
A
S

TR
O

N
-F

O
-0

17
 2

.0

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

1 / 25

 UniBoard DDR3 firmware module

 Organisatie / Organization Datum / Date
 Auteur(s) / Author(s):

Daniel van der Schuur ASTRON 21 November 2011

Controle / Checked:

Eric Kooistra ASTRON

Goedkeuring / Approval:

Andre Gunst ASTRON

Autorisatie / Authorisation:

Handtekening / Signature
Andre Gunst

ASTRON

© ASTRON 2011
All rights are reserved. Reproduction in whole or in part is
prohibited without written consent of the copyright owner.

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

2 / 25

Distribution list:

Group: Others:

Andre Gunst
Eric Kooistra
Harm-Jan Pepping

Gijs Schoonderbeek
Sjouke Zwier
Harro Verkouter (JIVE)
Jonathan Hargreaves (JIVE)
Salvatore Pirruccio (JIVE)

Document history:

Revision Date Author Modification / Change

0.1 2011-09-09 Daniel van der Schuur Draft

0.2 2011-09-12 Daniel van der Schuur Moved sections, added schematics

0.3 2011-09-19 Daniel van der Schuur Updated resource usage section

0.4 2011-10-10 Daniel van der Schuur
Added test results for 1066MT/s;
Included sections on write FIFO flushing and
packet support.

0.5 2011-10-18 Daniel van der Schuur
Improved layout;
Added info on chip select signals;
Added references to howto-files.

0.6 2011-11-14 Daniel van der Schuur Added more details on entity I/O ports;
Added info on basic operation to section 2.3.

0.7 2011-11-17 Daniel van der Schuur
Updated diagnostics register map.
Deleted section about diagnostics data
width.

0.8 2011-11-21 Daniel van der Schuur

Added table containing ddr3 control and
status signals;
Mentioning actual word sizes where
applicable.

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

3 / 25

Table of contents:

1 Introduction .. 6

1.1 Purpose .. 6
1.2 Module overview ... 6

2 Software interface ... 7

2.1 Operation .. 7
2.2 Operation of the ddr3 module ... 8
2.3 MM registers ... 8

3 Hardware interface .. 10

3.1 Clock domains .. 10
3.2 Parameters ... 11
3.3 Interface signals ... 11

3.3.1 MM interface ... 12
3.3.2 ST interfaces ... 13
3.3.3 PHY interface.. 13

4 Application ... 14

4.1 Design ... 14
4.2 Software .. 15
4.3 Running on hardware ... 15

5 Design ... 16

5.1 Architecture ... 16
5.2 ALTMEMPHY Megafunction settings ... 16

6 Implementation .. 17

6.1 Bursting ... 17
6.1.1 Burst size .. 17
6.1.2 Address resolution .. 17

6.2 Finite state machine ... 18
6.2.1 Ready latency ... 19
6.2.2 S_IDLE ... 19
6.2.3 S_WR_REQUEST .. 19
6.2.4 S_WR_BURST ... 19
6.2.5 S_RD_REQUEST ... 19

6.3 Mixed width FIFOs .. 19
6.4 Write FIFO flushing ... 20
6.5 Synthesis .. 20

6.5.1 Required Megafunctions ... 20
6.5.2 Resources ... 20
6.5.3 Synthesis for 1066MT/s or 800MT/s .. 21

7 Verification ... 22

7.1 Altera memory model ... 22
7.2 Simulation ... 22

8 Validation ... 23

8.1 Logging ... 23
8.2 Results .. 24

8.2.1 Efficiency .. 24

9 Appendix – list of files .. 25

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

4 / 25

9.1 ddr3 ... 25
9.2 unb_ddr3 ... 25

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

5 / 25

Terminology:

CTLR Controller
DIAG Diagnostics (VHDL module)
DP Data Path (VHDL module)
DDR Double Data Rate
DUT Device Under Test
EOP Start Of Packet
FIFO First In First Out
FPGA Field Programmable Gate Array
FSM Finite State Machine
HDL Hardware Description Language
HPC High Performance Controller
IO Input Output
MISO Master In Slave Out
MM Memory-Mapped
MOSI Master Out Slave In
MT/s MegaTranfers per Second
Nof Number of
PHY Physical layer
PIO Parallel IO
PRSG Pseudo Random Sequence Generator
RAM Random Access Memory
RL Ready Latency
RTL Register Transfer Level
SISO Source In Sink Out
SNK Sink
SODIMM Small Outline Dual In-line Memory Module
SOP Start Of Packet
SOPC System On a Programmable Chip (Altera)
SOSI Source Out Sink In
SRC Source
ST Streaming

References:

1. ‘DP Streaming Module Description’, ASTRON-RP-382, Eric Kooistra
2. https://svn.astron.nl/UniBoard_FP7/UniBoard/trunk, the UniBoard FP7 SVN repository ($UNB)
3. $UNB/Firmware/docs/howto/How_to_develop_Nios2_software.txt
4. $UNB/Firmware/docs/howto/How_to_use_Modelsim.txt
5. $UNB/Firmware/docs/howto/How_to_use_the_UniBoard_compilation_scripts.txt
6. $UNB/Firmware/modules/Lofar/diag
7. ‘Quartus II Handbook’, quartusii_handbook.pdf, www.altera.com
8. ‘Altera Stratix IV Device Handbook’, July 2010, , www.altera.com
9. ‘UniBoard Board Design’, ASTRON RP-316, Gijs Schoonderbeek, Sjouke Zwier
10. www.altera.com, “Avalon Interface Specifications”, mnl_avalon_spec.pdf
11. ‘External Memory Interface Handbook’, July 2010, www.altera.com

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

6 / 25

1 Introduction

1.1 Purpose
The ddr3 firmware module can be used to access the DDR3 SODIMMs connected to the UniBoard FPGAs.
Using this module, one can write and read back a data stream (as defined in [1]) to and from DDR3 memory.
Currently the module supports a maximum data rate of 1066MT/s. By default, the module's data rate is
800MT/s. The module has been validated at both 800Mt/s and 1066MT/s. During these tests, its write
efficiency was found to be 92%, while its read efficiency is 94%.

1.2 Module overview
An overview of the ddr3 module is shown in Figure 1. Altera's ALTMEMPHY MegaFunction contains a user
interface to its internal High Performance Controller II, and the PHY interface to the (SODIMM) memory
module itself. The ddr3 module provides streaming (ST) user interfaces to the read and the write sides of the
memory controller. Optionally, it can trigger a writing sequence on reception of an SOP. Its internal driver
accepts a start address and an end address so the user can set the desired address range. A ddr3 register
instance (ddr3_reg) enables the user to access status and control signals through an MM interface.

Figure 1: ddr3 module interfaces
The user data width at the write input and read output is variable between 8 and 256 bits. A test design,
unb_ddr3, is provided to interface the ddr3 module to a diagnostics module. Both modules support software
control, which is described in chapter 2. Chapter 3 covers the clock domains, hardware interfaces and
parameters of the ddr3 module. An application of software control of the ddr3 module and the diagnostics
module can be found in chapter 4. The final chapters provide details on the HDL implementation and
verification.

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

7 / 25

2 Software interface

2.1 Operation
Figure 2 shows the firmware setup to test the ddr3 module. MM registers are used by a processor (e.g. NIOS
II) to control the ddr3 module, and to read out its status. In addition, the diagnostics module [6] is used to
verify the correct functioning of a ddr3 module. The data itself is not written or read via the MM interface, as
the data path flows through the module via its streaming interfaces. The contents of the MM registers made
available via ddr3_reg are explained in paragraph 2.3.

Figure 2: diagnostics module used to test ddr3 module
A typical MM write-read sequence starts by preparing the diagnostics module. The diagnostics module is
used to generate a test data stream on its source side to write to the ddr3 module, and to verify the data
stream as it is read back from the ddr3 module through its sink side. To prepare the diagnostics module, the
user has to set its diagnostics mode to either counter or pseudo random mode, and enable its source and
sink side. Data will start to stream from its source towards the ddr3 module as soon as the ddr3 module
indicates to be ready via its streaming interface. On the sink side, verification of data will start as soon as
valid data is presented on the read side of the ddr3 module.
To start a ddr3 write sequence, the user has to set the address range and set WR_NOT_RD to ‘1’ to write.
When the controller is ready, the write sequence is started by writing a ‘1’ to bit 0 of the enable register. The
streaming data, generated by the diagnostics module, will be stored in the SODIMM until the end address is
reached. As the test data stream flows from the source, the number of sourced words (the number of words
accepted by the connected sink – the ddr3 module) is counted and stored in the SRC_CNT register.
The ‘done’ register will indicate a completed sequence. The same order applies to reading back the written
data. As valid data is being read back, it is streamed into the sink of the diagnostics module. During or after
completion of the read sequence, the diagnostics results can be read out. Paragraph 2.3 lists the contents of
the diagnostics registers.

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

8 / 25

2.2 Operation of the ddr3 module
Regardless of the connected streaming source (write side) and sink (read side), a basic ddr3 operation is
performed as follows:

0) After power up, wait until INIT_DONE is high;
1) If the current operation is not the first, wait until DONE is high;
2) Set the address range (START_ADDR and END_ADDR);
3) Set WR_NOT_RD to indicate write or read sequence. During a write sequence, any valid data

available on the streaming write port will be written to DDR3 memory until the end address is
reached. During a read sequence, data is read back from DDR3 memory up to the end address and
is available on the streaming read port.

4) Start the sequence by writing a ‘1’ to the ENABLE register.
5) = 1) Wait until DONE is high before continuing with the next sequence, e.g. reading back the written

data.

The used ddr3 status and control signals, made available via a memory mapped interface using ddr3_reg,
are explained in the next paragraph.

2.3 MM registers
This paragraph lists the contents of the memory mapped registers. The word size is 32 bits unless stated
otherwise. The ddr3 register map is shown in Table 1.

Name Address

(words)
Size
(words)

Read/
Write

Description

ENABLE 0 1 W Enables ddr3 module by writing a ‘1’ to bit 0.
WR_NOT_RD 1 1 W bit 0: '1' = write; '0' = read.
DONE 2 1 R bit 0: '1' indicates user defined sequence has been

completed.
INIT_DONE 3 1 R bit 0: '1' after initialization sequence is completed.
CTLR_RDY 4 1 R bit 0: Ready signal output by Altera's High Performance

Controller II. An asserted CTLR_RDY means INIT_DONE
is also high. Also, when DONE is asserted, CTLR_RDY
should be asserted as well. If CTLR_RDY stays low, an
error has occurred.

START_ADDR 5 1 W Start address. Any start address is allowed.
END_ADDR 6 1 W End address. >= START_ADDR. Resolution is 4 column

addresses (4*64=256 bits), meaning that even in case the
set range spans less than the resolution, the number of
written or read column addresses starting from
START_ADDR is still 4. An exception is when the start
address plus the resolution would exceed the highest
addressable address.

Table 1: ddr3_reg
Table 2 lists the available MM registers to control the diagnostics module and read out its status. All register
bits except those in the SRC_CNT and SNK_CNT registers apply to one diagnostics stream. In case of the
DDR3 module, only one 256-bit stream is used, so only bit 0 of most registers is used.

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

9 / 25

Name Address

(words)
Size
(words)

Read/
Write

Description

SRC_EN 0 1 W Source enable, bit 0 corresponds to stream 0.
SRC_MD 1 1 W Source mode – 0 for PRBS, 1 for counter mode,

bit 0 corresponds to stream 0.
SRC_CNT_CLR 2 1 W Source count clear, bit 0 corresponds to stream

0.
SRC_CNT 3 16 R Source count, 32 bits per stream. Source count

of stream 0 available at offset 0.
SNK_EN 19 1 W Sink enable, bit 0 corresponds to stream 0.
SNK_MD 20 1 W Sink mode– 0 for PRBS, 1 for counter mode, bit

0 corresponds to stream 0.
SNK_CNT_CLR 21 1 W Sink count clear, bit 0 corresponds to stream 0.
SNK_CNT 22 16 R Sink count, 32 bits per stream. Sink count of

stream 0 available at offset 0.
SNK_DIAG_VAL 38 1 R Sink diag valid, bit 0 corresponds to stream 0.
SNK_DIAG_RES 39 1 R Sink diag result, bit 0 corresponds to stream 0.

Table 2: diagnostics_reg
The number of words that are verified is counted and kept in the SNK_CNT register. To read the diagnostics
result at the sink side, the register bits in Table 3 and Table 4 are used. These tables provide more details of
the SNK_DIAG_RES and SNK_DIAG_VAL registers listed in Table 2. A non-zero diag result (valid when
SNK_DIAG_VAL = ‘1’) indicates errors.

Bits Field name Description
[32..nof_streams] unused unused
[nof_streams-1 ..
0]

SNK_DIAG_VAL Diag valid indicator bits for each stream. A ‘1’ indicates that the
corresponding diag result is valid, else ‘0’. Bit 0 corresponds to
stream 0.

Table 3: SNK_DIAG_VAL register bits

Bits Field name Description
[32..nof_streams] unused unused
[nof_streams-1 ..
0]

SNK_DIAG_RES Diag result for each stream. A ‘0’ indicates that the corresponding
diag result is OK, else ‘1’. Bit 0 corresponds to stream 0.

Table 4: SNK_DIAG_RES register bits

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

10 / 25

3 Hardware interface

3.1 Clock domains
Figure 3 shows an overview of the clock domains that exist in the ddr3 module. The clocks and their
descriptions are listed below in Table 5. The listed frequencies apply to the default ddr3 settings that provide
a transfer rate of 800MT/s.

ddr3

ST interface

ST interface

ddr3_reg

SODIMM

ALTMEMPHY

wr_fifo

rd_fifo

wr_clk

rd_clk

ctlr_ref_clk

PHY_clkctlr_gen_clk
MM_clk

Figure 3: ddr3 clock domains

The user clocks that are used to clock data into the write FIFO (WR_CLK) and data out of the read FIFO
(RD_CLK) can be connected to the internally generated controller clock (CTLR_GEN_CLK), as it is available
as entity output. In addition, a double frequency version (CTLR_GEN_CLK_2X) is generated by the
controller and provided as output.

Name Frequency (MHz) Description
CTLR_REF_CLK 200 Controller reference clock. The PHY_CLK and

CTLR_GEN_CLK signals are derived from this clock.
CTLR_GEN_CLK 200 Controller generated clock. This clock connects to the read

side of the write FIFO and the write side of the read FIFO.
CTLR_GEN_CLK_2X 400 Controller generated (double frequency) clock
PHY_CLK 400 PHY clock to clock the memory module.
WR_CLK user Clocks the write side of the write FIFO.
RD_CLK user Clocks the read side of the read FIFO.
MM_CLK user Clock for the Memory Mapped interface.

Table 5: ddr3 clock signals

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

11 / 25

3.2 Parameters
Available parameters when instantiating the ddr3 module are listed in Table 6.

Generic Type Description
g_phy NATURAL Reserved.
g_ddr t_c_ddr3_phy Record type containing the specifications of the DDR3 PHY interface.
g_mts NATURAL MegaTransfers per Second. Supported:

• 800MT/s;
• 1066MT/s.

g_wr_data_w NATURAL Data width on the write side of the write FIFO. Supported are powers of
two between 8..256.

g_rd_data_w NATURAL Data width on the read side of the read FIFO. Supported are powers of
two between 8..256.

g_wr_fifo_depth NATURAL Depth of the write FIFO. Expressed in number of words as seen from
the read side of the write FIFO. For correct operation, this value should
be equal to or greater than 16, and in addition be greater than the
maximum burst size. For highest performance, it should be deep
enough to still have a maximum burst size number of words stored after
completion of the previous burst access.

g_rd_fifo_depth NATURAL Depth of the read FIFO. Expressed in number of words as seen from
the write side of the read FIFO. This value should be equal or greater
than 16 plus c_ddr3_ctrl_nof_latent_reads, which is the maximum
number of words the ddr3 module could output after issuing the last
read command.

g_wr_use_ctrl BOOLEAN When write FIFO flushing is enabled, setting this generic to TRUE adds
packet detection to the write side of the DDR3 controller. This means
that the flushing of the write FIFO is disabled upon reception of an
EOP. This effectively fills the write FIFO on an SOP, preventing the
DDR3 modules from being written with incomplete packets.

Table 6: ddr3 parameters

3.3 Interface signals
The interface signals of the ddr3 module are shown in Figure 4. Table 7 lists the general specifications of
these interfaces, while the next paragraphs provide more detailed information. The status and control signals
of the ddr3 module can be accessed via a memory mapped interface, using ddr3_reg, or can be used
without ddr3_reg. The functions of the status and control signals between ddr3_reg and the ddr3 module are
listed in Table 8.

Interface Type Description
wr_sosi t_dp_sosi Streaming data write port, source to sink (ddr3 module)
wr_siso t_dp_siso Flow control from ddr3 write port, sink to source
rd_sosi t_dp_sosi Streaming data read port, source (ddr3 module) to sink
rd_siso t_dp_siso Flow control to ddr3 read port, sink to source
mm_mosi t_mem_mosi ddr3 control (MM wrdata, see Table 9) via MM bus

(requires ddr3_reg)
mm_miso t_mem_miso ddr3 status (MM rddata, see Table 9) via MM bus

(requires ddr3_reg)
phy_ou t_ddr3_phy_ou Signals output by ALTMEMPHY, to SODIMM via FPGA pins.
phy_io t_ddr3_phy_io Bidirectional signals between ALTMEMPHY and SODIMM via FPGA

pins.
phy_in t_ddr3_phy_in Signals from SODIMM to ALTMEMPHY, via FPGA pins.

Table 7: interface signals

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

12 / 25

Interface Type Description
ctlr_rdy STD_LOGIC Indicates whether the internal high performance controller (HPC II) is

ready (‘1’) or not. As a non-ready HPC should only occur during a read
or write sequence, this signal is included only for debugging purposes.

ctlr_init_done STD_LOGIC '1' after initialization sequence is completed.
dvr_done STD_LOGIC '1' indicates user defined sequence has been completed.
dvr_en STD_LOGIC Enables read or write sequence. Sequence depends on set address

range, dvr_wr_not_rd and whether dvr_done is high.
dvr_wr_not_rd STD_LOGIC '1' = write; '0' = read.
dvr_start_addr t_ddr3_addr Start address. See 6.1.2.
dvr_end_addr t_ddr3_addr End address. See 6.1.2.

Table 8: ddr3 status and control signals

ddr3

wr_siso

wr_sosi

SODIMM

PHY_IO
dvr_done

dvr_en

rd_siso

rd_sosi

ddr3_reg
PHY_OU

PHY_IN

ctlr_init_done
ctlr_rdy

dvr_wr_not_rd

dvr_start_addr
dvr_end_addr

mm_mosi
mm_miso

Figure 4: interface signals

3.3.1 MM interface
Table 9 lists the defined interface signals for the Memory Mapped registers.

Signal Type Description
rddata[31..0] MISO Read data word
address[3..0] MOSI Byte address range
wrdata[31..0] MOSI Write data word
wr MOSI Write enable
rd MOSI Read enable

Table 9: MM interface signals

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

13 / 25

3.3.2 ST interfaces
Streaming interfaces connect to the write side (Table 10) of the write FIFO, and the read side (Table 11) of
the read FIFO.

Signal Type Description
ready SISO Used for flow control, the ready latency (RL) is 1.
data[255..0] SOSI Data word, used width: g_wr_data_w-1..0
valid SOSI Data valid signal
SOP SOSI Start Of Packet (packet detection requires g_wr_use_ctrl = TRUE)
EOP SOSI End Of Packet (packet detection requires g_wr_use_ctrl = TRUE)

Table 10: ST interface: write side

Signal Type Description
ready SISO Used for flow control, the ready latency (RL) is 1.
data[255..0] SOSI Data words, used width: g_rd_data_w-1..0
valid SOSI Data valid signal

Table 11: ST interface: read side

3.3.3 PHY interface
The PHY interface consists of the I/O pins and signals that connect the ALTMEMPHY to the physical DDR3
SODIMM memory module on the board. Three VHDL record types are used to combine the IN, OUT and
INOUT PHY pins into a record of their own. These records are defined in ddr3_pkg.vhd.

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

14 / 25

4 Application

4.1 Design
Design unb_ddr3 instantiates up to two ddr3 modules, indicated in Figure 5 as ddr_0 and ddr_1. The
streaming interfaces of each module connect to the corresponding diagnostics module, which provides a
generated data stream on the write interface of the ddr3 modules, and verify the read back data stream
through the streaming read ports. The data consists of a random bit sequence or a counter sequence,
depending on the set mode. The width of the data is configurable between 8 and 256 bits.
Both the ddr3 modules and the diagnostics modules have their own MM status and control registers, that are
written and read by the NIOS II processor in the SOPC.

unb_ddr3

node_unb_ddr3

ddr3_0

ST interface

ST interface

control

SODIMM
MB_I

status

PHY

diagnostics_0diagnostics_reg_0

ddr3_reg_0

status

control

ddr3_1

ST interface

ST interface

control

SODIMM
MB_II

status

PHY

diagnostics_1diagnostics_reg_1

ddr3_reg_1

status

control

node_ctrl system_info

sopc_unb_ddr3

Figure 5: Design: unb_ddr3

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

15 / 25

4.2 Software
The C-application (main.c – see Appendix 9.2) that runs on the NIOS II processor in the unb_ddr3 design
performs a number of test iterations on one or both modules. A test iteration comprises of (in order):

• Setting up the test by:
o Setting the address range to be tested;
o Setting the diag mode to PRBS;
o Enabling the source and sink sides of the diagnostics module;
o Waiting for init_done to go high.

• Starting a WRITE sequence:
o Setting the ddr3 driver to WRITE;
o Clearing the diagnostics sourced and sinked word counts;
o Enabling the ddr3 driver.

• Waiting for the sequence to be completed (DONE);
• Logging:

o The number of sourced words when write sequence is done;
o The duration (in seconds) of this write sequence.

• Starting a READ sequence:
o Setting the ddr3 driver to READ;
o Enabling the ddr3 driver.

• Waiting for the sequence to be completed (DONE);
• Interpret the test results:

o Calculating the number of expected read back words from given address range;
o Comparing this to the actual number of read back (sinked) words that is logged by the

diagnostics module;
o Read the diagnostics valid and result bits;
o Log the duration (in seconds) of this read sequence.

• Update the summary that is periodically printed to the screen via JTAG.

4.3 Running on hardware
The design, merged with main.c, can be run on all 8 UniBoard FPGAs simultaneously. However, the printf()
output might disrupt the slow JTAG connections. To prevent this, the C-application includes a define to set
the delay after which the application starts printing to the screen.

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

16 / 25

5 Design

5.1 Architecture
Figure 6 shows the internal architecture of the ddr3 module. Its main components are the used IP block – an
ALTMEMPHY instance – and the driver that controls it. User data is fed into the write side FIFO via a
streaming interface. The write data flow to the ALTMEMPHY is controlled by the driver that toggles the
SISO.ready signal on the read side of the write FIFO. The number of words available on the read side of the
write FIFO is fed into the driver, so the driver can forward this number to the ALTMEMPHY as the current
burst size.

Figure 6: Basic architecture of the ddr3 module

The read burst size depends on the size of the read FIFO. The ready signal originating from the sink that
connects to the read side is also fed into the driver and, when in read mode, triggers a read sequence.

5.2 ALTMEMPHY Megafunction settings
The settings of the HPCII used with the ALTMEMPHY include the maximum burst size and the command
cue depth. A burst size of 64 words was chosen because it significantly increased performance with respect
to a previously tested burst size of 8, without taking up too many additional resources. In addition, a second
ALTMEMPHY parameter was changed: the command queue depth was increased from 4 to 8. This did not
increase performance at all; it merely used slightly more resources. This is explained by the fact that the
unb_ddr3 design in which the ddr3 module was tested writes and reads large address ranges, with maximum
burst sizes. This means that the command queue does not need to be that deep, as the controller can
already schedule the accesses efficiently because of these large burst sizes.

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

17 / 25

6 Implementation
This chapter describes the implementation of the ddr3 module, specifically the driver that drives the HPC II.

6.1 Bursting
The ALTMEMPHY’s High Performance Controller II supports a maximum burst size of 64 256-bit words. To
achieve maximum efficiency, the ddr3 driver posts write commands with burst sizes of 64 words or, if 64
words are not available, the number of words that are present in the write FIFO. Read commands are always
for bursts of 64 words unless a burst of 64 would exceed the end address, in which case the burst size
equals the number of addresses up to the end address. The latter also applies to write bursts.

6.1.1 Burst size
When posting a burst read or write request to the controller, the driver must provide one address from which
the burst access will start. This means that the next address to read or write is the current address
incremented by the current burst size. Table 12 shows this for three subsequent burst accesses.

Current address Burst size Next current address
0 64 64
64 50 114
114 17 131

Table 12: Next address determined by burst size, decimal representation
These are however simplified representations of the addresses. The actual addresses depend on the
address resolution.

6.1.2 Address resolution
The data width of the controller side of the ALTMEMPHY is 256 bits. However, the data bus on the PHY side
of the ALTMEMHY is 64 bits wide. This means that one address on the PHY side spans 64 bits, and that one
address on the controller side spans 4 times 64 bits. So, without using byte masking, the ‘resolution’ of one
address on the controller side equals four real addresses. Table 13 shows the same burst accesses as
Table 12, however this time accounting for the address resolution of 4.

Current address Burst size Next current address
0 64 64*4=256
256 50 256+50*4=456
456 17 456+17*4=524

Table 13: Next address, accounting for resolution, decimal representation

The driver uses the passed g_ddr generic to determine the number of chip select lines, bank address width,
row address width and column address width. These specifications are used to fill in the values of a ddr3
address type (t_ddr3_addr) record from the ‘raw’ address. Below, the record type declaration is shown using
address widths (actually these are extracted from g_ddr) that apply to the 4GB SODIMM used on the
UniBoard:

TYPE t_ddr3_addr IS RECORD
 chip : STD_LOGIC_VECTOR(g_ddr.cs_w -1 DOWNTO 0); -- g_ddr.cs_w = 2
 bank : STD_LOGIC_VECTOR(g_ddr.ba_w -1 DOWNTO 0); -- g_ddr.ba_w = 3
 row : STD_LOGIC_VECTOR(g_ddr.row_w-1 DOWNTO 0); -- g_ddr.row_w = 15
 column : STD_LOGIC_VECTOR(g_ddr.col_w-1 DOWNTO 0); -- g_ddr.col_w = 10
END RECORD;

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

18 / 25

In Table 14 some addresses are listed in 3 representations. The number of addresses needed to address
4GB equals 2^([logical chip address width]+ba_w+row_w+col_w)= 2^29 = 536.870.912. Note that the logical
chip address width (e.g. 1 bit can select one of 2 chips) is used – not the number of actual chip select lines
(cs_w). This logical chip address is maintained throughout the design and fed into the ALTMEMPHY, which
converts it to a physical chip address consisting of separate chip select lines.
With 2^29 addresses, the highest possible address is 536.870.911 or chip 1, bank 7, row 32.767, column
1023. However, since the address resolution is 4, the highest address on the controller side is 4 addresses
down: 536.870.908 or chip 1, bank 7, row 32.767, column 1020. During the last access, column 1020, 1021,
1022 and 1023 are read or written.

Address
 (decimal)

Address
(std_logic_vector)

Address
 (t_ddr3_addr)

5 0 000 000000000000000 0000000101 Chip: 0
Bank: 0
Row: 0
Col: 5

301.988.869 1 000 111111111111111 0000000101 Chip: 1
Bank: 0
Row: 32767
Col: 5

536.870.908 1 111 111111111111111 1111111100 Chip: 1
Bank: 7
Row: 32767
Col: 1020

Table 14: Address representations

6.2 Finite state machine
The state machine in Figure 7 gets its input signals from the controller side of the ALTMEMPHY, the read
and write FIFOs, and the user. It controls the READY flow control signal for the write side, read and write
requests, and burst size.

Figure 7: Driver FSM

The main difference between reading from and writing to the DDR3 controller is the need to clock in valid
data on a write request, and in case of a burst access, also during the cycles following the write request
(S_WR_BURST).

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

19 / 25

6.2.1 Ready latency
Another important aspect is the controller ready (CTLR_RDY) output signal. When this signal is low, the
controller cannot accept any more requests or data. This causes gaps in the sequence of requests, the write
data and the read back data. The gaps in the requests caused by a de-asserted CTLR_RDY signal are dealt
with by the FSM. The gaps in the data are supported by the used streaming interface, however for the write
side a ready latency RL=0 is used. The write FIFO includes a latency adapter to lower the ready latency on
its source side to zero. This is necessary to be able to clock a valid data word onto the controller write data
bus as soon as CTLR_RDY is asserted. The following paragraphs discuss the states in more detail.

6.2.2 S_IDLE
Once the initialization stages of the DDR3 modules and controller have completed, the FSM goes into the
idle state. Once the user has set the desired address range, the WR_NOT_RD bit and enable bit, the start
address is assigned and the FSM goes into the first request state.

6.2.3 S_WR_REQUEST
When the controller is ready, and valid data exists on the write bus (RL=0), the driver issues a write burst
request to the controller. During this cycle, the first word of the burst data sequence is already sent to the
controller and the ready signal to the read side of the write FIFO is asserted to acknowledge this, so valid
data will be present on the next cycle. The burst size equals the number of words available in the write FIFO
or the maximum burst size of 64, but only if a burst of such size will not exceed the end address. If it would,
the burst size is made equal to the remaining number of addresses to write. As said, the first word is already
written during this cycle. The remaining words of the burst access will be clocked in during S_WR_BURST.

6.2.4 S_WR_BURST
This state reads the number of required burst cycles that was determined during the request state. During
every cycle on which the controller is ready, one valid data word is clocked in. After the last word of the burst
access is clocked in, the FSM returns to the request state which, if there are any more addresses to write,
will issue another burst write request.

6.2.5 S_RD_REQUEST
A read request is very similar to a write request: a burst read of 1 to 64 can be posted. The difference is that
no valid data words need to be clocked in, so if one burst read request has been accepted by the controller
(CTLR_READY = ‘1’), a new burst request can be posted on the very next cycle during which the controller
is ready. The burst size is determined in the same way as during the write request state, in order not to
exceed the set end address.

6.3 Mixed width FIFOs
The ddr3 module utilizes mixed width FIFOs (dp_fifo_dc_mixed_widths) that are available from the DP
library. Both FIFOs are of this type, and allow the user to set different data widths on the FIFO read side and
the FIFO write side. Figure 8 shows an example of the user sides of the FIFOs set to 32 bits. Although the
mixed width FIFOs support it, the ddr3 modules keeps their controller side data widths to a fixed 256 bits.
The wr_fifo_nof_usedw signal applies to the read side of the write FIFO, so it always indicates the number of
256-bit words.

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

20 / 25

Figure 8: Mixed width FIFOs
Naturally, the average data rate on both sides of the FIFO is the same, but is dictated by the data width and
the clock frequency on the user side. In this example, using the same clock on both sides of the FIFOs, the
average data rate will be 1/8th of the data rate one would have when setting the user data width to 256 bits.

6.4 Write FIFO flushing
The ddr3 module features a dvr_flush input to allow the user to flush the write FIFO. This is required to
prevent gaps in a continuous (unstoppable) stream – during initialization, the ddr3 module’s write FIFO (and
possibly other FIFO’s in the stream) can fill up and data will be thrown away. This is an issue, however as
soon as the ddr3 module is initialized, the stream continues and pushes old data forward which will be
written into DDR3. To prevent this, the user can assert dvr_flush to keep flushing the write size FIFO during
initialization or read sequences that are long enough to affect the stream on the write side. This is done by
artificially keeping the ready signal on the read side of the write FIFO asserted, thereby continuously clocking
out and discarding the data.
De-asserting dvr_flush causes the write FIFO to fill up starting from the first valid word that enters the FIFO.
As mentioned in chapter 4, setting generic g_wr_use_ctrl to TRUE waits for an EOP before FIFO flushing is
really disabled. This way, the very first word that enters the write FIFO will do so on an SOP.

6.5 Synthesis

6.5.1 Required Megafunctions
Before a design containing the ddr3 module can be synthesized, both variations of the ALTMEMPHY must
be generated:

• aphy_4g_800.vhd;
• aphy_4g_1066.vhd

These files can be found in the IP directory (see chapter 9). Both are required because Quartus will try to
analyse all included (.qip) files. For simulation, only the instantiated variation needs to be generated.

6.5.2 Resources
Table 15 summarizes the resource usage of one ddr3 module. The ALTMEMPHY takes up most of the ALMs
by far, while M9K block occupation (no M144Ks are used) is only partially due to the ALTMEMPHY. The
module’s write FIFO takes up 8 M9Ks, because its default depth is 256 words of 256 bits wide. This
translates to 8 M9Ks of 36 bits wide, providing the width of 256bits and a depth of 256 words. The read FIFO
also occupies 8 M9Ks, even though its default depth is only 128 words. This is caused by the fact that the
required width of 256bits is accomplished by using 8 M9Ks of 36bits wide each. The total available depth is
256 words, however only 128 are used – hence the read FIFO uses only half the amount of block memory
bits the write FIFO uses.

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

21 / 25

 ALTMEMPHY ddr3 VHDL ddr3 total
 RD FIFO WR FIFO Driver
ALMs 6924 (7,6%) 107 (<1%) 356 (<1%) 137 (<1%) 7524 (8,25%)
M9Ks 13 (1,1%) 8 (<1%) 8 (<1%) 0 29 (2,3%)
Block mem bits 104Ki 64Ki 32Ki 0 200Ki

Table 15: ddr3 module resource usage
The percentages in parentheses relate to the total resources available in an Altera Stratix IV EP4SGX230
FPGA. Percentages are not provided for the amount of block memory bits as block memory usage is
generally better represented as occupied M9K blocks.

6.5.3 Synthesis for 1066MT/s or 800MT/s
Synthesizing one or more ddr3 modules in a design requires the following two actions:

• Selecting g_mts to be one of the following:
o 800;
o 1066.

• Setting the correct reference CLK in the design’s SDC file:
o 200MHz as the 800MT/s reference clock;
o 266,67MHz as the 1066MT/s reference clock.

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

22 / 25

7 Verification
Simulation of the ddr3 module requires a memory model. A memory model is generated when running the
ALTMEMPHY Megafunction. Details on this memory model are provided in the next paragraph.

7.1 Altera memory model
Two types of memory models are generated by the Megafunction:

• Full memory model
• Associative array

The full memory model allocates memory for all the complete address range the ddr3 module uses. Unless
simulation takes place on a machine with a large amount of RAM, simulation of large memories is not
possible. Another downside is that the written data is not visible in the wave window.
The associative array allocates 2K of addresses, and this array can be viewed in the ModelSim wave
window. Each array element contains 155 bits. Table 1 lists the contents of these array elements.

Bit range Width Contents
154..129 26 bits address
128..001 128 bits data
0 1 bit ‘1’ when data has been written to this

array element.

Table 16: Associative array element contents

7.2 Simulation
Verification (refer to [3], [4], [5] for general information regarding development, simulation and the NIOS II) of
the ddr3 module is done using the diagnostics module to generate and verify data. This basic scheme is
used in three levels:

• tb_ddr3
o uses VHDL stimuli

• tb_node_unb_ddr3
o uses VHDL functions to access ddr3 module via dedicated MM bus
o uses VHDL functions to access diagnostics module via dedicated MM bus

• tb_unb_ddr3
o conducts the same MM accesses through one shared MM bus using a C application

(main.c) running on a NIOS II processor

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

23 / 25

8 Validation

8.1 Logging
When unb_ddr3.sof is loaded onto one or more FPGAs, the following type of output can be expected after
the NOF_TICKS_JTAG_DELAY, and will be updated periodically:

Module Src Snk IWR PASS FAIL ERRCODE tWR tRD
====== === === === ==== ==== ======= === ===
MB_I 134217728 134217728 2 0004438 0000000 0 3217 3133
MB_II 134217728 134217728 2 0004438 0000000 0 3217 3133

FPGA temp : 037 degrees C
Runtime : 6360 seconds

Table 17 gives more information on the JTAG output of unb_ddr3.

Name Comment
MB_I
MB_II

Memory Bank I
Memory Bank II

Src Number of sourced (written) 256-bit words per test
iteration

Snk Number of sinked (read) 256-bit words per test iteration
IWR Indicates the current state:

Idle (0)
Writing (1)
Reading (2)

PASS Number of OK test iterations
FAIL Number of failed test iterations
ERRCODE Error code of last test iteration:

0) OK
1) Source/sink count mismatch
2) Calculated/actual sink count mismatch
3) Invalid diag result
4) Diag result indicates errors (non-zero)

Higher error codes override lower error codes, e.g. if an
error code 4 is indicated, a lower error code can have
occurred also.

tWR Total time (seconds) of all write operations so far
combined, excluding software overhead

tRD Total time (seconds) of all read operations so far
combined, excluding software overhead

FPGA temp FPGA temperature read out periodically
Runtime Total runtime, including software overhead

Table 17: unb_ddr3 JTAG output
The source and sink counts in this case apply to 4GB modules: (134.217.728 * 256 bits) / 8 = 4GB.

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

24 / 25

8.2 Results
The unb_ddr3 design was tested on all 8 nodes. The following parameters were used:

• Data rate: 800MT/s;
o Writing and reading back 4GiB per module, looped;
o 62 hours;
o MB_I and MB_II tested simultaneously;
o User (diagnostics) data width of 256 bits.

• Data rate: 1066MT/s;

o Writing and reading back 4GiB per module, looped;
o 16 hours;
o MB_I and MB_II tested simultaneously;
o User (diagnostics) data width of 256 bits.

During both tests, all read back data was verified OK (zero errors). An additional test was performed for
several hours, however this time with a diagnostics data width of 32 bits instead of 256. The results were
OK, and as expected (see section 6.3), it took 8 times as long to perform the same number of test iterations.

8.2.1 Efficiency
The ddr3 module’s efficiency can be derived from the logged test times. The following calculations apply to
the 1066MT/s test, but the resulting efficiency will be the same for the 800MT/s version.

8.2.1.1 Theoretical maximum data rate
(HPCII user interface clock frequency * data width) = 266.667MHz*256b = 68267Mb/s = 63.58 Gib/sec

8.2.1.2 Measured data rate:

• 54915 iterations (wr + rd)
o tWr 30150
o tRd 29283

Data rate, wr: (4 GiB * 54915 iterations) / 30150 s = 7.28557GiB/sec = 58.28Gib/sec = 92%
Data rate, rd: (4 GiB * 54915 iterations) / 29283 s = 7.50128GiB/sec = 60.01Gib/sec = 94%

 UniBoard
Doc.nr.: ASTRON-RP-541
Rev.: 0.8
Date: 21-11-2011
Class.: Public

25 / 25

9 Appendix – list of files

9.1 ddr3
The ddr3 directory contains the source code for the ddr3 module and its components, the optional ddr3_reg
and a test bench for the ddr3 module. It also contains an IP folder where the variation files for the two
versions of the ALTMEMPHY are stored. It is located at:

$UNB/Firmware/modules/ddr3

9.2 unb_ddr3
The files for synthesis and simulation are in the following directory:

$UNB/Firmware/designs/unb_ddr3

In addition, a C main program is located at:

$UNB/Firmware/software/apps/unb_ddr3

