the complex multiplier is a complex product of 2x33 bit and that is fed to one of the inputs of the
adder tree in the second stage of the bf_unit.

5.2.2 bf_unit second stage

The second stage of the bf_unit combines all the outputs of the first stage multipliers using a set of adder
trees. Then the bf_unit control process creates a stream of packets of the output of the adders. Further down
the stream there are two quantizers that quantize the beamlets for the quantized output and the beamlet
statistics unit.

∑
prod_re_arr(0)

prod_re_arr(63)

adder tree real

∑
prod_im_arr(0)

prod_im_arr(63)

adder tree imaginary bf_unit control process

sum_im

sum_re

39 bits

39 bits

sosi_beams

Q

Q

r
e
g

quantizer for output

quantizer for beamlet statistics

beamlet
statistics

out_qua_sosi

out_raw_sosi

r
e
g

r
e
g

mm_bst_mosi

mm_bst_miso

Packetizer

Figure 23 bf_unit second stage schematic

5.2.2.1 Adder tree

The adder tree is an adder structure that is based on an adder function that recalls itself, until the number of
inputs is reduced to two. An adder tree for eight inputs results in a 3-stage tree as shown in Figure 24. Note
that the output of each adder is registered. For the Apertif system the number of inputs is 64
(nof_signal_paths) which results in a 6-stage tree. The bitgrowth due to these adders is defined as
log2(64)=6. Therefor the result of the adder tree is 33+6=39 bits. The adder tree is located in the
common_lib (see [4]) and is called common_adder_tree. A total of two adder trees are used to summarize
both the real and imaginary part.

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

29 / 42

∑ r
e
g

∑ r
e
g

∑ r
e
g

r
e
g

∑ r
e
g∑ r
e
g

∑ r
e
g

∑ r
e
g

∑ r
e
g

Figure 24 8-input adder tree

5.2.2.2 Packetizer

The bf_unit control process takes care of packetizing the adder results into a sosi stream. This packetizing
consists of adding the sync, sop, eop, valid, bns and error signals to the data. The format of the stream of
packets that is created is displayed in Figure 25.

beamlets[0:255]

SOP

EOP

RE/IM

VALID

SYNC

BSN 41 42

nof_weights

beamlets[0:255]

ERR 0 0

Figure 25 Beamlets packet format

The sync, bsn and err values are derived from the incoming data packets that contain the subband samples.

5.2.2.3 Quantizer

The quantizer is not yet fully implemented.

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

30 / 42

5.2.2.4 Beamlet statistics

The beamlet statistics unit calculates the power of each beamlet and integrates this over a sync period. After
each sync period the accumulated powers are written to a set of registers that can be read via the
mm_bst_mosi interface. The beamlet statistics module is reused from the Lofar project and is located in the
st_lib, see [5] for more info.

5.2.3 bf_unit control process

This paragraph describes the control process of the bf_unit. The bf_unit control process is responsible for
addressing the weight factors memory, reading out the input fifos and packetizing the beamlets.

5.2.3.1 bf_unit control ports

For a good understanding of the bf_unit control process it is necessary to have a good overview of the in-
and output ports. These ports and their description are listed in Table 19.

Interface In/Out Type Size or Span Description
ctrl_sosi In t_dp_sosi na A streaming interface that is used to

capture the bsn, err and sync field
from. This input is connected to one of
the input streams that also goes into
the bf_switch.

out_sosi Out t_dp_sosi na A streaming sosi interface that
contains the packets with beamlets.

in_sum_re In std_logic_vector out_w The real part of the beamformer result.
im_sum_im In std_logic_vector out_w The imaginary part of the beamformer.
weight_addr Out std_logic_vector log2(nof_weights) Signal used to address the memories

with the weight factors.
rd_req Out std_logic na Read request signal that is connected

to the input fifos.
usedw_fifo In std_logic_vector log2(fifo_depth) Input that represents the number of

used words in the input fifo.
fifo_full In std_logic na The fifo full signal of one of the input

fifos.
mm_offsets_mosi In t_mem_mosi A mosi interface to write and read the

offsets registers. The offset registers
specify the offsets for the input data.

mm_offsets_miso Out t_mem_miso A miso interface for reading back the
offset registers.

dp_clk In std_logic na Datapath clock
dp_rst In std_logic na Datapath reset
mm_clk In std_logic na Memory mapped interface clock
mm_rst In std_logic na Memory mapped interface reset

Table 19 bf_unit control ports

5.2.3.2 State machine

All the control tasks are accomplished by a simple state-machine that is shown in Figure 26.

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

31 / 42

idle run

used_words_in_fifo = nof_offsets

fifo = empty
Figure 26 bf_unit control state-machine

In the idle-state the process waits until the input fifos are filled with nof_offsets samples. The run-state will be
entered once the samples are there. The run-state performs a loop of nof_weight clock cycles that is called a
beamlet loop. Within this loop all necessary signals are created according to the timing diagram as shown in
Figure 27. An address counter runs from 0 to nof_weights(255) for addressing all the weight factors. When
the address counter reaches one of the specified offset values the rd_req signal is asserted in order to read
a new sample from the input fifo. If there is no data in in the input fifo anymore at the end of a beamlet loop,
the state-machine will return to the idle state. Otherwise it will immediately continue with a new beamlet loop.

SOP_DLY

EOP_DLY

VALID_DLY

SYNC_DLY

beamlet_loop

RD_REQ

WEIGHT_ADDR 0 255 0

offset 0 offset 5

0 1 2 3 4 5 0

Figure 27 Timing diagram bf_unit control

5.2.3.3 Sop, eop and valid

The sop_dly, eop_dly and valid_dly signals are feeding shift registers that compensate for the latency that is
introduced by the different stages in the datapath. This is shown in Figure 28. All three signals are delayed in
such a way that they are proper aligned with the results of the adder trees.

5.2.3.4 Sync, bsn and err fields

For the sync signal a special sync-detection mechanism is implemented that is active in both the idle- and
the run-state. The sync signal of the ctrl_sosi input is monitored and captured if asserted. When a new
beamlet loop starts and a sync was detected then the sync_dly signal will be asserted as well.
The bsn and err fields from the ctrl_sosi input are both written to a fifo where the ctrl_sosi.sop signal is used
as wr_req. The bsn and err values are read back from the fifo by the for last register of the sop shift register.
This is also displayed in Figure 28.

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

32 / 42

weight
factor

memory
weight_addr

sop_dly out_sosi.sop

∑ out_sosi.re

out_sosi.im

bsn/err
fifo

ctrl_sosi.sop

ctrl_sosi.bsn

ctrl_sosi.err

out_sosi.bsn

out_sosi.err

wr_req rd_req

ctrl_sosi.sync sync detect out_sosi.sync

input
fiford_req

latency

eop_dly out_sosi.eop

valid_dly out_sosi.valid

Figure 28 Shift register for latency compensation

5.2.4 Multiplexing mm interfaces

In order to avoid the usage of large arrays of mm interfaces in the port definition of design units a multiplexer
is created that maps an array of mm interfaces to a single mm interfaces. The unit is called
common_mem_mux and is located in the common_lib see [4]. Its basic functionality is depicted in Figure 29.

common mem
mux

mosi

miso

mosi_arr

miso_arr

Figure 29 common_mem_mux

The common_mem_mux is parameterized by two generics:
• g_nof_mosi: the number of elements in the array
• g_mult_addr_w: the address width of a single element in the array

The common_mem_mux unit is used at several places in the bf module in order to distribute the mm
interfaces in an efficient way through the design. Figure 30 shows how this is done in the bf module and in
the bf_unit for the mm_weight_mosi interface.

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

33 / 42

bf

bf_unit

bf_unit

bf_unit

bf_unit

mm_weight_mosi_arr(0)

mm_weight_miso_arr(0)

common mem
mux

mm_weight_mosi_arr(1)

mm_weight_miso_arr(1)

mm_weight_mosi_arr(2)

mm_weight_miso_arr(2)

mm_weight_mosi_arr(3)

mm_weight_miso_arr(3)

mm_weight_mosi

mm_weight_miso

bf_unit

first
stage 0

first
stage 1

first
stage 62

first
stage 63

mm_weight_mosi_arr(0)

mm_weight_miso_arr(0)

common mem
mux

mm_weight_mosi_arr(1)

mm_weight_miso_arr(1)

mm_weight_mosi_arr(62)

mm_weight_miso_arr(62)

mm_weight_mosi_arr(63)

mm_weight_miso_arr(63)

mm_weight_mosi

mm_weight_miso

Figure 30 Usage of common_mem_mux in bf module

5.3 Bitwidths, bitgrowth and quantization
The bit-width of the inputs, outputs and several intermediate signals in the data path of a bf_unit is shown in
Figure 31. Quantization is only performed at the end of the chain.

weight
factor

memory

∑
input
fifo

re

16 bits

im

16 bits

re

im
16 bits

16 bits

re

im

16 bits

16 bits

re

33 bits

im

33 bits
39 bits

39 bits

Q

Q beamlet
statistics

re

16 bits

im

16 bits

re

6 bits

im

6 bits

re

im 39 bits

39 bits

output quantizer

bst quantizer

Figure 31 Overview of bitwidths

The output quantizer selects a configurable slice of 6 bits of the incoming 39 bits to send to the output. For
the beamlet statistic unit the data must be resized to maximum 18 bits. The bst quantizer selects a
configurable slice of 16 bits out of the 39 bits input.

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

34 / 42

6 Verification
All testbench related files can be found in [8]. A dedicated package is created that holds procedures and
definitions that are aimed to be reused in the testbenches. The package is called tb_bf_pkg.vhd.

6.1 tb_bf_unit
The bf_unit module is verified in the tb_bf_unit testbench that can be found in [8]. An overview of the
testbench is given in Figure 32. The testbench uses a set of processes that provide the DUT with stimuli.
The stimuli are also offered to the verification process that calculates the reference data in parallel to the
DUT. The tester process checks if the DUT output is the same as the calculated reference data.

bf_unit

p_init_offsets_register

p_weight_memory
_write

stimuli
(input data)

p_verification

p_tester

DUT

Figure 32 bf_unit testbench

6.1.1 fifo overflow and underflow check

Assert statements are included in the source code of the bf_unit to check if the input fifo suffers from
overflow or underflow. The assert statements check at any time if the fifo is read when it is empty or if it is
written while it is full. In case one of these rules is broken a message will be displayed.

6.1.2 p_init_offsets_register

This process writes the offsets to the DUT using the mm_offsets_mosi interface and stores the offsets also in
an array that is used by the verification process. The complete functionality is captured in a procedure
(proc_bf_unit_init_offsets_register) that can be found in the tb_bf_pkg.vhd file.

6.1.3 p_weight_memory_write

The next process reads a list of weight factors from a file and writes these weight factors to the weight
memory. The file-access procedures that are used are imported from the tb_common_pkg from the
common_lib. Every signalpath in the beamformer receives the same set of (nof_weights) weight factors.

6.1.4 Stimuli (input_data)

The generation of input data is based on the proc_common_gen_data procedure from the tb_common_pkg.
To every input the same data stream is offered. The data stream is started when the weights have been
written. The data consists of incremental values.

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

35 / 42

6.1.5 p_verification

The p_verification process performs the same algorithm that is placed in the DUT, based on the same
weights, offsets and data input. Most of the calculations are performed using variables in order to optimize
simulation time. To synchronize the output stream of the verification process with the DUT stream a number
of pipeline stages is inserted. The output of the verification process is a stream of beamlets that should be
equal to the output of the DUT.

6.1.6 p_tester

The p_tester process compares the beamlets stream of the DUT with the stream of the verification process.
In case they are unequal a message will be displayed.

6.2 tb_bf
The bf module is verified with the tb_bf testbench. It shows a lot of similarities with the tb_bf_unit and some
of the procedures are reused from the tb_bf_unit. The tb_bf testbench writes offsets to the offset registers
and the weight factors to the weight factor memory. Then it will start sending data that represents the input
streams that feed the bf_switch that is part of the bf module. A verification process runs in parallel that
calculates the expected beamlets data and the expected beamlet statistics data. Another process reads out
the beamlet statistics. As well the beamlet streams from the bf module and the beamlet statistics are sent to
the testers to be checked. Most of the processes are simplified to procedures that can be found in the
tb_bf_pkg.vhd file.
Once the simulation is loaded in ModelSim it can be started by typing “run –all”. The testbench will run and
stop automatically when finished.

bf

p_init_offsets_register

p_init_weight_memory

gen_input_streams

gen_verification

gen_testers

DUT

p_read_bst_memory

Figure 33 bf testbench

6.2.1 p_init_offsets_register

This process is responsible for sending the offsets to all the bf_units. Since there are multiple instances of
the bf_unit in the bf module a 2-d array is created holding the offsets for all instances. This array is parsed to
the verification process.

6.2.2 p_init_weight_memory

The process reads weight factors from a file and writes them to the weight factors memory. Since the
mm_weight_mosi interface combines all the weight factor memories the writing of all weights is a very time
consuming exercise in simulation. Therefor the process is enabled or disabled using the g_bf_write_weights

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

36 / 42

generic. Only when this generic is set to true the writing of weight factors will be simulated. When it is set to
false the initial content of the weight factors memory will be used in the simulation.

6.2.3 gen_input_streams

For every input stream a unique data packet is composed in order to be able to trace the data more easily in
the simulation results. The data is read from a file (in_data.dat) that contains 128 columns and 24 rows
where every column duo represents a complex data value of a signal path and each row represents a
subband. The number of composed packets that are sent to the DUT can be configured using the following
constants:

• c_nof_sync = defines the number of sync intervals that should be send
• c_nof_accum_per_sync = defines the number of packets that must be send in one sync period

The format of the packets matches (of course) the required format as specified in paragraph 2.3.1. When all
the specified packets are sent the simulation will stop automatically.

6.2.4 p_read_bst_memory

Every time a sync signal is detected in the sosi output stream this process reads the beamlet statistics
results from the DUT and stores it in a 2d-array. This array is used by the tester process for verification.
Reading out all the statistics is a time consuming task and therefor it is important that the simulation is long
enough. The length of the simulation is determined by the values of c_nof_sync and c_nof_accum_per_sync.

6.2.5 gen_verification

The verification process calls the verification procedure (proc_bf_unit_expected_output) for each bf_unit and
determines the expected output of all bf_units. It calculates the expected beamlet data as well as the
expected beamlet statistics data. The process reads the data and weights from the files that are also used
for the weight and data stimuli. Both expected data streams are offered to the tester process.

6.2.6 gen_testers

Two procedures are used for testing the output of the DUT with the calculated expected data. the
proc_bf_unit_beamlet_data_tester procedure checks the beamlet data and the
proc_bf_unit_beamlet_ststistics_tester checks the beamlet statistics. Both procedures show a warning when

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

37 / 42

7 FN_BF Reference design
A reference design called fn_bf is made in order to test and validate the bf module. This chapter describes
this design and the peripherals that are used to perform the validation. Also the software and python-scripts
that are used for validation are explained here.

7.1 Design
The fn_bf design consists of a SOPC system holding a NIOS II processor that connects to the
ctrl_unb_common unit and the node_fn_bf unit via mm interfaces. The ctrl_unb_common unit contains basic
peripherals like the ethernet interface, system info, I2C sensor access and a PLL for clock generation. The
node_fn_bf unit is build out of a bf module connected to a mms_diag_block_gen unit (see [6] for more
information). The mms_diag_block_gen is a waveform generator that provides the bf module with input data
on the in_sosi_arr inputs. The bf module is instantiated with four bf_units (nof_bf_units = 4) and 16 input
streams (nof_input_streams = 16). All source and testbench files can be found in [9] .

fn_bf
(fn_bf_lib)

sopc_fn_bf
(fn_bf_lib)

node_fn_bf
(fn_bf_lib)

ctrl_unb_common
(unb_common_lib)

ST(0)

ST(15)

mms_diag_block_gen
(diag_lib)

out_raw_sosi[0]

out_raw_sosi[1]

out_raw_sosi[2]

out_raw_sosi[3]
bf

(bf_lib)

mm_bg_ctrl_mosi

mm_weight_mosi

mm_bg_data_mosi

mm_offsets_mosi

mm_bst_mosi

dp_clk mm_clkdp_rst mm_rst

Figure 34: Design: fn_bf

7.2 Verification
Two testbenches are created to verify the correctness of the reference design. The first tesbench simulates
only the node design (tb_node_fn_bf.vhd) and the second testbench verifies the complete design, including
the SOPC system (tb_fn_bf.vhd).

7.2.1 tb_node_fn_bf

The tb_node_fn_bf testbench is very similar to the tb_bf as described in paragraph 6.2. The only difference
is that the input data is now generated with the block_gen unit from the diag library. Figure 35 shows an
overview of the tb_node_fn_bf. All process are reused from the tb_bf, except the processes
p_init_waveforms_memory and p_control_input_streams.

7.2.1.1 p_init_waveforms_memory

This process reads data from an input file and sends it via the mm_bg_data_mosi interface to the waveform
memories of the block generator. The data is sent in such a way that the block generators simulate the
packets as described in 2.3.1.

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

38 / 42

7.2.1.2 p_control_input_streams

The p_control_input_streams process configures the block generator by sending the configuration data via
the mm_bg_ctrl_mosi interface. After the block generator is enabled it will wait for c_dp_rof_cycles clock
cycles before the block generator is disabled again which also marks the end of the simulation.

node_fn_bf

p_init_offsets_register

p_init_weight_memory

p_init_waveforms_memory

gen_verification

gen_testers

DUT

p_read_bst_memory

p_control_input_streams

Figure 35 node_fn_bf testbench

7.2.2 tb_fn_bf

A testbench that simulates the complete design is called tb_fn_bf. This testbench is very simple as shown in
Figure 36. The stimuli consists a two clock signals and the static assertion of the few input signals.

fn_bfstimuli I2C
device models

DUT

Figure 36 fn_bf testbench

A few I2C models are included in the simulation to facilitate the reading out of the temperatures and board
voltages. The software that runs on the NIOS II processor can be simulated as well.

7.3 Software
For test and verification purposes a small application software has been written that runs on the NIOS II
processor in the fn_bf design. The software is used in the tb_fn_bf simulation to check if reading and writing
to the registers are executed as expected. The software was also used in the early stages of debugging
when the python scripts were not yet available.
The application performs the following tasks:

• Writing the offset registers.
• Configuring (and enabling) the block generator.
• Reading out the beamlet statistics and print to screen in a loop.

The main.c file can be found in [9].

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

39 / 42

8 Synthesis and Place & Route
For synthesis and place & route the Altera EP4SGX230KF40C2 device is selected. This is the FPGA type
that is currently placed on the UniBoards.

8.1 Resources and Fmax
Table 20 gives an overview of the resource usage of some beamformer elements and the reference design
(fn_bf). The percentages relate to the total resources available in the target device (EP4SGX230KF40C2).
Also the achieved maximum frequency of the datapath clock of each (sub)-design is listed. The required
frequency for the datapath clock is 200 MHz.

 bf_unit bf_switch

(a_sort_distribute)
bf fn_bf

Registers 9354 31440 68539(38%) 64946(36%)
ALMs 5648(6%) 19184(21%) 46359(51%) 48221(53%)
M9K blocks 200(16%) 64(5%) 864(70%) 918
M144K blocks 0 0 0 8
Block Mem Bits 1,843Mbit 589Kbit 7,962Mbit 9,639Mbit
DSP blocks 258(20%) 0 1032(80%) 1032
PLLs 0 0 0 3
(Virtual) Pins 32436 129474 11968 32
Fmax Slow 85C 384 MHz 467 MHz 274 MHz 246 MHz
Fmax Slow 0C 401 MHz 486 MHz 286 MHz 261 MHz

Table 20 Overview resource usage

8.2 Timing optimizations
In order to achieve the best timing results several optimization have been performed. This chapter will
describe the optimizations in more detail.

8.2.1 Pipeline stages

From early timing analysis it was concluded that at some places in the design it would be beneficial for the
timing to insert pipeline stages. Most pipelines stages are inserted in the bf_unit where some of the inputs
and outputs of the sub block are registered as can be seen in Figure 22, Figure 23 and Figure 24. It is also
highly recommended as stated in [11] to register input and output of each sub design. However insertion of
multiple pipeline stages at the same location has not led to better timing results.

8.2.2 Optimizing switch architecture

The first approach of implementing the bf_switch led to an efficient functional design (the bf_switch_a_direct
as described in 5.1.3) but the timing results were very poor. The bad timing results were due to the fact that
the direct approach performs the order and distribute functionality in one step introducing a latency of only 3
clock cycles. Therefor a second approach was undertaken. Taken they architecture of the FPGA into
account another implementation of the bf_switch was designed that separated the order and distribution
functionality (see 5.1.4). This approach introduced more latency and pipelined stages and therefore also
better timing results since the sorting and distribution is divided over multiple stages.
In case multiple streams of data are to be sorted it is recommended to find a sorting algorithm that allows the
insertion of pipeline stages rather than trying to sort everything in one cycle.

8.2.3 Synthesis constraints

Another way to improve the timing of the bf design is adding constraints that influence the behaviour of the
synthesis tool. During an early timing analysis it was detected that the read_req signal that drives the input
fifo’s of the bf_unit was the critical timing signal. The fanout of this signal was 64 since the bf_unit_control

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

40 / 42

module drives 64 input fifos. By forcing the fanout to a maximum of 4 the register that holds the read_req
signal is automatically duplicated resulting in better timing results. The synthesis constraints are sourced as
a tcl script in the Quartus project file.

8.2.4 LogicLock Regions

LogicLock Regions are used to force the place & route tool to place a sub part of the design to a restricted
area of the FPGA. Using this technique allows you to tell the tool which parts of the design should be placed
close to each other. In case of the fn_bf design the following approach was taken in order to determine the
best LogicLock parameters:

• At first all four bf_units in the design are assigned to a new (unique) LogicLock Region.
• The LogicLock Region properties are set to : Size=Auto, State=Floating
• With these settings a place & route is performed.
• Quartus will parameterize the four LogicLock Regions during place & route.
• After completion the LogicLock Region parameters are copied to a tcl script file.
• The tcl file is then sourced in the Quartus project file.

So it is recommended to let Quartus determine the size and origin of the LogicLock Regions in a first run.
When a significant change has been applied to the design it is worthy to let Quartus determine the size and
origins of the LogicLocks Regions again.

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

41 / 42

9 Validation
Validation of the design is done using the reference design in combination with a set of Python scripts that
run on a host PC. All validation is executed on a Uniboard.

9.1 Python
In order to validate the correct working of the beamformer a set of python scripts is written that enables
communication of a host PC and the bf design.

9.1.1 pi_bf_bf.py

The Pyhton file pi_bf_bf.py is located in [7] and represents the bf_bf peripheral. It contains a class (PiBfBf)
with methods that facilitates the uploading of weight factors and the offset values.

9.1.2 tc_pi_fn_bf.py

The tc_pi_bf_bf.py file is located in [7] and contains a test case that describes a scenario, using several
methods of the pi_bf_bf.py file. The scenario covers the following steps:

• Write all offsets (write_offsets)
• Read back the offsets (read_offsets)
• Write weights (write_weights)
• Read Weights (read_weights)

9.1.3 tc_pi_fn_bf.py

This script is created to validate the total operation of the fn_bf design. The script supports the –rep and -n
arguments to facilitate repetitive testing. The steps that are performed in the loop are:

• Write settings to the block generator
• Create and write data based on the loop number to the waveform memory of the block generator
• Create and write weight factors based on the loop number to the weights memory
• Write offsets to al bf_units.
• Enable the block generator
• Calculate the reference values
• Read and verify the beamlet statistics (for –n times)
• Disable the block generator

 UniBoard
Doc.nr.: ASTRON-RP-1291
Rev.: 0.4
Date: 04-04-2012
Class.: Public

42 / 42

10 Appendix – list of files

10.1 Firmware VHDL
All VHDL source files that are used for the bf design can be found in the following directory:

$UNB/Firmware/dsp/bf/src/vhdl

The next table gives an overview of the VHDL source files:

VHDL File Description
bf.vhd Toplevel entity that instantiates the bf_switch and a number of

bf_units.
bf_offsets_reg.vhd Contains the register interface for the offsets.
bf_pkg.vhd A package that defines some constants and types. It also

contains the definition of the record used for the genrics.
bf_quant.vhd Source file for the quantizer unit.
bf_sw_distribute.vhd Part of the bf_switch responsible for the distribution of the

intermediate streams to the input fifos of the bf_units.
bf_sw_fifo_reader.vhd Source file containing functionality that reads out the bf_switch

fifo.
bf_sw_fifo_writer.vhd Source file containing functionality that writes to the bf_switch fifo.
bf_sw_inbuf.vhd Description of the input fifo of the bf_switch.
bf_sw_node.vhd Contains the entity that performs the actual switching.
bf_sw_reorder.vhd This is the reorder part of the switch functionality.
bf_switch.vhd Entity definition of the switch.
bf_switch_a_direct.vhd Architecture for the bf_switch.
bf_switch_a_nodes_bf_unit_signals.vhd Architecture for the bf_switch.
bf_switch_a_nodes_signals_bf_unit.vhd Architecture for the bf_switch.
bf_switch_a_sort_distribute.vhd Architecture for the bf_switch.
bf_unit.vhd Contains the design for a single bf_unit.
bf_unit_control.vhd Source file containing the control process for the bf_unit.

10.2 Testbench
The testbench files for simulation are in the following directory:

$UNB/Firmware/dsp/bf/tb/vhdl

10.3 Software
In addition, a C main program is located at:

$UNB/Firmware/software/apps/fn_bf

	1 Introduction
	1.1 Purpose
	1.2 Module overview
	1.3 Mode of operation

	2 Firmware interface
	2.1 Clock domains
	2.2 Parameters
	2.3 Interface signals
	2.3.1 IN_SOSI_ARR interface
	2.3.2 OUT_RAW_SOSI_ARR and OUT_QUA_SOSI_ARR interfaces
	2.3.3 MM_WEIGHT_MOSI interface
	2.3.4 MM_BST_MOSI interface
	2.3.5 MM_OFFSETS_MOSI interface
	2.3.6 Clocks and resets

	3 Software interface
	3.1 Offsets span
	3.2 Weight factors span
	3.3 Beamlet statistics span

	4 Module Design
	4.1 Algorithm
	4.2 Architecture
	4.2.1 bf module
	4.2.2 bf_switch
	4.2.3 bf_unit

	5 Implementation
	5.1 bf_switch
	5.1.1 Input format
	5.1.2 Output format
	5.1.3 Architecture: bf_switch_a_direct
	5.1.4 Architecture: bf_switch_a_sort_distribute
	5.1.4.1 bf_sw_node
	5.1.4.2 bf_sw_inbuf
	5.1.4.3 bf_sw_fifo_writer
	5.1.4.4 reorder_fifo
	5.1.4.5 bf_sw_fifo_reader
	5.1.4.6 bf_sw_distribute

	5.2 bf_unit
	5.2.1 bf_unit first stage
	5.2.1.1 Weight memory
	5.2.1.2 Input fifo
	5.2.1.3 Complex multiplier

	5.2.2 bf_unit second stage
	5.2.2.1 Adder tree
	5.2.2.2 Packetizer
	5.2.2.3 Quantizer
	5.2.2.4 Beamlet statistics

	5.2.3 bf_unit control process
	5.2.3.1 bf_unit control ports
	5.2.3.2 State machine
	5.2.3.3 Sop, eop and valid
	5.2.3.4 Sync, bsn and err fields

	5.2.4 Multiplexing mm interfaces

	5.3 Bitwidths, bitgrowth and quantization

	6 Verification
	6.1 tb_bf_unit
	6.1.1 fifo overflow and underflow check
	6.1.2 p_init_offsets_register
	6.1.3 p_weight_memory_write
	6.1.4 Stimuli (input_data)
	6.1.5 p_verification
	6.1.6 p_tester

	6.2 tb_bf
	6.2.1 p_init_offsets_register
	6.2.2 p_init_weight_memory
	6.2.3 gen_input_streams
	6.2.4 p_read_bst_memory
	6.2.5 gen_verification
	6.2.6 gen_testers

	7 FN_BF Reference design
	7.1 Design
	7.2 Verification
	7.2.1 tb_node_fn_bf
	7.2.1.1 p_init_waveforms_memory
	7.2.1.2 p_control_input_streams

	7.2.2 tb_fn_bf

	7.3 Software

	8 Synthesis and Place & Route
	8.1 Resources and Fmax
	8.2 Timing optimizations
	8.2.1 Pipeline stages
	8.2.2 Optimizing switch architecture
	8.2.3 Synthesis constraints
	8.2.4 LogicLock Regions

	9 Validation
	9.1 Python
	9.1.1 pi_bf_bf.py
	9.1.2 tc_pi_fn_bf.py
	9.1.3 tc_pi_fn_bf.py

	10 Appendix – list of files
	10.1 Firmware VHDL
	10.2 Testbench
	10.3 Software

