

Doc.nr.: ASTRON-RP-405

Distribution list:

Group: Others:

Andre Gunst
Eric Kooistra
Jonathan Hargreaves (JIVE)
Salvatore Pirruccio (JIVE)

Document history:

Revision Date Chapter / Page Modification / Change

0.1 2010-08-19 - Draft

0.2 2010-09-27 - Removed section on reset sequence, added
sections on clock domains and valid signals

0.3 2010-10-01 - Removed section on FIFO valid signals

1.0 2010-10-10 - Final

 UniBoard Rev.: 1.0
Date: 20-10-2010
Class.: Public

2 / 15

Doc.nr.: ASTRON-RP-405

Table of contents:

1 Introduction .. 5

2 Functional description ... 6

2.1 Overview ... 6
2.2 Parameters ... 6

2.2.1 Parallel data width .. 6
2.2.2 Number of transceivers .. 7
2.2.3 Duplex mode, receivers only, transmitters only .. 7
2.2.4 Instantiate FIFOs .. 7
2.2.5 Serial loopback mode ... 7
2.2.6 Instantiate DIAG modules ... 7

2.3 Clock domains .. 7

3 Implementation .. 9

3.1 Alignment of serially received data ... 9
3.1.1 Word alignment... 10
3.1.2 Byte ordering .. 11

3.2 ALTGX and ALTGX_RECONFIG ... 11

4 Designs using tr_nonbonded instances .. 12

4.1 unb_mesh ... 12
4.1.1 Simulation: duplex link .. 12
4.1.2 Simulation: simplex link .. 12
4.1.3 Simulation: top-level diag modules and FIFOs ... 12
4.1.4 Synthesis .. 13

4.2 unb_mesh_nios .. 13
4.2.1 Software control .. 13
4.2.2 Simulation ... 14
4.2.3 Synthesis .. 14

5 Appendix – list of files .. 15

5.1 tr_nonbonded.. 15
5.2 unb_mesh ... 15
5.3 unb_mesh_nios .. 15

List of figures:

Figure 1 – Functional block schematic of tr_nonbonded .. 6
Figure 2 – tr_nonbonded instantiated without FIFOs ... 7
Figure 3 – Clock domains used in the tr_nonbonded module .. 8
Figure 4 – Hierarchy of tr_nonbonded .. 9
Figure 5 – Transmitter data path .. 10
Figure 6 – Word alignment ... 10
Figure 7 – Byte ordering options .. 11
Figure 8 - Block schematic of node with duplex channels ... 12
Figure 9 – Unb_mesh_nios: an SOPC controlling a tr_nonbonded instance ... 13

 UniBoard Rev.: 1.0
Date: 20-10-2010
Class.: Public

3 / 15

Doc.nr.: ASTRON-RP-405

Terminology:

BN Back Node
BN_BI Back node – Backplane Interface
CMU Clock Multiplier Unit
FIFO First In First Out
FN Front Node
FN_BN Front Node – Back Node
FPGA Field Programmable Gate Array
Nof Number of
PCS Physical Coding Sublayer
PHY Physical layer
PMA Physical Media Attachment
RX Receive
SI_FN Serial Interface – Front Node
SOPC System On a Programmable Chip (Altera)
TX Transmit

References:

1. ‘Design considerations for UniBoard’s Stratix IV Transceivers’, ASTRON-RP-386, Daniel van der Schuur
2. ‘Quartus II Handbook’, quartusii_handbook.pdf, www.altera.com
3. ‘Altera Stratix IV Device Handbook’, July 2010, , www.altera.com
4. ‘UniBoard Board Design’, ASTRON RP-316, Gijs Schoonderbeek, Sjouke Zwier

 UniBoard Rev.: 1.0
Date: 20-10-2010
Class.: Public

4 / 15

http://www.altera.com/
http://www.altera.com/

Doc.nr.: ASTRON-RP-405

1 Introduction
The UniBoard uses high speed Stratix IV transceivers to interface between FPGAs using the mesh (front
node - back node or FN_BN) interconnect, and to interface to hardware via the back node to backplane
interface (BN_BI). Details and background information can be obtained by reading [1].

This document describes a VHDL transceiver module, tr_nonbonded, that can be used on the UniBoard to
implement up to twelve full-speed transceivers in non-bonded mode per FPGA side, providing a theoretical
throughput of 81,6 Gbps (12 x 8.5Gbps x [8/10]) per FPGA. It is designed to support hardware (other VHDL
components) and software (NIOS II) control, as is demonstrated in two designs: unb_mesh and
unb_mesh_nios. Although these two reference designs are used to test the mesh interconnect, the
tr_nonbonded module can also be used on the BN_BI.

 UniBoard Rev.: 1.0
Date: 20-10-2010
Class.: Public

5 / 15

Doc.nr.: ASTRON-RP-405

2 Functional description

2.1 Overview
An instance of the tr_nonbonded module can contain any number of transceivers supported by its host
FPGA. On UniBoard, currently one to twelve (0..11) transceivers (see Figure 1) are supported for both sides
of the FPGA, so this range is maintained throughout this document. The tr_nonbonded module provides a
parallel interface (tx_datain, rx_dataout) between the fabric and transceivers of 8 to 32 bits wide, depending
on the desired data rate.

FIFO

0

1

tx_clk(0..11)

FIFO

rx_clk(0..11)

sys_clk

sys_clk

tr_clk

tx_datain(0..11)

rx_dataout(0..11)

8/16/32

FPGA TX pin (p) (0..11)

serial loopback(0..11)

FPGA TX pin (n) (0..11)

FPGA RX pin (n) (0..11)
FPGA RX pin (p) (0..11)

8/16/32

8/16/32

8/16/32

FIFO

RX
DIAG

TX
DIAG

FIFO Phy
TX

Phy
RX

tx_dataout(0..11)

rx_datain(0..11)

tx_valid(0..11)

rx_valid(0..11)

Figure 1 – Functional block schematic of tr_nonbonded

The serial connections (tx_dataout, rx_datain) of Phy TX and Phy RX can be connected to any FPGA
transceiver pin, or may be looped back. The actual physical TX and RX and the serial loopback connection
are contained within instances of an Altera Megafunction called Altera GigaBit Transceiver, or ALTGX.

FIFOs (optional) provide the necessary means of passing the parallel data between the fabric clock domain
and the transceiver clock domains. The (also optional) DIAG modules may be used to test the transceiver
functionality and physical interconnections.

2.2 Parameters
Parameters are defined as constants in a package file, or can be passed as a generic. After changing some
of the parameters described in this chapter, the ALTGX and corresponding ALTGX_RECONFIG must be
regenerated. Paragraph 3.2 elaborates further on these two Megafunctions.

2.2.1 Parallel data width
The parallel data width of the transmitter inputs and receiver outputs is dependent on the input transceiver
clock frequency and the desired maximum data rate:

Data width = data rate / transceiver_clk * (8/10)

By default, the data width is set at 32 bits. The UniBoard uses a 156.25MHz transceiver clock, thus allowing
a data rate of 6250Mbps.

 UniBoard Rev.: 1.0
Date: 20-10-2010
Class.: Public

6 / 15

Doc.nr.: ASTRON-RP-405

2.2.2 Number of transceivers
The maximum number of transceiver instances is only limited by the number of physical transceivers
available in the FPGA. As the currently used FPGA provides twelve full (PMA+PCS) transceivers per FPGA
side, this is the default value. The tr_nonbonded module supports any number of transceivers between 1 and
12.

2.2.3 Duplex mode, receivers only, transmitters only
By passing values to generics, one can instantiate a transceiver module that contains a number of duplex
transceivers, transmitters only, or receivers only.

2.2.4 Instantiate FIFOs
Using the g_fifos generic, one can set whether FIFOs should be instantiated or not. If FIFOs are instantiated,
the tx_datain and rx_dataout can be clocked in and out using the system (fabric) clock (see Figure 1). If no
FIFOs are instantiated (Figure 2), the tx_datain must be clocked using tx_clk, and rx_dataout must be
clocked out using rx_clk.
Besides the g_fifos generic, generics are provided to set the FIFO depth (g_fifo_depth) and the number of
words at which the FIFO’s TX side buffer is considered to be almost full (g_fifo_tx_almost_full_nof_words).

Figure 2 – tr_nonbonded instantiated without FIFOs

2.2.5 Serial loopback mode
Selecting serial loopback instantiates a direct connection between the serial input and the serial output of
each transceiver. This mode is useful for functionally testing a design without having to connect it to other
FPGAs.

2.2.6 Instantiate DIAG modules
The DIAG modules, originating from LOFAR, are diagnostics modules located at the transmitter and the
receiver. The transmitter input is connected to a counter output or a pseudo random bit sequence (PRBS)
generator. The receiver output is fed into a DIAG verifier that outputs a running diagnostics result.

2.3 Clock domains
Figure 3 shows a more detailed schematic of the tr_nonbonded module, in which one can distinguish the
following three clock domains:

• System (fabric) clock (ssc)
• Receiver clock (rxc)
• Transmitter clock (txc)

To facilitate using the module in a design, these clock domains are abbreviated in the VHDL signal prefixes.
This not only avoids unintended clock domain crossings, but is also necessary because of the optional

 UniBoard Rev.: 1.0
Date: 20-10-2010
Class.: Public

7 / 15

Doc.nr.: ASTRON-RP-405

FIFOs: when instantiating the module with FIFOs, the parallel input and output data is in the system clock
domain and the rxc and txc prefixed signals are not used. Without FIFOs, one must discriminate between
data in the transmitter clock (txc) domain and data in the receiver clock (rxc) domain, leaving the ssc prefixed
signals unused.

FIFO

0

1

tx_clk(0..11)

FIFO

rx_clk(0..11)

sys_clk

sys_clk

tr_clk

ssc_tx_datain(0..11)

ssc_rx_dataout(0..11)

8/16/32

FPGA TX pin (p) (0..11)

serial loopback(0..11)

FPGA TX pin (n) (0..11)

FPGA RX pin (n) (0..11)
FPGA RX pin (p) (0..11)

8/16/32

8/16/32

8/16/32

FIFO

RX
DIAG

TX
DIAG

FIFO Phy
TX

Phy
RX

tx_dataout(0..11)

rx_datain(0..11)

ssc_tx_valid(0..11)

ssc_rx_valid(0..11)

txc_tx_datain(0..11)
8/16/32

txc_tx_valid(0..11)

tx_clk(0..11)

rxc_rx_dataout(0..11)
8/16/32

rxc_rx_valid(0..11)

rx_clk(0..11)

Figure 3 – Clock domains used in the tr_nonbonded module

 UniBoard Rev.: 1.0
Date: 20-10-2010
Class.: Public

8 / 15

Doc.nr.: ASTRON-RP-405

3 Implementation
This chapter gives an overview of the VHDL architecture and hierarchy (Figure 4) of the tr_nonbonded
module and its components.

Figure 4 – Hierarchy of tr_nonbonded

3.1 Alignment of serially received data
Upon serialization of parallel data, the word boundary is lost. To restore this word boundary, an alignment
block is used on the receiver side. Besides that, depending on when the system comes out of reset, the byte
order may not match the original byte order. This problem is addressed by the byte ordering block. This
paragraph describes the alignment procedure and these two necessary blocks.

To align the data on the receiver side, the transmitter must send a specific alignment pattern. This is
performed by the tx_align entity. This entity is responsible for the selection of two types of data that can be
fed into the transmitter:

• The user data
• The alignment pattern

During initialization after power up, the tx_align entity continuously outputs the alignment pattern to the
parallel input of the transmitters. The enable input of tx_align and the duration of the assertion of this signal
are controlled by the reset state machine. When enabled, the input user data is not forwarded to the
transmitter. Instead, the alignment pattern is sent. This pattern (c_alignment_pattern) is set in the
tr_nonbonded.pkg file. The actual alignment to this pattern on the receiver side is performed by the Word
Alignment Block. The same pattern is also used by the byte ordering block to restore the byte order. Word
alignment and byte ordering blocks are available as options in the ALTGX Megafunction.

 UniBoard Rev.: 1.0
Date: 20-10-2010
Class.: Public

9 / 15

Doc.nr.: ASTRON-RP-405

Figure 5 – Transmitter data path

3.1.1 Word alignment
When a 32-bit width is used for the fabric-transceiver interface, as illustrated in Figure 5, the 32-bit data is
byte serialized into half the width at twice the frequency. The resulting 16 bits are fed into the 8b/10b
encoder that encodes the MSB and LSB into 10-bits each and outputs these 20 bits to the serializer. On the
receiver side, the word aligner is located before the 8b/10b decoder and thus looks for word alignment
patterns that are 8b/10b encoded. This word alignment pattern, 10 (single width) or 20 (double width) bits
wide, is entered as a parameter in the corresponding ALTGX Megafunction field (see Figure 6).

Figure 6 – Word alignment

The 20-bit default alignment pattern for the tr_nonbonded module is:

0011110100 0011111010 = 8b/10b encoded, LS Bits right
K28.0 K.28.5 = Comma symbol followed by control word
0xBC 0x1C = 8b/10b decoded

This corresponds to 0xBC1C after 8b/10b decoding at the receiver end and before 8b/10b encoding at the
transmitter end. The comma symbol (K.28.5 or 0xBC) differs from the second byte so their places cannot be
swapped during alignment. The second byte (0x1C) is also used in the byte ordering block described in the
next paragraph.

 UniBoard Rev.: 1.0
Date: 20-10-2010
Class.: Public

10 / 15

Doc.nr.: ASTRON-RP-405

The alignment pattern is input in the Megafunction in reverse, the way it is sent after serialization:

0101111100 0010111100 (0x5F0BC) = 8b/10b encoded, LS Bits left (reversed)

3.1.2 Byte ordering
As described in the previous paragraph, the 0x1C byte is used for byte ordering. The byte ordering block
(available as option in the ALTGX Megafunction, see Figure 7) uses the synchronization status output of the
word aligner to start the byte ordering – this is necessary because the byte deserializer at the receiver could
output the bytes in the wrong order. When it finds byte ordering pattern 0x1C at the LSB position, it
considers the data to be aligned. Otherwise, it inserts a padding pattern (set to 0x00) to effectively shift the
data onto the LSB position.

Figure 7 – Byte ordering options

3.2 ALTGX and ALTGX_RECONFIG
There are three types of pre-generated ALTGX Megafunctions that can be instanced in phy_gx (see
Figure 4 – Hierarchy of tr_nonbonded), depending on the Boolean generics g_tx and g_rx:

• Duplex
• Transmitters only
• Receivers only

Also, one of two ALTGX_RECONFIG Megafunctions will be instanced:
• stratix_iv_gx_reconfig -> for synthesis
• stratix_iv_gx_reconfig_sim -> for simulation

The stratix_iv_gx_reconfig_sim instance will be used when the g_sim generic is set to TRUE, and will
instance a reconfiguration module for two (duplex/transmitter/receiver) channels, yielding faster simulation
times. When the synthesis module is used, the number of transceivers set in the package file will be used.

 UniBoard Rev.: 1.0
Date: 20-10-2010
Class.: Public

11 / 15

Doc.nr.: ASTRON-RP-405

4 Designs using tr_nonbonded instances
This chapter describes two designs, unb_mesh and unb_mesh_nios, that instantiate the tr_nonbonded
module with up to twelve transceivers. Both are used to test the UniBoard mesh infrastructure and
transceiver capabilities. Unb_mesh does not contain a NIOS II processor, which makes it more appropriate
for simulation than unb_mesh_nios. The design consists of a pseudo random number generator connected
directly to each transmitter and a verifier connected directly to each receiver. Unb_mesh_nios is intended to
provide an example of a design using the tr_nonbonded module with a NIOS II processor. The
unb_mesh_nios design uses tr_nonbonded module without the diagnostics modules enabled in
tr_nonbonded itself (also an option in unb_mesh). Instead, diagnostics modules are used in the top-level
entity, the same entity in which the tr_nonbonded module is instantiated. Also, the ‘user data’ (generated and
verified by the diagnostics modules) crosses the system and transceiver clock domains by means of FIFOs.

4.1 unb_mesh
The unb_mesh design uses a tr_nonbonded instance with 12 channels, and uses the DIAG modules to
generate a bit stream at the transmitter and to verify the data at the receiver end. Figure 8 shows how the
transceivers connect to the mesh interconnect.

Figure 8 - Block schematic of node with duplex channels

The diagnostics result of each receiver is output by the DIAG verifiers at the receiver ends. Each bit of this
[c_data_with + 1] bit value should be zero to indicate correct data is being received. This [c_data_with + 1]
bit value is converted to a one-bit value via an OR operation, so one bit per receiver indicates whether or not
correct data is received. These 12 (in a 12-channel design) individual bits are then again fed into an OR gate
so a one-bit signal, connected to an LED, indicates the test result.

4.1.1 Simulation: duplex link
The test bench of unb_mesh instantiates two nodes and connects the FN_BN_#_RX signals of one node to
the FN_BN_#_TX signals of the other, and vice versa.

4.1.2 Simulation: simplex link
There is a second option in the test bench, which can be selected to simulate two nodes, one with
transmitters only and the second with receivers only.

4.1.3 Simulation: top-level diag modules and FIFOs
A third test bench option is to instantiate the tr_nonbonded module without diag modules. In this example,
diag modules are instantiated in the top entity and interface to the tr_nonbonded module via FIFOs.

 UniBoard Rev.: 1.0
Date: 20-10-2010
Class.: Public

12 / 15

Doc.nr.: ASTRON-RP-405

4.1.4 Synthesis
Synthesis of unb_mesh can be performed on a duplex design with any number of channels. Other modes
are supported in tr_nonbonded but require modifications of unb_mesh.
This firmware is meant to be downloaded onto all eight FPGAs, as the test will fail if any receivers do not get
(correct) input data.

4.2 unb_mesh_nios
This design (see Figure 9) uses a tr_nonbonded instance with FIFOs and without diagnostics modules.
Instead, the diagnostics modules are instantiated in the top level entity and are controlled by a NIOS II
processor which is part of an SOPC.

Figure 9 – Unb_mesh_nios: an SOPC controlling a tr_nonbonded instance

The SOPC contains PIO registers that control or read out the following signals:

DIAG: TX sequencer:

• Enable
• Mode: PRSG or counter

DIAG: RX Monitor:

• Enable
• Mode: PRSG or counter
• Diagnostics result
• Diagnostics result valid

Receiver buffers

• Take 100 samples of one of the receiver buffers

4.2.1 Software control
The PIO registers can be accessed by using the JTAG UART menu. This menu is displayed after start up,
and requires that the user has opened a NIOS II terminal within a NIOS II command shell. A possible testing
sequence could be the following:

• Download SOF file onto all 8 nodes
• Open 8 NIOS II terminals
• Enable all TX sequencers
• Enable all RX monitors
• Display the diagnostics result of each node

 UniBoard Rev.: 1.0
Date: 20-10-2010
Class.: Public

13 / 15

Doc.nr.: ASTRON-RP-405

The functions that perform these actions are located and described in:

$UNB/firmware/software/modules/tr_nonbonded/

A main source file exists at the following location:

$UNB/firmware/software/apps/unb_mesh_nios/main.c.

4.2.2 Simulation
Simulation of this design is possible, however not recommended (or maintained) because the NIOS II
processor combined with the transceiver instances make simulation very slow. In addition, the
unb_mesh_nios design is made to control multiple or all nodes simultaneously, which is impossible in
simulation in terms of speed and the lack of support for JTAG UART input in ModelSim.
For simulation, the unb_mesh design should be used.

4.2.3 Synthesis
This design can be run on any number of nodes. However, only the receivers connected to active (and
booted at the same time) transmitters will succeed in aligning properly.
As the full diagnostics result is read from a register as a hexadecimal value, one can determine which
receivers failed the test by converting the value to binary, e.g. the binary value 0000 0000 0010 indicates
that the test failed on transceiver 1 (out of 12 -> 0..11).

 UniBoard Rev.: 1.0
Date: 20-10-2010
Class.: Public

14 / 15

 UniBoard
Doc.nr.: ASTRON-RP-405
Rev.: 1.0
Date: 20-10-2010
Class.: Public

15 / 15

5 Appendix – list of files

5.1 tr_nonbonded
The tr_nonbonded module:
https://svn.astron.nl/UniBoard_FP7/UniBoard/trunk/Firmware/modules/tr_nonbonded

5.2 unb_mesh
The VHDL source code, Quartus project files and ModelSim files are located at:
https://svn.astron.nl/UniBoard_FP7/UniBoard/trunk/Firmware/designs/unb_mesh

5.3 unb_mesh_nios
The VHDL source code, Quartus project files are located at:
https://svn.astron.nl/UniBoard_FP7/UniBoard/trunk/Firmware/designs/unb_mesh_nios/

The matching C code for the NIOS II processor is located at:
https://svn.astron.nl/UniBoard_FP7/UniBoard/trunk/Firmware/software/modules/src/tr_nonbonded

https://svn.astron.nl/UniBoard_FP7/UniBoard/trunk/Firmware/modules/tr_nonbonded
https://svn.astron.nl/UniBoard_FP7/UniBoard/trunk/Firmware/designs/unb_mesh
https://svn.astron.nl/UniBoard_FP7/UniBoard/trunk/Firmware/designs/unb_mesh_nios/
https://svn.astron.nl/UniBoard_FP7/UniBoard/trunk/Firmware/software/modules/src/tr_nonbonded

	1 Introduction
	2 Functional description
	2.1 Overview
	2.2 Parameters
	2.2.1 Parallel data width
	2.2.2 Number of transceivers
	2.2.3 Duplex mode, receivers only, transmitters only
	2.2.4 Instantiate FIFOs
	2.2.5 Serial loopback mode
	2.2.6 Instantiate DIAG modules

	2.3 Clock domains

	3 Implementation
	3.1 Alignment of serially received data
	3.1.1 Word alignment
	3.1.2 Byte ordering

	3.2 ALTGX and ALTGX_RECONFIG
	Also, one of two ALTGX_RECONFIG Megafunctions will be instanced:

	4 Designs using tr_nonbonded instances
	4.1 unb_mesh
	4.1.1 Simulation: duplex link
	4.1.2 Simulation: simplex link
	4.1.3 Simulation: top-level diag modules and FIFOs
	4.1.4 Synthesis

	4.2 unb_mesh_nios
	4.2.1 Software control
	4.2.2 Simulation
	4.2.3 Synthesis

	5 Appendix – list of files
	5.1 tr_nonbonded
	5.2 unb_mesh
	5.3 unb_mesh_nios

