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Terminology: 
 
ADC  Analogue Digital Converter 
ADU  Analogue Digital Unit [2] 
ADUH  ADU Handler firmware module 
ADUH_DD ADUH that uses DDIO input and no PLL to receive the samples 
ADUH_PLL ADUH that uses LVDS Rx with a PLL to receive the samples 
ALM  Adaptive Logic Module (1 ALM in Stratix IV FPGA contains 20 FF) 
BN  Back Node 
CDR  Clock Data Recovery 
CW  Carrier Wave 
dclk  Digital clock (400 MHz double data rate clock from the ADC) 
dp_clk  Data path clock (200 MHz data path processing clock) 
DDIO  Double Data rate IO 
DDR  Double Data Rate 
DP  Data Path 
FF  Flip Flop 
FIFO  First In First Out 
HDL  Hardware Description Language 
IO  Input Output 
IOE  IO Element 
LCU  Local Control Unit 
LSBit  Least Significant bit 
LVDS  Low Voltage Differential Signalling 
MM  Memory Mapped 
MSBit  Most Significant bit 
PAC  Power And Clock board 
PLL  Phase Locked Loop 
RF  Radio Frequency 
sclk  Sample clock (800 MHz sample clock for the ADC) 
SDR  Single Data Rate 
SISO  Source in Sink Out 
SNR  Signal Noise Ratio 
SOSI  Source Out Sink In 
TB  Test Bench 
UNB  UniBoard 
Wi  Word index 
 
 

References: 
 
1. “Detailed Design of the Digital Beamformer System for Apertif”, ASTRON-RP-413, G. Schoonderbeek, 

A. Gunst, E. Kooistra 
2. “ADU Board Design”, ASTRON-RP-399, G. Schoonderbeek 
3. “PAC Hardware Design Document”, ASTRON-RP-453, G. Schoonderbeek 
4. “BN Capture Design Description”, ASTRON-RP-498, E. Kooistra, D. van der Schuur 
5. “Specification for module interfaces using VHDL records”, ASTRON-RP-380, E. Kooistra 
6. “PPS Handler Module Description”, ASTRON-RP-1374, E. Kooistra 
7. “I2C SMBUS Module Description”, ASTRON-RP-329, E. Kooistra 
8. UNB = https://svn.astron.nl/UniBoard_FP7/UniBoard/trunk/ 
9. UPE = $UNB/Software/python, UniBoard Python Environment, see $UPE/README.txt 
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1 Introduction 
 
 

1.1 Purpose 

This document describes the ADU Handler firmware module that contains VHDL components for receiving 
the ADC samples on the UniBoard back node (BN) from the Analogue Digital Unit (ADU) [2] that is used for 
Apertif [1]. The ADUH module also contains other VHDL components for verifying and monitoring the 
samples. The ADUH module is located at $UNB/Firmware/modules/aduh [8]. 
 

1.2 Scope 

The ADUH measurements with the bn_capture design have been done at 800 MSps for all 16 BN in an 
Apertif subrack. The measurements have only been done for certain temperatures of the ADC and the BN. 
The timing margins for correct sample data clocking and sample timing synchronization are sufficiently large 
though to expect that the ADUH will work reliably over the wider range of operational temperatures and also 
for higher sample rates (up to 1.6 Gbps, see section 2.4.4). The ADUH module can also be used for 
interfacing to other ADC boards that use the BN LVDS interface of Uniboard. 
 

1.3 Summary 

1.3.1 ADUH firmware 

The ADUH module provides components for clocking in ADC samples via the BN LVDS inputs with correct 
data and stable timing. De ADUH firmware is described in sections 3, 4, 5 and 6. The ADUH is validated 
using the bn_capture design on the 16 BN of an Apertif subrack (Figure 1). 

1.3.2 Measurement setup 

The measurement setup consists of the Apertif subrack (section 2.3.1) and a set of Python scripts that can 
interface with the memory mapped (MM) peripherals on UniBoard and analyse the results (section 2.3.2). 
The Python scripts are located at $UPE [9]. 

1.3.3 Correct data and stable timing 

The stable sample timing solution (section 2.4) assumes that all UniBoard back nodes (BN) can use the 
same settings that are defined at synthesis. Therefore the solution relies on matched latencies for the 
distribution of the clock, pps and data from the central source to each BN. For the data the central source is 
a common RF source. For the timing the central source is a 10 MHz reference. On the BN the solution relies 
on using IOE registers (Figure 21) and PLLs, on the synchronous behaviour of clock trees in an FPGA and 
on the common_acapture instances with a small logic lock region (Figure 23) to have a stable data delay 
between two internal clock domains. 
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1.3.4 Data results 

The sample data measurements showed that for all 64 signal paths (SP) in the Apertif subrack no sample 
data bit errors occurred on the ADU-BN interfaces (section 2.4.2.1 and appendix 7). 

1.3.5 Timing results 

The sample timing was measured for a subset of SP (section 2.3.1). The timing measurements (section 
2.4.4.2) resulted in an optimum set of IOE delays and PLL phase settings of Table 2. The timing 
measurements showed that still occasionally a timing offset did occur (none for some SP and less than once 
in every 100 restarts for some other SP, see section 2.3.2.4 and appendix 8). The timing offsets or rare. 
Therefore if still necessary then investigating them further can be done when the clk traces to the BN0:3 on 
UniBoard have been matched as well (Figure 28). 
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2 Data input and timing between ADU and BN 
 

2.1 System overview 

Figure 1 shows a block diagram of the Apertif subrack that can input and process 64 analogue signal paths 
(SP). The analogue input signals are sampled by 8 analogue to digital units (ADU) and digital processed by 
16 back nodes (BN) on 4 UniBoards (UNB). The 800 MHz sample clock (sclk) and 200 MHz digital 
processing clock (clk) are generated on the power and clock (PAC) board [3] by a PLL that is locked to an 
external reference 10 MHz clock. The 800 MHz sample clock (sclk) is used as a single data rate (SDR) 
clock. On the LVDS interface between ADU and BN the 8 bit samples arrive as double data rate (DDR) data 
together with a 400 MHz clock (dclk)  that is divided from the 800 MHz sample clock by the ADC. The 
external timestamp reference is provided by a PPS pulse that is also locked to the 10 MHz. The interconnect 
between the 1 PAC, 4 UNB and 8 ADU is carried via a backplane PCB. 
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Figure 1: Apertif subrack for 64 analogue signal paths (SP) 
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2.2 Problem statement 

The ADU Handler (ADUH) firmware is instantiated in each BN and can handle the interfacing of 4 signal 
paths from two ADU. Signal paths [A, B] from ADU [0] and signal paths [C, D] from ADU [1]. The ADU 
Handler has to receive the 800 MHz ADC samples across the LVDS interface between ADC and BN and 
capture them in the 200 MHz data path processing clock domain. It has to do this without data errors and 
with a fixed phase for the division from the 800 MHz clock to the 200 MHz clock. Inside the BN the ADUH 
outputs 4 ADC samples in parallel so packed per 32 bit word. The fixed phase for 1/4 clock division 
corresponds to a fixed phase for the 4x parallelization of the samples into data words. 
 
The BN cannot process the samples directly at 800 MHz and even processing at 400 MHz makes it difficult 
to achieve timing closure on the FPGA logic. Therefore the BN dp_clk runs at 200 MHz and has to process 4 
ADC samples in parallel. The sclk  dclk divide by 2 divider phase needs to be fixed because otherwise the 
samples from one ADU may be taken as data word [s0,s1,s2,s3] at timestamp 0 while for another ADU the 
data word at timestamp 0 can be shifted 1 sample e.g. [s1,s2,s3,s4]. Similar the dclk  dp_clk divide by 2 
divider phase uncertainty can cause 2 samples shift uncertainty between two different BN - ADU interfaces. 
 
The PPS also needs to be clocked into the dp_clk domain, because it is used to synchronize the start of the 
block sequence number (BSN) timestamp between the different BN. This capturing of the PPS is done by 
the PPS handler firmware module that is described in [6]. If the PPS is not clocked in at the same dp_clk 
cycle in all nodes then this shows as a 4 sample shift between two different BN - ADU interfaces. 
 

2.3 Measurement setup 

2.3.1 Hardware 

Figure 2 shows the back side of the Apertif subrack where the 64 analogue SP can be applied to the 8 ADU. 
The ADU boards are numbered from 0 at the right to 7 at the left. 
 

 

Figure 2: Photo of the back side of the Apertif subrack with 8 ADU 
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Figure 3 shows how the signal paths (SP) are numbered. For the BIST test pattern data measurements 
across the ADU-BN interface all 64 SP were measured. For the timing synchronization only the signal paths 
(SP) marked in gray in Figure 3 were measured. The top row of connectors connects from right to left to SP 
0, 2, 16, 18, 32, 34, 48 and 50. The right column of connectors connects from top to bottom connects to SP 
0, 1, 4, 5, 8, 9, 12, and 13. SP 3 is to include all SP of BN 0. This subset of SP covers all SP regarding 
location in the subrack and location on UniBoard. The RF signal splitter on top of the subrack in Figure 2 
connects to the subset of SP that are marked in gray. The other SP were not measured for their analogue 
input because the RF splitter is not large enough and because they are expected to show similar behavior 
regarding the timing synchronization. The RF signal is an analogue CW that is generated by the signal 
generator that is visible at the right in Figure 2. All BN0:15 run the bn_capture firmware design [4]. 
 

 

Figure 3: Numbering of the SP on the back side of  the Apertif subrack 

 
Figure 4 shows the front side of the Apertif subrack with the PAC board in the middle an UniBoard 0, 1, 2 
and 3 from left to right. The 10 MHz reference signal and PPS signal come from a FS725 Rubidium 
Frequency Standard that is visible in Figure 4 just below the subrack. The 10 MHz signal is also use to lock 
the RF signal generator so that the generated waveform is in lock with the clocks in the subrack. 
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Figure 4: Photo of the front side of the Apertif subrack with PAC and 4 UNB 

 
The RF signal generator is set to 700 MHz. After sampling at 800 MHz the captured signal appears as a 100 
MHz sinus due to the under sampling as shown in Figure 5. 

 

Figure 5: RF sinus captured in ADUH monitor buffer via SP 0 
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Figure 5 was obtained with Python script tc_bn_capture_adc_plot.py and shows the first 16 samples of the 
SP signals that are stored into the ADUH monitor buffer at every internal sync pulse. The internal sync pulse 
period is programmable to e.g. 200 M clock cycles. The periodic sync pulse is initiated at an external PPS 
pulse, so that the sync pulse in all nodes are aligned. The RF generator and the subrack clocks are locked to 
the external 10 MHz so therefore the view of is stable in time not only when ADU is kept in normal mode, but 
also when it is restarted in normal mode. 
 
The ADCs on ADU can be configured via an I2C bus that is driven by the BN. The firmware supports some 
predefined I2C sequence that can be transferred using i2c_commander component [7]. The 
Software/python/peripherals/pi_adu_i2c_commander.py Python peripheral script provides methods for 
accessing the ADU via I2C and the util_adu_i2c_commander.py provides usage examples. For the 
measurements the ADC are set in test pattern mode to be able to run the BIST or in normal mode to be able 
to sample the analogue input signal.  
 
The subrack is controlled by a Local Control Unit (LCU) via 1GbE. The LCU is a rack PC that is mounted 
below the subrack in Figure 4. The 1GbE switches on each UniBoard are used to interconnect all 4 UniBoard 
to the LCU. The FPGA images can be programmed via an USB blaster that connects to PAC (also shown in 
Figure 4) or the images can be stored in the flash and loaded into the FPGAs from there. 

2.3.2 Software 

Table 1 lists the scripts that are used for evaluating the ADUH in the bn_capture design. These scripts can in 
fact run with any design that has the node_bn_capture component instantiated. The ADUH in the 
node_bn_capture provides a set of memory mapped (MM) registers that can be controlled and monitored. 
 
Python script Description 
apps/adu_tests/tc_bn_capture_adc_plot.py Capture the ADC data for all signal paths 
base/ADC_functions.py Methods for calculating the timing statistics of the measured 

RF sinus. 
bn_capture/tc_bn_capture_adc_bist.py Set up and monitor the BIST for the ADC test pattern 

Table 1: Python scripts for evaluating the ADUH with bn_capture 

2.3.2.1 CW statistics 

The assumption is that the analogue input is a CW signal with known period and that is locked to the sample 
clock. The zero-crossing of the measured CW in Figure 5 reveals the timing of the SP. The timing is 
synchronous for all SP if this zero-crossing occurs at the same time for all SP for every restart of the ADU (or 
power up of the subrack). There may be an offset between SP as long as this offset remains fixed. The zero-
crossing instant can be observed manually but for intensive tests with >> 10 ADU restarts and multiple SP it 
is necessary to automate the measurement. Therefore tc_bn_capture_adc_plot.py uses the method 
add_clock_cw_statistics() in base/ADC_functions.py to estimate the DC offset, phase φ and amplitude A of 
the captured CW. Furthermore the base/ADC_functions.py has methods to log and plot the various CW 
estimates. 
 
The ADC samples are captured into the ADU Handler data buffer that can store 1024 samples per signal 
path. The buffering starts at the internal sosi.sync pulse [5] that is synchronous to the external PPS [6]. At 
CW frequency of 100 MHz the period T=8 samples so the ADUH monitor buffer can then store exactly 128 
periods. First the DC level of the measured signal is determined and subtracted. Then the CW(t) samples are 
multiplied by a reference I(t) = sin(ωt) and Q(t) = cos(ωt), where ω=2π/T. Integrating the products yields two 
equations that solve phase φ and amplitude A. The zero-crossing of the RF sinus in Figure 5 occurs at about 
sample phase φ = 4.3. The statistics of φ for every time that the ADC on ADU is reprogrammed (restarted) 
into normal mode now reveal the stability of the timing distribution in the subrack. If for some ADU restarts 
there occur steps in φ of 1, 2, 3 or 4 sample times then these steps indicate synchronisation issues with 
respectively the dclk_rst, the FIFO reset, both dclk_rst and FIFO reset, or with the PPS. When the zero-
crossings do not jump one or more integer sample periods then this means that the sclk  dclk  dp_clk 
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dividers divide with fixed phase relative to the dp_clk and that the PPS has started the sync at the same 
dp_clk cycle in all BN. 
 
With the estimated the DC level, phase φ and amplitude A of the captured RF wave the noise level can be 
estimated by subtracting the estimated CW from the measured CW. This yields the noise signal N(t). Any 
large peaks in the noise sample values indicate bit errors. For the noise signal N(t) the noise power 
noisePower is calculated. The power of a full-scale CW is cwPower = A2/2 where A = 127.5 for the 8-bit 
ADC. The estimated SNR = 10 * log10(cwPower / noisePower). The theoretical SNR for an 8 bit ADC is 6.02 
* 8 bit + 1.76 = 50 dB. 

2.3.2.2 Data bit error detection using BIST 

The ADC  BN LVDS data interface is validated for bit errors by checking that the received data matches 
exactly the test pattern that the ADC outputs in test mode (using tc_bn_capture_adc_bist.py). The BIST test 
can run for hours or days, because it is evaluated continuously in aduh_verify. 

2.3.2.3 Data noise measurements 

The CW measurements input (using tc_bn_capture_adc_plot.py) show that the noise peak values remained 
within < 2 units for all measurements and on average the noise peak values were about 1.3 units. This 
implies that no bit errors occurred for bit [6:1] and probably no bit errors occurred for bit [0]. Bit [7] was not 
covered, because with 13 dBm RF signal level at the input of the RF 1:32 splitter the amplitude of the 
measured CW was about 51 units (see Figure 5). The measured SNR were between about 45 and 53 dB 
across all SP. The noise level test can only measure the sampled data for the 1024 samples that are 
captured in the ADUH monitor buffer, so it is only nice to have compared to the BIST. 
 
The following figures show the measured DC levels, amplitudes, noise peaks and SNR results for SP that 
are marked in gray in Figure 3. The results are plotted for 3000 ADU restarts using a bn_capture image that 
included the DDR3 logic and used the settings of Table 2. The results were obtained by means of running: 
 
> python apps/adu_tests/tc_bn_capture_adc_plot.py --unb 0 --bn 0 --sp 0,1,2,3 --rep 3000 -v 3 -s <bn0> 
> python apps/adu_tests/tc_bn_capture_adc_plot.py --unb 0 --bn 0:3 --sp 0,1 --rep 3000 -v 3 –s <column> 
> python apps/adu_tests/tc_bn_capture_adc_plot.py --unb 0:3 --bn 0 --sp 0,2 --rep 3000 -v 3 -s <row> 
 
Note that SP-0 is included in all three runs, so it gets tested 9000 times. The detailed log results that 
correspond to the plots are listed in appendix 8.
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Figure 6: clock_cw_dcs_ch_0_1_2_3_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0 

 

Figure 7: clock_cw_dcs_ch_0_1_4_5_8_9_12_13_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0 

 

Figure 8: clock_cw_dcs_ch_0_2_16_18_32_34_48_50_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0 
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Figure 9: clock_cw_amplitudes_ch_0_1_2_3_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0 

 

Figure 10: 
clock_cw_amplitudes_ch_0_1_4_5_8_9_12_13_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0 

 

Figure 11: 
clock_cw_amplitudes_ch_0_2_16_18_32_34_48_50_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0 
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Figure 12: clock_cw_noise_peaks_ch_0_1_2_3_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0 

 

Figure 13: 
clock_cw_noise_peaks_ch_0_1_4_5_8_9_12_13_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0 

 

Figure 14: 
clock_cw_noise_peaks_ch_0_2_16_18_32_34_48_50_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0 
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Figure 15: clock_cw_snrs_ch_0_1_2_3_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0 

 

Figure 16: clock_cw_snrs_ch_0_1_4_5_8_9_12_13_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0 

 

Figure 17: clock_cw_snrs_ch_0_2_16_18_32_34_48_50_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0 
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2.3.2.4 Timing statistics 

The following figures show the phase estimates for 3000 restarts of ADU. The phase of SP 0 ≈ 4.32 for all 
runs, similar as in Figure 5. The phases of the other SP differ compared to the phase SP 0 but are almost 
constant too as they should be. 
 
From Figure 19 and Figure 20 and the details in appendix 8.2 and 8.3 it shows that for SP 0,2 on BN0, SP 
4,5 on BN1, and SP 12,13 on BN3 a few times a 4 sample timing offset occurred. It is unclear why these 
timing offsets occur. It is unlikely that they are due to the PPS-dp_clk synchronization. From Figure 27 it is 
expected that also with PPS input delay D3=0 the PPS is clocked in stable with almost maximum timing 
margin with respect to the rising edge of the dp_clk. 
  
In another test using the same settings for bn_capture, but now without DDR3 logic. The phase of SP 0 ≈ 
4.32 so this shows that the timing was independent of the amount of other logic in the bn_capture design.  
The other results were that in 17500 restarts SP 12,13 showed four times a 4 sample timing offset and two 
times a 2 sample timing offset. All other SP then showed no timing offsets. 
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Figure 18: clock_cw_phases_ch_0_1_2_3_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0 

 

Figure 19: clock_cw_phases_ch_0_1_4_5_8_9_12_13_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0 

 

Figure 20: 
clock_cw_phases_ch_0_2_16_18_32_34_48_50_repeat_3000_ddr_phs_11_25_pps_0_clkrst_0 
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2.4 Current solution 

2.4.1 Hardware aspects 

2.4.1.1 Correct data 

The ADC outputs the sample data to the BN together with a 400 MHz dclk clock. The BN can use this dclk to 
reliably clock in the sample data into the FPGA. 

2.4.1.2 Correct timing 

The clock distribution traces, the pps traces and the sample data traces on the boards and on the backplane 
are all matched in length to ensure that at each BN corresponding signals  arrive at the same global time 
(within a margin that is sufficiently small compared to the sample clock period of 1250 ps). In this way the 
same firmware image can run on all BN. 
 
The phase of the divide by 2 clock divider in the ADC on ADU that output the 400 MHz dclk can be reset to 
have a using the dclk_rst signal from the 200 MHz dp_clk domain on the BN FPGA to the 800 MHz sclk 
sample clock domain on ADU. 

2.4.2 Firmware aspects 

2.4.2.1 Correct data 

The current mms_aduh_quad VHDL module described in section 3 uses the aduh_dd component that relies 
on using the input delay elements D1, D2, and D3 in the IOE at the FPGA pin to ensure that the ADC data is 
stable when it is clocked in. The aduh_dd component uses two lvdsh_dd components to receive the data 
from two ADUs. See Figure 31 and Figure 32 for a block diagram of the aduh_dd and lvdsh_dd components. 

2.4.2.2 Correct timing 

The phase of the 800M sclk sample clock  400 MHz dclk clock divider in the ADC can be set reliably using 
the dclk_rst signal. The clock divider in the ADC will start at a random phase, causing 0 or 1 sclk clock cycle 
phase uncertainty in the starting phase of the dclk. This then shows as a 0 or 1 sample offset between the 
inputs from two different ADCs. The starting phase of the clock divider in the ADC can be set with a pulse 
from the 200 MHz dp_clk clock domain onto the dclk_rst BN output to ADC input pin. In the VHDL the 200 
MHz clock domain is referred to as the dp_clk (DP = Data Path) clock domain. 
 
The clock division from the 400 MHz dclk domain to the 200 MHz dp_clk domain is taken care of using a 
mixed width FIFO (see Figure 32). While the dclk_rst pulse is issued, the FIFO in the BN that transfers the 
data from the 400 MHz dclk domain to the 200 MHz dp_clk domain is reset as well. This causes the FIFO to 
become empty. This FIFO is a mixed width FIFO, which means that for every two 16 bit words that are 
written there can be read one 32 bit word. The 400 MHz dclk  writes the sample for two SP input streams in 
parallel and the 200 MHz dp_clk reads them out with two samples for these two SP input streams in parallel. 
 
During the dclk_rst pulse the dclk stops and after the dclk_rst release the dclk starts again, but then with a 
defined divider phase. The FIFO was empty so the first data that is then written by the dclk is also the first 16 
bit word in the FIFO, therefore the phase of the 400 MHz dclk to the 200 MHz dp_clk is thereby then also 
defined. In summary: 
  
1. The dclk_rst pulse resets the phase of the 800M sample sclk  400M dclk divider with respect to the 

dp_clk 
2. The FIFO reset resets the phase of the 400M dclk  200M dp_clk division with respect to the dp_clk 
  
The 800 MHz sclk sample clock and the 200 MHz dp_clk are in lock thanks to the Power and Clock (PAC) 
board, see Figure 1. This implies that during normal operation the FIFO can not overflow or run empty. The 
common_fifo_dc_lock_control component in Figure 32 lets the FIFO get filled to a certain level and from then 
on it enables the reading of the FIFO. As long as the filling level of the FIFO remains the same then that is 
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reported as ADUH-locked, see section 3.2. When the FIFO does run empty (or overflows) then there is 
something wrong between the dclk and the dp_clk and this then gets reported as ADUH-not-locked. The 
common_fifo_dc_lock_control continuously tries to regain lock by restarting again. 
  
The fact that the 800 MHz sclk sample clock and the 200 MHz dp_clk are in lock also implies that the 
dclk_rst pulse can be passed on reliably from the 200 MHz dp_clk domain into the 800 MHz sclk sample 
clock domain, provided that the dclk_rst signal has sufficient setup and hold margin with respect to the rising 
edge of the 800 MHz sclk sample clock near the ADC on ADU. 
 

2.4.3 Implementation 

2.4.3.1 Using IOE registers 

The IOE registers are close to the pin so by using these registers e.g. via DDIO the IO timing is guaranteed 
to be the same independent of how much logic the rest of the design has. 

2.4.3.2 Using IOE delay settings 

If possible the IOE delay values should be chosen as close to 0 as possible, because then any temperature 
or chip process dependency of the delay setting has the least impact. 
 
If possible it is better to delay a clock than to delay a data bus, because there will be a mismatch between 
the delay elements of the individual data lines. 
 
It seems not possible to control the IOE delay elements dynamically via the MM interface, because not all IO 
pins used for the BN-ADU LVDS interface support the configuration clock that is needed for that. Therefore 
the IOE delay settings are fixed after synthesis.  
 
With aduh_dd_top.vhd and aduh_dd.sdc it was found that the IOE input delay elements can be invoked 
using ‘set_input_delay’ in the SDC file. However it seems not possible to invoke the IOE output delay 
elements using ‘set_output_delay’. Instead these output delays can directly be set by via a pin assignment in 
the pinning TCL file. Using pin assignmentsto set the IOE delays is easier than to use timing constrains, 
therefore all IOE delays are set via the pinning TCL files. 

2.4.3.3 Using PLL and clock tree 

The PLL in ctrl_unb_common is used in “NORMAL” mode and ensures that the dp_clk inside the FPGA has 
a fixed phase offset (delay) with respect to the 200 MHz clock that arrives at the FPGA pin. The clock tree 
distribution network in the FPGA guarantees that the dp_clk arrives at every flip flop (FF) with that same 
delay. 
 
Using a PLL to adjust the output phase of a clock is preferred over using IOE delays, because the PLL 
phase setting is independent of temperature and chip process variations. 

2.4.3.4 Correct data 

Figure 21 shows the IOE for the sample data input in the BN FPGA. The D3 input delay element is used for 
each data bit to delay the data with respect to the dclk. The dclk itself cannot be delayed, because it is a 
global clock and the place and route then gives an error, therefore the data bus needs to be delayed instead. 
The D3 can be set per sample input pin. For example  as done in 
$UNB\designs\unb_common\src\tcl\BACK_NODE_adc_pins.tcl: 
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set_instance_assignment -name D1_DELAY 0 -to ADC_BI_A[0] 
set_instance_assignment -name D2_DELAY 0 -to ADC_BI_A[0] 
set_instance_assignment -name D3_DELAY 2 -to ADC_BI_A[0] 
 
set_instance_assignment -name D1_DELAY 0 -to ADC_BI_C[0] 
set_instance_assignment -name D2_DELAY 0 -to ADC_BI_C[0] 
set_instance_assignment -name D3_DELAY 3 -to ADC_BI_C[0] 
 
 

 

Figure 21: Input for ADC_BI_A[1] using D3 and DDIO 

2.4.3.5 Correct timing 

For the dclk_rst the requirement is that it must be issued from the 200 MHz dp_clk clock domain. The dp_clk 
is driven by a PLL in ctrl_unb_common and its phase can be adjusted such that the timing of dclk_rst suits 
the setup and hold requirements of the sclk in at the ADC on ADU. It is not necessary to add another clock 
output to this PLL with the appropriate offset phase for dclk_rst, because the rest of the functionality that 
uses the dp_clk works fine this phase offset (including the capture of the PPS). Using only one PLL clock 
output saves the (power) cost of using an extra clock tree resource in the FPGA. The phase of the dp_clk is 
set via g_dp_clk_phase = "156" ps in ctrl_unb_common for 11.25 degrees at 200 MHz. 
 
Figure 22 shows the IOE with the output delay elements D5 and D6 to adjust the dclk_rst signal for the setup 
and hold requirements of the sclk in at the ADC on ADU. Both can be set to 0, because the PLL phase offset 
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for the dp_clk already provides sufficient control. The IOE delays can be set for example  as done in 
$UNB\designs\unb_common\src\tcl\BACK_NODE_adc_pins.tcl: 
 
set_instance_assignment -name D5_DELAY 0 -to ADC_BI_A_CLK_RST 
set_instance_assignment -name D5_DELAY 0 -to ADC_BI_D_CLK_RST 
set_instance_assignment -name D6_DELAY 0 -to ADC_BI_A_CLK_RST 
set_instance_assignment -name D6_DELAY 0 -to ADC_BI_D_CLK_RST 
 

 

Figure 22: Output for ADC_BI_A_CLK_RST using D5 and DDIO 

 
The timing between the 200 MHz dp_clk and the 400 MHz dclk domain is preserved thanks to the clock tree 
distribution network in the FPGA and by ensuring that the setup time for control signals of the mixed width 
FIFO is fixed. Therefore the FIFO reset signal is passed through a common_acapture component and the 
number of used words vector signal is passed is through a common_acapture_slv component in Figure 32. 
Both the common_acapture and the common_acapture_slv fit inside 1 ALM, so by setting a logic-lock region 
constraint on these instances ensures that the data trace length between the signal in the dclk write clock 
domain and the dp_clk read clock domain is more or less fixed. The logic-lock regions are shown in Figure 
23. Thanks to the clock tree network the location of the logic-lock region does not need to be constraint, only 
the size. The ALM is the smallest possible logic-lock region and it appears that the data trace within an ALM 
delay varies between 386 ps and 458 ps according to the TimeQuest Timing Analyzer, so about 72 ps which 
is acceptable compared to the dclk period of 2500 ps. Without the logic-lock region constraint the data trace 
length can span across the FPGA and result in several ns delay that then will also depend on the amount of 
logic in the rest of the design. 
 



 
 
 
 
 

UniBoard DESP 

Doc.nr.: ASTRON-RP-1323 
Rev.: 0.2 
Date:  
Class.: Public 

24 / 50 

 

Figure 23: Lock regions using common_acapture 

 
The logic-lock regions were set using LogicLock Region Window in the Quartus GUI and then saved into the 
TCL script:  
 
$UNB/designs/bn_capture/src/tcl/ bn_capture_logic_lock_regions.tcl 
 
That gets sourced by the node_bn_capture.qip file that included automatically in the bn_capture Quartus 
project, because all module QIP and node QIP files get included via: 
 
$UNB/synth/quartus/unb_libraries.qip 

2.4.3.6 Synthesis 

Each PLL phase setting or IOE delay setting requires a separate FPGA image (i.e. a bn_capture.sof file). 
Synthesis of bn_capture without the DDR3 functionality takes about 15 minutes and can be done in a batch 
file using unb_qcomp). To be sure that indeed the file change due to a different setting is recognized by 
Quartus it is best to overwrite the bn_capture.qsf with the original project file with the original from SVN 
before starting a new synthesis. 
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2.4.4 Validation 

The validation of the ADUH module with the UniBoard and ADU hardware is done with the bn_capture 
design [4]. 

2.4.4.1 Correct data 

The sample data can be clocked in reliably, as demonstrated with the bn_capture design [4] on March 26, 
2012. On 10 December 2012 the measurements were repeated using the bn_capture design on all 16 BN in 
the Apertif subrack and using the Python script tc_bn_capture_adc_bist.py: 
 
> python apps/bn_capture/tc_bn_capture_adc_bist.py --unb 0:3 --bn 0:3 --sp 0:3 --rep 1 -n 300 -v 3 
 
Figure 24 shows the BIST measurement results for all 64 SP and for 8 different settings of the input delay 
D3. One D3 unit ≈ 370 ps. Each BIST measurement was ran for at least 5 minutes and some for 1 hour. The 
dots in the table indicate that no sample bit errors occurred, so verify_res[7:0] = 0 (see section 3.2). The 
hexadecimal values denote the verify_res[7:0] value when sample bit errors did occur. From the 
measurements it follows that D3 = 2 is a proper value for ADU-AB for all BN and D3 = 3 is a proper value for 
ADU-CD for all BN. The range of D3 settings shows the eye-diagram of the data, with the error free region 
and the transition region. 
 
Figure 25 repeats the ADU  BN data interface BIST measurements using the optimum timing settings from 
Table 2. The sclk period is 1250 ps (800 MHz). The BIST measurements reveal that the eye-opening of 
stable data is about 800 ps wide and the transition region is about 450 ps wide. The Stratix IV FPGA  LVDS 
interface is specified to operate at up to 1.6 Gbps. A sample period of 1/(1.6 GHz) = 625 ps with a transition 
region of 450 ps will still yield a (small) data eye-opening of 175 ps. Therefore based on the BIST 
measurements the ADUH can probably also work reliably for sample frequencies up to 1.6 GHz. 
 
The BIST measurements were repeated several times for all 64 SP and no bit errors were ever detected. A 
test for 24 hours on 30/31 January 2013 also showed no bit errors. The log file of this test is printed in 
appendix 7. 
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Figure 24: BIST measurement results for ADU  BN data interface using dclk and varying D3 
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Figure 25: BIST measurement results for ADU  BN data interface using dclk and varying D3 and D2 
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2.4.4.2 Correct timing 

The correct timing was measured for the set of SP marked in gray in Figure 3 by measuring the zero-
crossings of the captured RF signal. The zero-crossings were measured for 32 different phase settings of the 
dp_clk PLL (see section 2.4.3.5) to cover the entire range of one dp_clk period, so 0 to 360 degrees in steps 
of 11.25 degrees (= 156 ps at 200 MHz). Figure 26 shows the nearest integer sample number at which the 
signal path zero-crossing occurred for  200 restarts of the ADCs using the tc_bn_capture_adc_plot.py 
Python script, e.g. like in: 
 
> python apps/adu_tests/tc_bn_capture_adc_plot.py --unb 0 --bn 0 --sp 0,1,2,3 --rep 200 -v 3 –s try 
 
The PLL phases for which the zero-crossing stayed at the same sample are grouped in  Figure 26. The ‘x’ 
denote results for which the zero-crossing occurred at various sample phases. The ‘.’ denote that at least 
once the zero-crossing occurred at another sample phase. 
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Figure 26: Sample phase measurements for different settings of the dp_clk PLL phase (D5=0) 
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Note that around PLL phase 292.5 degrees the sample phase gets a jump of 4 samples. This is due to that 
for that PLL setting the rising edge of external PPS lies close to the rising edge of the dp_clk that is used to 
clock in the PPS [6]. This PLL phase setting needs to be avoided for clocking in the PPS, or alternatively the 
falling edge of the dp_clk should be used to clock in the PPS. Clearly stable clocking in of the PPS has a 
large eye-diagram as shown in Figure 27, because only 3 out of the 32 PLL phases in Figure 26 coincide 
with the PPS rising edge. The PPS input delay setting for Figure 26 was D3=3, however the measurements 
reveal that it is fine to choose D3=0. With D3=0 there is even more margin  with respect to the rising edge, 
because then the PPS transition will move to by about 1100 ps to the left in Figure 27 (one D3 unit ≈ 370 ps) 
and is then expected to occur at about 180 degrees. 
 

 

Figure 27: PPS eye-diagram for clocking with dp_clk and PPS input delay D3 = 3 

 
From Figure 26 it follows that PLL phase setting of 11.25 degrees is suitable as common setting for all BN, 
because it yields a ± 11.25 degrees margin. Similar also 101.25 and 191.25 are suitable, because they lie 90 
degrees or 1 sample period further. One would expect a much larger margin because all traces lengths 
throughout the subrack are matched (see section 2.4.1.2). However it appeared that the traces of the dp_clk 
and pps on the UniBoard are matched with respect to each other, but not between the BN0:3. Comparing in 
Figure 28 the actual trace delays on the UniBoard with the measurement results of Figure 26 clarifies why 
the margin across all BN is so small. 
  

 

Figure 28: Correspondence in timing difference and trace length difference between BN3:0 
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For a next UniBoard the traces to the BN0:3 will be matched an then the margin can expected to be as large 
as the smallest group of PLL phases with stable zero-crossings in Figure 26. The smallest group for BN2 
spans from PLL phase 78.75 to 146.25, so about 67.5 degrees or about 0.9 ns. This eye-opening of about 
0.9 ns is quite large compared to the sample clock period of 1250 ps, so also from a timing point of view it is 
expected that the ADUH can probably also work reliably for sample frequencies up to 1.6 GHz. 
 
In Figure 26 the output delay setting for the dclk_rst signal is D5=0. In another set of measurements D5 was 
varied from 0 to 14 with dp_clk PLL phase fixed at 0 degrees. On BN1 D5=0:7 yielded sample phase 6, 
D5=9:14 yielded sample phase 5 and the transition occurred at D5=8 as shown in Figure 29. One D5 unit is 
about 45 ps and 8*45 ps = 360 ps falls within the region that was also measured for BN1 in Figure 26. For 
dp_clk PLL phase 11.25 the output delay setting for dclk_rst D5 = 0 is suitable. 
 

 

Figure 29: Sample phase measurements for PLL phase 0 and D5=0:14 for dclk_rst 

 
For applications that instantiate node_bn_capture.vhd for using the ADUH with the Apertif subrack the 
optimum timing settings are listed in Table 2 (all other IOE delays are 0).  
 
Signal Setting 
dp_clk  PLL phase = 11.25 degrees 
dclk_rst output delay D5 = 0 
ADC_BI_A[7:0] input delay D3 = 2 
ADC_BI_B[7:0] input delay D3 = 2 
ADC_BI_C[7:0] input delay D3 = 3 
ADC_BI_D[7:0] input delay D3 = 3 
PPS input delay D3 = 0 

Table 2: Optimum settings for ADUH in Apertif subrack 
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2.5 Alternative solutions 

2.5.1 Hardware aspects 

Instead of using dclk_rst so control the phase of the sclk  dclk division one can accept the phase that 
occurs and then measure and compensate for it if it is not the desired phase. To measure the phase of the 
dclk with respect to the sclk requires clocking a central timing pulse from the sclk domain into the dclk 
domain. For this the PPS signal can be used. It is not necessary that the PAC board also distributes the PPS 
via the ADU boards to the BN, because the path delay is fixed (via traces and buffers) and the path delay 
value is not relevant as long as it is fixed. Therefore the PPS that already arrives from PAC at each UniBoard 
can also be used to reveal the phase of the dclk from ADU-0 and the dclk from ADU-1. It may be necessary 
to provide the PPS to the BN via up to three FPGA pins, because the DDR input logic in an IOE can only be 
used for external signals: 
 
 one pin to clock in the PPS with the dp_clk 
 one pin to clock in the PPS with the dclk from ADU-0 
 one pin to clock in the PPS with the dclk from ADU-1 
 
Instead of the PPS one may also choose to clock in the 200 MHz clk clock with the dclk, because that also 
provides the synchronization for the clock dividers. The two dclk_rst lines can then be removed from the 
ADU-BN interface. 
 
In this scheme the system can be seen as having two synchronous samplers one for the RF data using the 
SDR sclk and one for the external time using the DDR dclk: 
 
 the analogue time is represented by the PPS and is sampled by the 1-bit DDR input cell at both edges of 

the dclk 
 the analogue RF signal is sampled by the 8-bit ADC at the rising edge of the sclk. 
 
Once the PPS pulse is available in the dclk domain it is passed on along with the data through the mixed 
width FIFO into the dp_clk domain. In the dp_clk domain the samples can be shifted such that the PPS start 
falls on a 4-sample word boundary to complete the alignment of all SP between all ADU and all BN. 

2.5.2 Firmware aspects 

A risk with using fixed input and output delays is that these may vary too much with temperature. This could 
cause that it is impossible to reliably receive the ADC samples and to set the dclk_rst phase over the 
operational temperature range of typically 35 to 85 degrees. An alternative solution for the ADU Handler is 
then to use a PLL output to clock in the samples. Typically the input clock for the PLL is the dclk from ADU, 
but even the dp_clk could maybe be used, but then the lock detection is no longer available. Instead of 
delaying the data with an delay element in the IOE the capture clock phase is then adjusted by selecting the 
appropriated clock phase with a PLL. Typically this allows 8 or more clock phases for 1 period. There are 
three schemes with a PLL: 
  
 non-DPA  select a fixed phase for the PLL output clock at synthesis 
 DPA  Dynamic Phase Alignment, the optimal clock phase is adjusted dynamically based on signal 

transitions in the data 
 Soft CDR  soft Clock Data Recover is issued when the clock is encoded within the data like e.g. for 

SGMII in a 1GbE receiver 
  
Soft CDR is not applicable for ADU. DPA may be feasible, but seems less suitable because DPA requires 
that there are data transitions and with ADC data this is not guaranteed (e.g. in case of a DC signal). So non-
DPA remains as PLL scheme. 
  
On the ADU side of the BN FPGA there are 2 PLLs available, these are PLL_R3 for ADC_BI_A_CLK and 
PLL_R2 for ADC_BI_D_CLK. Problem is that PLL_R3 is already used for the TSE (Triple Speed Ethernet, 
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i.e. the 1GbE control interface) due to that the TSE data pins are located near PLL_R3. It is possible to use 
PLL_R2 also for the data from ADU-AB, but that implies that ADU-AB can then only be used if the 
ADC_BI_D_CLK clock of ADU-CD is active (because the ADC_BI_A_CLK is then not available). Two 
preliminary VHDL components aduh_pll and lvds_pll are available, but these need further development. It 
was considered for a next release of the UniBoard hardware to move the TSE data pins to another PLL, to 
free up PLL_R3 for the ADC_BI_A_CLK. However it was decided that compared to the benefit this takes too 
much effort regarding PCB layout and simulation and synthesis to check that it fits in the FPGA. 
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3 MMS_ADUH_QUAD 
 
 
The ADU handler (ADUH) for the 4 ADC input signal paths is called aduh_quad. The mms_aduh_quad 
provides the MM register interface to the aduh_quad and is shown in Figure 30. 
 

 

Figure 30: Block diagram of mms_aduh_quad 

3.1 ADUH_QUAD 

The aduh_quad component instantiates one aduh_dd component for receiving the ADC samples from two 
signal paths from ADU-AB and from two signals paths from ADU-CD. The aduh_dd is described in section 4. 
For each of the 4 signal paths the aduh_quad instantiates an aduh_verify component that can automatically 
verify the test pattern that the adc08d1020 ADC that is used on ADU can output to validate the ADU-ADC to 
UniBoard-BN LVDS interface. The aduh_verify is described in section 5. 
 

3.2 ADUH_QUAD_REG 

The aduh_quad can be accessed via the MM bus. The register map is defined by aduh_quad_reg. In a BN 
FPGA design the registers can be accessed with Python using the pi_aduh_quad.py peripheral. The register 
map supports: 
 
- Report the locked status for ADU-AB and ADU-CD 
- Report pattern verification result for each ADC [A,B,C,D] 
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 31             24 23             16 15              8 7               0  wi 
|-----------------|-----------------|-----------------|-----------------| 
|         xxx                              ab_stable & ab_locked = [1:0]|  0 
|-----------------------------------------------------------------------| 
|         xxx                              cd_stable & cd_locked = [1:0]|  1 
|-----------------------------------------------------------------------| 
|         xxx            a_verify_res_val[12]|   xxx   a_verify_res[8:0]|  2 
|-----------------------------------------------------------------------| 
|         xxx            b_verify_res_val[12]|   xxx   b_verify_res[8:0]|  3 
|-----------------------------------------------------------------------| 
|         xxx            c_verify_res_val[12]|   xxx   c_verify_res[8:0]|  4 
|-----------------------------------------------------------------------| 
|         xxx            d_verify_res_val[12]|   xxx   d_verify_res[8:0]|  5 
|-----------------------------------------------------------------------| 

Table 3: Memory map for REG_ADC_QUAD 

 
The ADUH sample receiver monitors the activity of the dclk from ADU. When the dclk is in phase with the 
dp_clk then locked = '1'. If locked = ‘1’ for every clock cycle since the last read access to wi = 0 for ADU[0] or  
wi = 1 for ADU[1] then stable = ‘1’. Else if stable = ‘0’ then at least once since the last read access the dclk 
and dp_clk lost lock. If locked = ‘0’ then the dclk is not in phase with the dp_clk or not connected. 
 
The ADUH verify function implements the build-in self-test (BIST) that continuously verifies the received 
samples from the ADU ADCs and reports whether they match the ADU ADC test pattern. If a mismatch 
occurs then the result remains indicating this error. A new verification interval starts when the result register 
has been read. The verify_res_val = ‘1’ when there was an active dclk from the ADU. The verify_res[7:0] bits 
are ‘0’ when the corresponding sample bit matches the test pattern and becomes ‘1’ when the bit 
mismatches. The verify_res[8] bit reports the result for the entire 8 bit sample (so it is equivalent to the 
vector-or operation of verify_res[7:0]). If verify_res_val = ‘0’ then the verify_res must be ignored. 
 
The Software/python/peripherals/pi_aduh_quad.py Python peripheral script provides methods for accessing 
the ADUH_QUAD registers and the util_ aduh_quad.py provides usage examples. 
 

3.3 Verification 

The test bench tb_mms_aduh_quad verifies the mms_aduh_quad by using the adc08d1020 test pattern 
mode. The test bench uses a behavioral model in VHDL of the National adc08d1020 ADC on the ADU 
(adc08d1020.vhd and adu_half.vhd)  and an aduh_quad_scope in VHDL to more easily view the 800 MHz 
ADC signal as an analogue signal in the Modelsim Wave window. 
 
The $UNB/Firmware/software/apps/bn_capture/main.c program also verifies the ADC test pattern for the 
samples that are captured in the ADU monitor buffer using the aduh_verify_adc_test_pattern() function in the 
aduh.c module. This software function is now no longer used, because the aduh_verify VHDL component 
can now do the verification continuously in real time for all samples at the sample rate. 
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4 ADUH_DD - ADC data receiver 
 

4.1 ADUH_DD 

The ADUH_DD use DDIO input (no PLL) to receive the samples from the LVDS Rx interface between a BN 
and two ADCs on one ADU. 

4.1.1 Hardware interface 

The aduh_dd interface parameters and ports are given in respectively Table 4 and Table 5. 
 
Generic field Type Description 
nof_sp natural Fixed support 4 signal paths A,B,C,D, whether they contain active data 

depends on nof_adu. 
nof_adu natural When 2 ADUs then use all 4 ports A,B,C,D, one ADU on ports A,B and 

one ADU on ports C,D, when 1 ADU then only use ports C,D. 
nof_ports natural Fixed 2 ADC BI ports per ADU. 
port_w natural Fixed 8 bit ADC BI port width, the ADC sample width is also 8 bit. 
dd_factor natural Fixed 2. Fixed double data rate factor for lvds data (800 MSps) and lvds 

clock (400 MHz). 
rx_factor natural Default 2. When 1 then the data path processing clock frequency is 400 

MHz (= lvds clock / 1), when 2 then the data path processing clock 
frequency is 200 MHz (= lvds clock / 2). 

clk_rst_enable natural Default true for initial DCLK_RST pulse to control the ADC DCLK phase, 
else false for no DCLK_RST pulse. 

clk_rst_invert natural Default false because DCLK_RST pulse on ADU is active high, use true 
for active low pulse to compensate for P/N cross 

deskew t_c_aduh_delays Input de-skew buffer delays. Default all 0 because the input delays are 
set via IOE constraints during synthesis. 

Table 4: aduh_dd parameter g_ai fields of the record type t_c_aduh_dd_ai 
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Signal IO Type Description 
ADC_BI_A[7:0] IN std_logic_vector Input sample from ADC-I on ADU-AB 
ADC_BI_B[7:0] IN std_logic_vector Input sample from ADC-Q on ADU-AB 
ADC_BI_C[7:0] IN std_logic_vector Input sample from ADC-I on ADU-CD 
ADC_BI_D[7:0] IN std_logic_vector Input sample from ADC-Q on ADU-CD 
ADC_BI_A_CLK IN std_logic Input 400 MHz DDR lvds clock from the ADC on ADU-AB 
ADC_BI_D_CLK IN std_logic Input 400 MHz DDR lvds clock from the ADC on ADU-CD 
ADC_BI_A_CLK_RST OUT std_logic Reset pulse to synchronises ADU_AB lvds clock divider 
ADC_BI_D_CLK_RST OUT std_logic Reset pulse to synchronises ADU_CD lvds clock divider 
ab_locked 
cd_locked 

OUT std_logic When active then the dp_clk in the BN and the lvds clock 
from the ADU are currently synchronous and the data 
samples are being received. Idem for ADU-CD. 

ab_stable 
cd_stable 

OUT std_logic When active then the ab_locked has been continuously 
active since the last time that ab_stable_ack was pulsed, 
else when inactive then ab_locked has gone active at 
least once. Idem for ADU-CD. 

ab_stable_ack 
cd_stable_ack 

IN std_logic A pulse restarts a new period of monitoring ab_locked via 
ab_stable. Idem for ADU-CD. 

dp_rst IN std_logic Data path reset 
dp_clk IN std_logic Data path clock (200 MHz) 
src_out_arr[0:3] OUT t_dp_sosi_arr Output sample for signal inputs [A,B,C,D] = [0:3]. The 

data field contains 4 time series 8 bit ADC samples 
packed in big-endian format as [t0&t1&t2&3] = [31:0]. The 
valid field indicates whether the data is valid. The other 
sosi fields are not used. 

Table 5: aduh_dd IO 

 

4.1.2 Design 

The aduh_dd receives ADC samples for 4 signals paths as shown in Figure 31. Each BN on UniBoard 
processes 4 signals paths but it gets these from two ADUs, therefore the aduh_dd instantiates two lvdsh_dd 
components, one for each ADU.  
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in_dat[15:0] rx_val

rx_locked

lvdsh_dd
dp_rst
dp_clk

obin_dat_ab[]

obin_val_ab
in_clk

in_clk_rst

rx_dat[63:0]

rx_clk

rx_rst

rx_stable_ack

rx_stable

ADC_BI_A[7:0]
ADC_BI_B[7:0]

compensate
PCB rewire

Compensate
offset binary
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ab_stable
ab_stable_ack

ADC_BI_A_CLK

ADC_BI_A_CLK_RST

in_dat[15:0] rx_val

rx_locked

lvdsh_dd

in_clk

in_clk_rst

rx_dat[63:0]

rx_clk

rx_rst

rx_stable_ack

rx_stable

ADC_BI_C[7:0]
ADC_BI_D[7:0]

cd_locked
cd_stable
cd_stable_ack

ADC_BI_D_CLK

ADC_BI_D_CLK_RST

aduh_dd

 

Figure 31: Block diagram of aduh_dd 

 
The aduh_dd takes care of: 
 
- Receiving the ADC samples for signal paths A, B, C and D using the lvdsh_dd 
- Compensating of PCB rewiring of the ADC data of signal paths B and D on ADU 
- Converting the offset binary format of the ADC data into two-complement data by inverting the MSbit 
- Default it outputs the CLK_RST pulse to the ADC as active high 
 

4.1.3 Implementation 

The ADUH_DD uses Double Data rate IO (so no PLL) to capture the LVDS input data. Using the DDR in the 
IOE and static IO delay settings was chosen because it is feasible to directly use the data clock and because 
it feasible to use static IO delay settings. The ADUH_DD also provides: 
 
 Input locked status indicates whether the input clock is currently in phase with the processing clock 
 Input locked stable indicates whether the input locked status has been locked since the last time that the 

host read the input locked status 
 Apply dclk_rst pulse when input clock activity has been detected. 
 
The input locked functionality and dclk_rst functionality depend on the input FIFO fill level. If an ADU is 
removed and reinserted then the input will lock automatically and the dclk_rst pulse will also be applied 
automatically, i.e. no involvement by the control computer is needed for this. The control computer can know 
that something happened by monitoring the input locked stable status bit. 
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4.2 LVDSH_DD 

4.2.1 Design 

Figure 32 shows a block diagram of the lvdsh_dd. The common_acapture instances get a logic-lock region 
constraint to ensure that the signal is transferred with fixed time delay between the dclk = in_clk domain and 
the dp_clk = rx_clk domain as explained in section 2.4.3.5. 
 

 

Figure 32: Block diagram of lvdsh_dd 

 

4.2.2 Verifcation 

The test bench tb_lvdsh_dd.vhd verifies the lvdsh_dd. 
 

4.3 ADUH_PLL 

Preliminary component for the alternative solution using a PLL, see section 2.5. 
 

4.4 LVDSH_PLL 

Preliminary component for the alternative solution using a PLL, see section 2.5. 
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5 ADUH_VERIFY - ADC test pattern verification 
 

5.1 Hardware interface 

The aduh_verify interface parameters and ports are given in respectively Table 6 and Table 7. 
 
Generic Type Description 
g_symbol_w natural Fixed 8 bit. The ADC sample width. 
g_nof_symbols_per_data natural Fixed, big endian in_sosi.data, t0 in MSSymbol, so [h:0] = 

[31:0] = [t0]&[t1]&[t2]&[t3] 
deskew t_c_aduh_delays Input de-skew buffer delays. Default all 0 because the input 

delays are set via IOE constraints during synthesis. 

Table 6: aduh_verify parameters 

 
Signal IO Type Description 
rst IN std_logic Data path reset 
clk IN std_logic Data path clock 200 MHz 
in_sosi IN t_dp_sosi Signal path data with 4 800MHz 8b samples in time per one 32b 

word @ 200MHz 
pattern_sel IN natural Selects ADC port from which the data comes, 0 = DI, 1 = DQ 
verify_res[8:0] OUT std_logic_vector The verify_res[8] contains the verify result for the aggregate 

symbol values, and verify_res[7:0] contains the result per 
corresponding symbol bit [7:0]. 

verify_res_val OUT std_logic When high then verify_res is valid else it is undefined. 
verify_res_ack IN std_logic The duration of the test pattern verification interval depends on 

verify_res_ack, each time verify_res_ack pulses a new 
verification interval starts. 

Table 7: aduh_verify IO 

 

5.2 Design 

The aduh_verify uses multiple instances of the aduh_verify_bit to verify the adc08d1020 test pattern “0 1 0 0 
1 1 0 0 1 0” per LVDS data bit. The adc08d1020 on ADU has two ADCs I and Q, so it outputs two signal 
paths. Both ADC I and Q use different test patterns, therefore via pattern_sel one can select whether to 
verify for the I signal path or the Q signal path. The test pattern data is periodic over 10 samples: 
 
       TP_I TP_Q  TP_OV 
    T0 02h  01h   0 
    T1 FDh  FEh   1 
    T2 02h  01h   0 
    T3 02h  01h   0 
    T4 FDh  FEh   1 
    T5 FDh  FEh   1 
    T6 02h  01h   0 
    T7 02h  01h   0 
    T8 FDh  FEh   1 
    T9 02h  01h   0 
 
The verification is always ready to accept data, therefore it has no in_siso output. The verification is always 
enabled. After reset and when verify_res_ack pulses then verify_res_val = '0'. The verification needs two 
words to initialize its local reference pattern generator and then the next words can be verified. At the third 
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valid input word the verify_res_val goes active '1' and remains active until the next verify_res_ack pulse. If 
the received data is a mismatch with the local reference pattern then the verify_res goes high '1' and remains 
'1' until the next verify_res_ack pulse. The verify_res[8] contains the matching result for the aggregate 
symbol values, and verify_res[7:0] contains the result per corresponding symbol bit [7:0]. Via verify_res[7:0] 
the skew between LVDS input lines can be measured. Via verify_res[8] it becomes clear whether the skew is 
sufficiently small to have an open sampling eye for the entire symbol value. The duration of the verification 
interval depends on verify_res_ack, each time verify_res_ack pulses a new verification interval starts. The 
ADC overflow bit is not verified. 

5.3 Implementation 

The TP_I and TP_Q test symbols effectively only contain two values (0x02, 0xFD) or (0x01, 0xFE) 
respectively. Hence these can be mapped on single bit values '0' and '1' as is done via the signal symb. The 
TP_I and TP_Q symbols are verified per bit and for the entire symbol via the mapped symb signal. The 8 
symbol bits and the mapped symb signal all have the test pattern of 10 values: “0 1 0 0 1 1 0 0 1 0”. The 
data arrives with g_nof_symbols_per_data=4 symbols per data, so a sequence of two test patterns (2*10 
divides by 4) can appear at 10 different phases as: 
 
   Phase Pattern     Pattern        Nibble hex values 
     0   0100 1100 1001 0011 0010 = 4 C 9 3 2 
     1   1001 1001 0010 0110 0100 = 9 9 2 6 4 
     2   0011 0010 0100 1100 1001 = 3 2 4 C 9 
     3   0110 0100 1001 1001 0010 = 6 4 9 9 2 
     4   1100 1001 0011 0010 0100 = C 9 3 2 4 
     5   1001 0010 0110 0100 1001 = 9 2 6 4 9 
     6   0010 0100 1100 1001 0011 = 2 4 C 9 3 
     7   0100 1001 1001 0010 0110 = 4 9 9 2 6 
     8   1001 0011 0010 0100 1100 = 9 3 2 4 C 
     9   0010 0110 0100 1001 1001 = 2 6 4 9 9 
 
Hence for phase 0 to 9 the 4-bit nibbles can either be repeated <4 C 9 3 2> or <9 9 2 6 4>. E.g. if the first 
two data words map to 4 C then the next expected data word is 9. One data word (i.e. 4 symbols of the 10) is 
not enough to know the next test pattern data word. Two data words (i.e. 8 symbols of the 10) are sufficient 
to know the next test pattern data word. This is implemented by func_tp_seq in aduh_verify_bit. 

5.4 Verifcation 

The test bench tb_aduh_verify.vhd verifies the aduh_verify. 

5.5 Validation 

The adc08d1020 can be programmed into test pattern mode with Python using the 
pi_adu_i2c_commander.py peripheral and an i2c_commander VHDL instance in the FPGA design (as in 
bn_capture [4]). The pi_aduh_quad.py peripheral then provides the methods to check verify_res as done 
with util_aduh_quad.py. 
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6 MMS_ADUH_MONITOR 
 

6.1 ADUH_MONITOR 

For one input signal path the aduh_monitor provides provides MM access to: 
 
- Mean sum 
- Power sum 
- Data buffer time samples stored in big endian order: 
 
The new mean_sum and the power_sum stored at a sync pulse. Hence the sync pulse interval determines 
the integration time. The data buffer is filled at a sync pulse. 
 
The mean sum is calculated by the aduh_mean_sum component and the power sum is calculated by the 
aduh_power_sum component. Both components are capable of handling g_nof_symbols_per_data >= 1, 
e.g. 4 samples per data word. 
 

6.2 ADUH_MONITOR_REG 

The register map for the aduh_monitor is defined by the aduh_monitor_reg VHDL component and can be 
accessed in Python using pi_aduh_monitor.py. 
 
Table 8 shows register map for reading the mean and power statistics of the signal samples. The mean sum 
accumulates the ADC sample values during a sync interval. The power sum accumulates the squares of the 
ADC sample values during a sync interval. 
 
 31             24 23             16 15              8 7               0  wi 
|-----------------|-----------------|-----------------|-----------------| 
|                             mean_sum[31:0]                            |  0 
|-----------------------------------------------------------------------| 
|                             mean_sum[63:32]                           |  1 
|-----------------------------------------------------------------------| 
|                            power_sum[31:0]                            |  2 
|-----------------------------------------------------------------------| 
|                            power_sum[63:32]                           |  3 
|-----------------------------------------------------------------------| 

Table 8: Memory map REG_ADUH_MON for mean and power statistics 

 
Table 9 shows the register map for the samples monitor buffer. The samples monitor buffer is a small 
internal FPGA buffer that can store 1024 samples per signal path and gets triggered to do so by the sync 
pulse at the start of every sync interval. The time samples are stored in big endian order, so when the 32-bit 
word is read in hexadecimal format it shows the sample values in time from left to right. 
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 31             24 23             16 15              8 7               0  wi 
|-----------------|-----------------|-----------------|-----------------| 
|          t0[7:0]           t1[7:0]           t2[7:0]           t3[7:0]|  0 
|-----------------------------------------------------------------------| 
|          t4[7:0]           t5[7:0]           t6[7:0]           t7[7:0]|  1 
|-----------------------------------------------------------------------| 
|                                 ...                                   | .. 
|-----------------------------------------------------------------------| 
|       t1020[7:0]        t1021[7:0]        t1022[7:0]        t1023[7:0]|255 
|-----------------------------------------------------------------------| 

Table 9: Memory map RAM_ADUH_MON for data buffer monitor 

 
The Software/python/peripherals/pi_aduh_monitor.py Python peripheral script provides methods for 
accessing the ADUH_MONITOR registers and the util_aduh_monitor.py provides usage examples. 
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7 Appendix : Data value measurement results using the BIST 
 
 
This appendix shows the log file of a successful BIST measurement with test pattern data from ADUs on all 
64 signal paths in the Apertif subrack. Note that it is better to repeat a test 24 times for 1 hour than to run it 
once for 24 hours. By measuring for shorter intervals one gets an impression of the bit error distribution in 
time in case they occur. 
 
> python apps/bn_capture/tc_bn_capture_adc_bist.py --unb 0:3 --bn 0:3 --sp 0:3 --rep 24 -n 3600 -v 3 
 
[2013:01:30 12:27:01] - (3) TC_BN_CAPTURE – 
>>> Title : Test case to run the ADC-[ABCD] BIST on UNB-[0, 1, 2, 3], BN-[0, 1, 2, 3], SP-[0, 1, 2, 3]:  
 
SENS - UNB-0, BN-0: FPGA temperature = 31 [degrees] 
SENS - UNB-0, BN-1: FPGA temperature = 33 [degrees] 
SENS - UNB-0, BN-2: FPGA temperature = 32 [degrees] 
SENS - UNB-0, BN-3: FPGA temperature = 31 [degrees] 
SENS - UNB-1, BN-0: FPGA temperature = 31 [degrees] 
SENS - UNB-1, BN-1: FPGA temperature = 32 [degrees] 
SENS - UNB-1, BN-2: FPGA temperature = 31 [degrees] 
SENS - UNB-1, BN-3: FPGA temperature = 31 [degrees] 
SENS - UNB-2, BN-0: FPGA temperature = 32 [degrees] 
SENS - UNB-2, BN-1: FPGA temperature = 33 [degrees] 
SENS - UNB-2, BN-2: FPGA temperature = 29 [degrees] 
SENS - UNB-2, BN-3: FPGA temperature = 0 [degrees] 
SENS - UNB-3, BN-0: FPGA temperature = 31 [degrees] 
SENS - UNB-3, BN-1: FPGA temperature = 32 [degrees] 
SENS - UNB-3, BN-2: FPGA temperature = 30 [degrees] 
SENS - UNB-3, BN-3: FPGA temperature = 31 [degrees] 
ADUH_QUAD - UNB-0, BN-0: ADUH-AB is locked and stable (3) 
ADUH_QUAD - UNB-0, BN-0: ADUH-CD is locked and stable (3) 
ADUH_QUAD - UNB-0, BN-1: ADUH-AB is locked and stable (3) 
ADUH_QUAD - UNB-0, BN-1: ADUH-CD is locked and stable (3) 
ADUH_QUAD - UNB-0, BN-2: ADUH-AB is locked and stable (3) 
ADUH_QUAD - UNB-0, BN-2: ADUH-CD is locked and stable (3) 
ADUH_QUAD - UNB-0, BN-3: ADUH-AB is locked and stable (3) 
ADUH_QUAD - UNB-0, BN-3: ADUH-CD is locked and stable (3) 
ADUH_QUAD - UNB-1, BN-0: ADUH-AB is locked and stable (3) 
ADUH_QUAD - UNB-1, BN-0: ADUH-CD is locked and stable (3) 
ADUH_QUAD - UNB-1, BN-1: ADUH-AB is locked and stable (3) 
ADUH_QUAD - UNB-1, BN-1: ADUH-CD is locked and stable (3) 
ADUH_QUAD - UNB-1, BN-2: ADUH-AB is locked and stable (3) 
ADUH_QUAD - UNB-1, BN-2: ADUH-CD is locked and stable (3) 
ADUH_QUAD - UNB-1, BN-3: ADUH-AB is locked and stable (3) 
ADUH_QUAD - UNB-1, BN-3: ADUH-CD is locked and stable (3) 
ADUH_QUAD - UNB-2, BN-0: ADUH-AB is locked and stable (3) 
ADUH_QUAD - UNB-2, BN-0: ADUH-CD is locked and stable (3) 
ADUH_QUAD - UNB-2, BN-1: ADUH-AB is locked and stable (3) 
ADUH_QUAD - UNB-2, BN-1: ADUH-CD is locked and stable (3) 
ADUH_QUAD - UNB-2, BN-2: ADUH-AB is locked and stable (3) 
ADUH_QUAD - UNB-2, BN-2: ADUH-CD is locked and stable (3) 
ADUH_QUAD - UNB-2, BN-3: ADUH-AB is locked and stable (3) 
ADUH_QUAD - UNB-2, BN-3: ADUH-CD is locked and stable (3) 
ADUH_QUAD - UNB-3, BN-0: ADUH-AB is locked and stable (3) 
ADUH_QUAD - UNB-3, BN-0: ADUH-CD is locked and stable (3) 



 
 
 
 
 

UniBoard DESP 

Doc.nr.: ASTRON-RP-1323 
Rev.: 0.2 
Date:  
Class.: Public 

45 / 50 

ADUH_QUAD - UNB-3, BN-1: ADUH-AB is locked and stable (3) 
ADUH_QUAD - UNB-3, BN-1: ADUH-CD is locked and stable (3) 
ADUH_QUAD - UNB-3, BN-2: ADUH-AB is locked and stable (3) 
ADUH_QUAD - UNB-3, BN-2: ADUH-CD is locked and stable (3) 
ADUH_QUAD - UNB-3, BN-3: ADUH-AB is locked and stable (3) 
ADUH_QUAD - UNB-3, BN-3: ADUH-CD is locked and stable (3) 
Rep = 0 
Rep = 1 
Rep = 2 
Rep = 3 
Rep = 4 
Rep = 5 
Rep = 6 
Rep = 7 
Rep = 8 
Rep = 9 
Rep = 10 
Rep = 11 
Rep = 12 
Rep = 13 
Rep = 14 
Rep = 15 
Rep = 16 
Rep = 17 
Rep = 18 
Rep = 19 
Rep = 20 
Rep = 21 
Rep = 22 
Rep = 23 
 
>>> Test case result: PASSED (run time 86405 s) 
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8 Appendix : Data timing measurement results using a CW 
 

8.1 SP 0, 1, 2, 3 

Results of Figure 6, Figure 9, Figure 12, Figure 15 and Figure 18. 
 
[2012:12:11 21:57:42] - (3) TC_BN_CAPTURE_AND_PLOT – 
 
>>> Title : Test case to plot the ADC-[ABCD] data for UNB-[0], BN-[0], SP-[0, 1, 2, 3]:  
 
Rep-0 
Rep-600 
Rep-1200 
Rep-1800 
Rep-2400 
Rep-2999 
SENS - UNB-0, BN-0: FPGA temperature = 36 [degrees] 
ADU_I2C - UNB-0, BN-0, ADU-AB: Read temperature = 42 [degrees] 
ADU_I2C - UNB-0, BN-0, ADU-CD: Read temperature = 45 [degrees] 
PPS - UNB-0, BN-0: read_ppsh_stable = OK 
>>> Clock-CW DCs: 
  Channel : Mean      Std       Max       Min       Diff        Nof>1S   Nof>2S   Nof>3S   Nof>4S   Nof>5S    
  CH0     : -0.42816   0.07029  -0.14648  -0.67676   0.53027       912      153       10        1  
  CH1     : -0.60260   0.08457  -0.32031  -0.91211   0.59180       974      141        7  
  CH2     : -0.04799   0.08183   0.28809  -0.38770   0.67578       926      153       16        2  
  CH3     : -0.86403   0.07613  -0.59277  -1.11719   0.52441       973      124        7  
>>> Clock-CW phases: 
  Channel : Mean      Std       Max       Min       Diff        Nof>1U   Nof>2U   Nof>3U   Nof>4U   Nof>5U    
  CH0     :  4.32410   0.00388   4.34020   4.30777   0.03244   
  CH1     :  4.38830   0.00445   4.40386   4.37333   0.03053   
  CH2     :  4.86471   0.00417   4.87885   4.84813   0.03071   
  CH3     :  4.96129   0.00376   4.97684   4.94975   0.02708   
>>> Clock-CW amplitudes: 
  Channel : Mean      Std       Max       Min       Diff        Nof>1S   Nof>2S   Nof>3S   Nof>4S   Nof>5S    
  CH0     : 50.31613   0.09430  50.74535  49.94976   0.79559       895      140       18        2  
  CH1     : 49.53958   0.11676  49.86494  49.17608   0.68886       985      125        4  
  CH2     : 48.86487   0.19931  49.25119  48.25059   1.00060      1177       66        1  
  CH3     : 48.25007   0.17036  48.74476  47.83433   0.91043      1141       50  
>>> Clock-CW noise peaks: 
  Channel : Mean      Std       Max       Min       Diff        Nof>1S   Nof>2S   Nof>3S   Nof>4S   Nof>5S    
  CH0     :  1.17836   0.09860   1.70369   0.68915   1.01454       741      150       40       11        3  
  CH1     :  1.14815   0.18439   1.66091   0.68075   0.98016      1017      103  
  CH2     :  1.12295   0.13106   1.88777   0.66579   1.22198       905      129       27        3        1  
  CH3     :  1.14555   0.14022   1.64152   0.72222   0.91929       858      178       13  
>>> Clock-CW SNRs: 
  Channel : Mean      Std       Max       Min       Diff        Nof>1S   Nof>2S   Nof>3S   Nof>4S   Nof>5S    
  CH0     : 48.27535   1.03312  51.62446  44.23722   7.38724       932      134       11  
  CH1     : 46.69371   0.59305  49.17417  44.91437   4.25980       918      143       16        1  
  CH2     : 46.84892   1.37192  52.79533  43.98593   8.80941       901      124       26        2  
  CH3     : 47.21466   0.83819  50.55478  44.13033   6.42445       914      160       21  
 
>>> Test case result: PASSED (run time 32232 s) 
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8.2 SP 0, 1, 4, 5, 8, 9, 12, 13 

Results of Figure 7, Figure 10, Figure 13, Figure 16 and Figure 19. 
 
[2012:12:12 06:54:55] - (3) TC_BN_CAPTURE_AND_PLOT - 
 
>>> Title : Test case to plot the ADC-[ABCD] data for UNB-[0], BN-[0, 1, 2, 3], SP-[0, 1]:  
 
Rep-0 
Rep-600 
Rep-1200 
Rep-1800 
Rep-2400 
Rep-2999 
SENS - UNB-0, BN-0: FPGA temperature = 36 [degrees] 
SENS - UNB-0, BN-1: FPGA temperature = 37 [degrees] 
SENS - UNB-0, BN-2: FPGA temperature = 36 [degrees] 
SENS - UNB-0, BN-3: FPGA temperature = 35 [degrees] 
SENS - UNB-0, BN-3: ETH PHY temperature = 45 [degrees] 
SENS - UNB-0, BN-3: UNB supply current  =  2.3 [A] 
SENS - UNB-0, BN-3: UNB supply voltage  = 48.0 [V] 
ADU_I2C - UNB-0, BN-0, ADU-AB: Read temperature = 42 [degrees] 
ADU_I2C - UNB-0, BN-1, ADU-AB: Read temperature = 44 [degrees] 
ADU_I2C - UNB-0, BN-2, ADU-AB: Read temperature = 45 [degrees] 
ADU_I2C - UNB-0, BN-3, ADU-AB: Read temperature = 44 [degrees] 
PPS - UNB-0, BN-0: read_ppsh_stable = OK 
PPS - UNB-0, BN-1: read_ppsh_stable = OK 
PPS - UNB-0, BN-2: read_ppsh_stable = OK 
PPS - UNB-0, BN-3: read_ppsh_stable = OK 
>>> Clock-CW DCs: 
  Channel : Mean      Std       Max       Min       Diff        Nof>1S   Nof>2S   Nof>3S   Nof>4S   Nof>5S    
  CH0     : -0.42166   0.06745  -0.12695  -0.68359   0.55664       900      143       11        1  
  CH4     : -0.40579   0.08039  -0.08496  -0.64941   0.56445       952      151        9  
  CH8     : -0.74735   0.07549  -0.50098  -1.04102   0.54004       958      133        8  
  CH12    :  0.06128   0.07991   0.38184  -0.21875   0.60059       949      140       15        1  
  CH1     : -0.59847   0.08563  -0.30176  -0.88379   0.58203       937      141       12  
  CH5     : -0.98074   0.07399  -0.69434  -1.22949   0.53516       857      170       16  
  CH9     : -0.73414   0.06548  -0.48340  -0.95898   0.47559       930      143       12  
  CH13    : -0.83064   0.07483  -0.49414  -1.04102   0.54688       943      127       13        1  
>>> Clock-CW phases: 
  Channel : Mean      Std       Max       Min       Diff        Nof>1U   Nof>2U   Nof>3U   Nof>4U   Nof>5U    
  CH0     :  4.32474   0.00365   4.33943   4.31112   0.02831   
  CH4     :  6.05196   0.20631   6.07471   2.05571   4.01900         8        8        8  
  CH8     :  6.15314   0.00419   6.16635   6.14143   0.02492   
  CH12    :  5.61170   0.16321   5.63089   1.61028   4.02060         5        5        5        1  
  CH1     :  4.38938   0.00429   4.40402   4.37660   0.02742   
  CH5     :  5.96139   0.20626   5.98090   1.96564   4.01526         8        8        8  
  CH9     :  5.83563   0.00327   5.84836   5.82575   0.02261   
  CH13    :  5.83409   0.16320   5.85251   1.83114   4.02137         5        5        5        1  
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>>> Clock-CW amplitudes: 
  Channel : Mean      Std       Max       Min       Diff        Nof>1S   Nof>2S   Nof>3S   Nof>4S   Nof>5S    
  CH0     : 50.34319   0.09487  50.73568  50.01909   0.71659       937      126       15        2  
  CH4     : 50.20358   0.12725  50.57093  49.73871   0.83222      1013      109        3  
  CH8     : 49.97079   0.10461  50.25407  49.61202   0.64205       965      127       10  
  CH12    : 48.97348   0.12000  49.34748  48.58651   0.76098       987      133        4  
  CH1     : 49.56749   0.11922  49.90042  49.15701   0.74341       953      136        7  
  CH5     : 51.83209   0.10727  52.15844  51.47277   0.68566       949      138        8  
  CH9     : 50.77951   0.09822  51.06158  50.48255   0.57902       990      124        2  
  CH13    : 49.36934   0.11015  49.77744  49.02657   0.75087       955      129        9  
>>> Clock-CW noise peaks: 
  Channel : Mean      Std       Max       Min       Diff        Nof>1S   Nof>2S   Nof>3S   Nof>4S   Nof>5S    
  CH0     :  1.19086   0.10103   1.74160   0.75911   0.98249       781      154       40        7        2  
  CH4     :  1.18496   0.12818   1.68664   0.62256   1.06409       739      196       42        1  
  CH8     :  1.27158   0.13843   1.77412   0.79933   0.97479       947      153        5  
  CH12    :  1.02602   0.13047   1.58846   0.67570   0.91276       936      141       14        1  
  CH1     :  1.12587   0.19398   1.64108   0.60528   1.03580      1128       65  
  CH5     :  1.11056   0.17152   1.95001   0.61687   1.33314       990      107        8        1  
  CH9     :  1.15135   0.12463   1.47293   0.66588   0.80706      1073       92        1  
  CH13    :  1.13606   0.09286   1.49225   0.77115   0.72110       877      152       22  
>>> Clock-CW SNRs: 
  Channel : Mean      Std       Max       Min       Diff        Nof>1S   Nof>2S   Nof>3S   Nof>4S   Nof>5S    
  CH0     : 48.31803   1.00302  51.93488  44.83623   7.09865       925      150       11  
  CH4     : 47.31698   1.03429  52.03864  44.24759   7.79105       876      149       31        4  
  CH8     : 46.41384   0.66143  49.08686  44.18999   4.89687       970      122       11        1  
  CH12    : 47.28212   1.06900  52.57789  44.61828   7.95961       825      145       39        3  
  CH1     : 46.67066   0.55985  49.25505  44.67974   4.57531       876      148       16        1  
  CH5     : 47.70795   1.23518  52.20200  45.05191   7.15009       947      130       17  
  CH9     : 48.29352   0.65363  51.12801  45.97680   5.15121       917      144        8        1  
  CH13    : 47.75528   1.09545  52.22555  44.65296   7.57258       965      145        8        2  
 
>>> Test case result: PASSED (run time 6505 s) 
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8.3 SP 0, 2, 16, 18, 32, 34, 48, 50 

Results of Figure 8, Figure 11, Figure 14, Figure 17 and Figure 20. 
 
[2012:12:12 11:25:48] - (3) TC_BN_CAPTURE_AND_PLOT – 
 
>>> Title : Test case to plot the ADC-[ABCD] data for UNB-[0, 1, 2, 3], BN-[0], SP-[0, 2]:  
 
Rep-0 
Rep-600 
Rep-1200 
Rep-1800 
Rep-2400 
Rep-2999 
SENS - UNB-0, BN-0: FPGA temperature = 36 [degrees] 
SENS - UNB-1, BN-0: FPGA temperature = 35 [degrees] 
SENS - UNB-2, BN-0: FPGA temperature = 37 [degrees] 
SENS - UNB-3, BN-0: FPGA temperature = 34 [degrees] 
ADU_I2C - UNB-0, BN-0, ADU-AB: Read temperature = 42 [degrees] 
ADU_I2C - UNB-1, BN-0, ADU-AB: Read temperature = 45 [degrees] 
ADU_I2C - UNB-2, BN-0, ADU-AB: Read temperature = 47 [degrees] 
ADU_I2C - UNB-3, BN-0, ADU-AB: Read temperature = 46 [degrees] 
ADU_I2C - UNB-0, BN-0, ADU-CD: Read temperature = 45 [degrees] 
ADU_I2C - UNB-1, BN-0, ADU-CD: Read temperature = 45 [degrees] 
ADU_I2C - UNB-2, BN-0, ADU-CD: Read temperature = 48 [degrees] 
ADU_I2C - UNB-3, BN-0, ADU-CD: Read temperature = 44 [degrees] 
PPS - UNB-0, BN-0: read_ppsh_stable = OK 
PPS - UNB-1, BN-0: read_ppsh_stable = OK 
PPS - UNB-2, BN-0: read_ppsh_stable = OK 
PPS - UNB-3, BN-0: read_ppsh_stable = OK 
>>> Clock-CW DCs: 
  Channel : Mean      Std       Max       Min       Diff        Nof>1S   Nof>2S   Nof>3S   Nof>4S   Nof>5S    
  CH0     : -0.42577   0.06896  -0.14648  -0.69727   0.55078       922      137       18        2  
  CH16    : -0.69219   0.07422  -0.44727  -0.97656   0.52930       988      118        9  
  CH32    : -0.40899   0.07613  -0.16602  -0.70703   0.54102       956      141        8  
  CH48    : -0.43202   0.06049  -0.20508  -0.64453   0.43945       904      150       14  
  CH2     : -0.05317   0.08180   0.22266  -0.37988   0.60254       882      166       18  
  CH18    : -0.99522   0.07741  -0.73828  -1.27344   0.53516       930      140        8  
  CH34    : -0.63700   0.05879  -0.44629  -0.85352   0.40723       958      141       10  
  CH50    : -0.37889   0.06706  -0.12402  -0.63281   0.50879       948      146       15  
>>> Clock-CW phases: 
  Channel : Mean      Std       Max       Min       Diff        Nof>1U   Nof>2U   Nof>3U   Nof>4U   Nof>5U    
  CH0     :  4.32232   0.07313   4.33899   0.32277   4.01623         1        1        1  
  CH16    :  4.75675   0.00400   4.77385   4.74367   0.03018   
  CH32    :  4.71390   0.00449   4.73176   4.70050   0.03125   
  CH48    :  5.27260   0.00317   5.28424   5.25292   0.03132   
  CH2     :  4.86304   0.07305   4.87637   0.86919   4.00718         1        1        1  
  CH18    :  5.07039   0.00537   5.08685   5.05363   0.03322   
  CH34    :  4.96372   0.00343   4.97590   4.94757   0.02833   
  CH50    :  4.69188   0.00451   4.70595   4.67605   0.02990   
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>>> Clock-CW amplitudes: 
  Channel : Mean      Std       Max       Min       Diff        Nof>1S   Nof>2S   Nof>3S   Nof>4S   Nof>5S    
  CH0     : 50.34196   0.09420  50.79154  49.93703   0.85451       937      139       10        3  
  CH16    : 45.49816   0.13811  45.92758  45.09665   0.83093      1102       77        1  
  CH32    : 46.33243   0.11063  46.67618  45.89428   0.78190       939      143       10  
  CH48    : 45.57226   0.14221  46.00609  45.19072   0.81537      1049       90        2  
  CH2     : 48.88303   0.18579  49.25254  48.24772   1.00482      1132       74        5  
  CH18    : 45.97415   0.11086  46.44006  45.62167   0.81839      1016      113        6        1  
  CH34    : 46.46270   0.06692  46.78317  46.26832   0.51485       954      141        7        2  
  CH50    : 45.67884   0.09150  45.96296  45.24268   0.72027       921      149       10        2  
>>> Clock-CW noise peaks: 
  Channel : Mean      Std       Max       Min       Diff        Nof>1S   Nof>2S   Nof>3S   Nof>4S   Nof>5S    
  CH0     :  1.18490   0.09738   1.82447   0.74560   1.07888       786      135       41       12        2  
  CH16    :  1.07799   0.11703   1.69871   0.71594   0.98277       777      155       37        9        1  
  CH32    :  1.12134   0.14826   1.66092   0.65529   1.00563       931      160        3  
  CH48    :  1.18854   0.09665   1.56249   0.78805   0.77444       885      143       17        1  
  CH2     :  1.13225   0.13454   1.72437   0.64760   1.07677       849      150       27        2  
  CH18    :  1.15346   0.17133   1.83011   0.68263   1.14749       901      179        9  
  CH34    :  1.18868   0.09997   1.76560   0.73559   1.03001       790      156       37        4        1  
  CH50    :  1.08560   0.13703   1.55193   0.73914   0.81279       962      129       12  
>>> Clock-CW SNRs: 
  Channel : Mean      Std       Max       Min       Diff        Nof>1S   Nof>2S   Nof>3S   Nof>4S   Nof>5S    
  CH0     : 48.24802   1.02914  51.49920  45.01627   6.48293       958      146        6  
  CH16    : 47.99723   1.02514  53.44261  44.93290   8.50971       725      165       46        9        2  
  CH32    : 47.31024   1.10166  52.37393  44.91421   7.45972       996      110       15        2  
  CH48    : 48.72019   1.24740  52.92224  44.96558   7.95667       946      143        7  
  CH2     : 46.82169   1.39027  52.93042  43.71416   9.21626       913      136       26        3  
  CH18    : 47.20291   0.89450  53.14993  44.61008   8.53985       663      163       59       20        9  
  CH34    : 48.30816   0.68355  50.65132  45.10364   5.54768       864      150       20        4  
  CH50    : 47.57653   0.56884  50.74996  45.73132   5.01865       780      151       38       12        2  
 
>>> Test case result: PASSED (run time 9756 s) 


