ASTRON

Netherlands Institute for Radio Astronomy

UniBoard transceiver module

Organisatie / Organization Datum / Date
Auteur(s) / Author(s):
Daniel van der Schuur ASTRON 24 September 2012
Controle / Checked:
Eric Kooistra ASTRON
Goedkeuring / Approval:
Andre Gunst ASTRON
Autorisatie / Authorisation:
Handtekening / Signature ASTRON
Andre Gunst

© ASTRON 2012
All rights are reserved. Reproduction in whole or in part is
prohibited without written consent of the copyright owner.

ASTRON-FO-017 2.0

Doc.nr.: ASTRON-RP-449
Rev.: 0.5

Date: 24-09-2012

Class.: Public

UniBoard

1/22

Distribution list:

ASTRON

Group:

Others:

Andre Gunst

Eric Kooistra

Harm-Jan Pepping
Jonathan Hargreaves (JIVE)
Salvatore Pirruccio (JIVE)

Gijs Schoonderbeek
Sjouke Zwier
Harro Verkouter (JIVE)

Document history:

Revision Date Author Modification / Change
0.1 2011-01-31 Daniel van der Schuur Dratft
0.2 2011-03-03 Daniel van der Schuur Added sections on the ST interface
0.3 2011-11-23 Daniel van der Schuur Updated complete tr_nonbonded module
04 2011-11-28 Daniel van der Schuur Minor changes.
0.5 2012-09-24 Daniel van der Schuur ;Jr?(;i%t;da?]u_?;oaﬁ\ggriggp‘to;SmMn:_diagnostics

2122

UniBoard

Doc.nr.: ASTRON-RP-449
Rev.: 0.5

Date: 24-09-2012

Class.: Public

ASTRON

Table of contents:

N [1o o (U310 o SRR 5
1.1 PUIDOSE .ttt e e oo e e e e e e e e e e et e e e e as 5
1.2 Performance and imitationNSccooooii i 5
1.3 MOAUIE OVEIVIEW, 5

2 Hardware INtEIrfaCe ..o 6
2.1 (01 [oTo3 Q=T To I (=TT =T A (o | g F= | TP SUPT R 6
2.2 e L= 4[] (] £ PSSP 7
2.3 g1 0=T = (ot o | F= L PPRPRR 7

3 SOfWAIE INLEITACE ...eeeiiii e e e e e s e et e e e e s s st eeeeee e e s e saatbeaeeeaeesattaaeeeeeeesesnnnrannees 8
3.1 0T TS0 L=V [(01 oS 8
3.2 £ T a1 oo T s o =T SRR 8

N 5 1=] T [o SRR 10
4.1 L0 (o T3 Qo [. = 1] 1SR 10
4.2 L= L= 10 41T (T P 11
4.3 INEITACE SIGNAISottt e et e e s e br e e e s sbe e e s atbeeeeaneee 11

LI 0 4] 0] [=T 0 4 [T 01 7= Vi o o F PP PPRPRRN 14
5.1 N (o 11 (=T o £ 14
5.2 ALTGX MEGATUNCLION ...ttt e e e e e e sttt e e e e e e s e aaabb e e e e e e e e e e sbbnaeeaaeas 14

5.2.1 Alignment Of reCEIVEA GALAcccuiiiiiiii e a e e e s st r e e e e e s s e nanaeeeaeas 15

I = =Y (= (=T o= o (=T T [ISR 17

Y 4= 1107 11 o] o SRR 18

S T £ 1o - o o S PPERR 19
8.1 [T o T =Y] T 1S 19

8.1.1 Front node and/or back NOAE rEVISIONSuuiiiiiie i e e 19
8.1.2 BAacCK NOUE ONIY FBVISIONSueiieiiiiiee ittt ettt ettt ettt ettt e sttt e skt e e s bt e e e s nbb e e e s nnbn e e e snneeas 19
8.2 [D]=To [or=10=To O o] o] [Tor=1 i o] o FA P PP P UPP PP UOUPPRPPPPP 20
S T2 N B 7 C o 11 1 11 SO PP PP PRPT PP PPPI 20
8.2.2 Interpreting the diagnOSLICS FESUIL...........coii e 20
8.2.3 PerfOrMEA LESES ...t 21

9 APPENIX — HST OF FES...ci e e e e e et e e e e e e s e abe b e e e e e e e e e e nneee 22
9.1 LU 7] a1 oo o =T R 22
9.2 (0T g o T (g T o o Yo o =T SRR 22
9.3 Y o] AT o] oo = 1 4 1= 22

Doc.nr.: ASTRON-RP-449
Rev.: 0.5

Date: 24-09-2012

Class.: Public

UniBoard

3/22

ASTRON

Terminology:

BN Back Node

BN_BI Back node — Backplane Interface

CcMU Clock Multiplier Unit

FIFO First In First Out

FN Front Node

FN_BN Front Node — Back Node

FPGA Field Programmable Gate Array

FSM Finite State Machine

Nof Number of

PCS Physical Coding Sublayer

PHY Physical layer

PMA Physical Media Attachment

RX Receive

SI_FN Serial Interface — Front Node

SOPC System On a Programmable Chip (Altera)

TX Transmit

XGB 10 Gigabit Breakout board

References:

1. ‘DP Streaming Module Description’, ASTRON-RP-382, Eric Kooistra

2. ‘Design considerations for UniBoard’s Stratix IV Transceivers’, ASTRON-RP-386, Daniel van der Schuur
3. ‘Quartus Il Handbook’, quartusii_handbook.pdf, www.altera.com

4. ‘Altera Stratix IV Device Handbook’, July 2010, , www.altera.com

5. ‘UniBoard Board Design’, ASTRON RP-316, Gijs Schoonderbeek, Sjouke Zwier

6. $UNB/Firmware/modules/diagnostics

7. www.altera.com, “Avalon Interface Specifications”, mnl_avalon_spec.pdf

8. https://svn.astron.nl/UniBoard_FP7/UniBoard/trunk, the UniBoard FP7 SVN repository (SUNB)
9. “Specification for module interfaces using VHDL records”, ASTRON-RP-380, Eric Kooistra

10. “Common Library Memory and Register Component Descriptions”, ASTRON-RP-415, Eric Kooistra
11. “UNB_Common Module Description”, ASTRON-RP-426, Eric Kooistra

12. “UniBoard transceiver module: tr_nonbonded”, ASTRON-RP-405, Daniel van der Schuur

13. “DIAG module description”, ASTRON-RP-1313, Harm Jan Pepping

14. $UNB/Software/python/README.txt

Doc.nr.: ASTRON-RP-449
Rev.: 0.5

Date: 24-09-2012

Class.: Public

UniBoard

422

ASTRON

1 Introduction

1.1 Purpose

The UniBoard uses high speed Stratix IV transceivers to interface between FPGAs using the mesh (front
node - back node or FN_BN) interconnect, and to interface to hardware via the back node to backplane
interface (BN_BI). Details and background information can be obtained by reading [2] and [5].

This document describes a VHDL transceiver module, mms_tr_nonbonded, that can be used on the
UniBoard to implement up to twelve transceiver links in basic non-bonded mode per FPGA side (left and/or
right).

1.2 Performance and limitations

The module provides stable, error-free data (de)serialization at 6.25Gbps per transceiver link when
interfaced via the UniBoard’s FN_BN mesh. The BN_BI interface also supports a data rate of 6.25Gbps,
however only via PCB traces. When CX4 cables are used, performance drops and is error-free up to 5Gbps.
The Stratix IV transceivers support a data rate of 8.5Gbps, but this data rate requires the on-board crystals
to be replaced with 425MHz ones, which is not compatible with XAUI and 10GbE. The data rate of 6.25Gbps
is the maximum achievable using the installed 156.25MHz crystals.

The mentioned data rates include the 8/10 encoding overhead.

1.3 Module overview

mms_tr_nonbonded

tr_nonbonded

Streaming TX interfaces [0..g_nof_gx-1]

mms_diagnostics

Test data [0..g_nof_gx-1]

-4+——MM interface >

——TX_DATAOUTI0..g_nof_gx-1}—-
~«—RX_DATAIN[0..g_nof_gx-1}

Test data [0..g_nof_gx-1]

Streaming RX interfaces [0..g_nof_gx-1] J

Figure 1 —mms_tr_nonbonded overview

Figure 1 shows the top-level of mms_tr_nonbonded and its main components. An internal mms_diagnostics
instance is used to allow the user to send diagnostics data across the transceiver links instead of user data.
This mms_diagnostics instance is controlled with an MM interface. See [13] for more information on the
mms_diagnostics component.

The actual transceiver IP, Altera’s ALTGX megafunction, is instantiated inside tr_nonbonded.

Doc.nr.: ASTRON-RP-449
Rev.: 0.5

Date: 24-09-2012
Class.: Public

UniBoard

5/22

ASTRON

2 Hardware interface

2.1 Clock and reset signals

Figure 2 shows the clock and reset signals that exist in the tr_nonbonded module.

mms_tr_nonbonded tr_nonbonded

cal_rec_clk -

Streaming TX interfaces [0..g_nof_gx-1]

| TX_DATAOUTI0..g_nof_gx-11—#

st_clk——m mms_diagnostics
st_rst———y—m

Test data [0..g_nof_gx-1]

mm_clk
mm_rst;

A\

Test data [0..g_nof_gx-1]
:| (—RX_DATAIN[0..g_nof_gx-1}
Streaming RX interfaces [0..2]

mm_clk L

mm_rst -
Figure 2—mms_tr_nonbonded clock clock and reset signals
Table 1 summarizes the clock signals for mms_tr_nonbonded.
Name Frequency (MHz) Description
tr_clk 156.25 Reference clock for the ALTGX IP
st_clk F<=(g_mbps/32)*(8/10) | Streaming domain clock input. The maximum frequency

depends on the selected data rate (g_mbps which includes
F<=156.25 (6250Mbps) | 8/10 encoding overhead), see the Parameters paragraph
F<=125 (5000Mbps) below.

F<=78,125 (3125Mbps)
F<=62,5 (2500Mbps)

mm_clk User MM clock for the memory-mapped bus shared with e.g. a
NIOS Il processor. Default is 50MHz.

cal_rec_clk 37,5-50 Used to clock the calibration block inside the transceiver PHY
components. The frequency must be between 37.5 and
50MHz.

Table 1: mms_tr_nonbonded clock signals

Doc.nr.: ASTRON-RP-449
Rev.: 0.5

Date: 24-09-2012

Class.: Public

UniBoard

6/22

2.2 Parameters

ASTRON

Available parameters for the tr_nonbonded module are listed in Table 2.

Generic Type Description
g_nof_gx NATURAL The number of transceiver instances
g_mbps NATURAL Line data rate in Megabits per second, including 8/10 encoding
overhead. Supported values:
e 6250
e 5000
e 3125
e 2500
g_tx, g_rx BOOLEAN Supported:
e 0_tx=TRUE, g_rx=TRUE: g_nof_gx (duplex) transceiver
instances
e g _tx=TRUE, g_rx=FALSE: g_nof_gx transmitter instances only
e g _tx=FALSE, g_rx=TRUE: g_nof_gx receiver instances only
g_tx _fifo_depth NATURAL Transmitter side FIFO depth in words (32-bit)
g_rx_fifo_depth | NATURAL Receiver side FIFO depth in words (32-bit)

Table 2: tr_nonbonded parameters

2.3

Interface signals

The interface signals of mms_tr_nonbonded are listed in Table 3.

Interface Type Description

snk_in_arr t dp_sosi_arr Array (g_nof_gx-1..0) of streaming TX data inputs,
Data width = 32.

snk_out_arr t dp_siso_arr Array (g_nof_gx-1..0) of flow control signals

src_out_arr t dp_sosi_arr Array (g_nof_gx-1..0) streaming RX data outputs

src_in_arr t dp_siso_arr Array (g_nof_gx-1..0) flow control signals

rx_datain STD_LOGIC_VECTOR | Array of g_nof_gx serial receiver lanes

tx_dataout STD_LOGIC_VECTOR | Array of g_nof_gx serial transmitter lanes

tr_nonbonded_mm_mosi | t_ mem_mosi MOSI interfaces to the mms_tr_nonbonded instance

tr_nonbonded_mm_miso | t mem_miso MISO interfaces from the mms_tr_nonbonded instance

diagnostics_mm_mosi t_ mem_mosi MOSI interfaces to the mms_diagnostics instance

diagnostics_mm_miso t_ mem_miso MISO interfaces from the mms_diagnostics instance

Table 3: interface signals

7122

UniBoard

Doc.nr.: ASTRON-RP-449
Rev.: 0.5

Date: 24-09-2012

Class.: Public

3 Software interface

An mms_tr_nonbonded instance provides MM buses to control its internal mms_diagnostics module, and
provides MM control and monitoring of tr_nonbonded.

3.1

mms_diagnostics

ASTRON

[13] lists the register layout and contents of mms_diagnostics. Generic g_nof_streams equals the number of
instantiated transceivers: g_nof_gx.

3.2

tr_nonbonded

Available registers of the tr_nonbonded module are listed in Table 4. All registers are 32 bits wide, however
only the rx_dataout registers use the full 32 bits. The number of used bits of the remaining registers
corresponds directly to the number of instantiated transceivers — g_nof_gx (bit O corresponds to transceiver
0, etc). This implies a maximum of 32 transceivers per tr_nonbonded module.

Name

Address
(words)

Size
(words)

Read/
Write

Description

tx_align_en

0

1

w

‘1’ overrides any user data and puts an alignment pattern
on the transmitter(g_nof gx-1..0) parallel TX input.

tx_state

1

1

R

Indicates the state of each transmitter using 2 bits per
transmitter, e.g. bits [1..0] = state of transmitter 0.

TX state; normal FSM sequence:

00: Init

01: Sending alignment pattern

11: Allowing user data; normal state when TX is
operating correctly.

TX state; manually overridden

10: Manually forcing alignment pattern;
tx_align_en="1". Once user sets tx_align_en back
to ‘0’, tx_state will return to normal ‘11’.

rx_align_en

A ‘1’ enables alignment for the corresponding
receiver(g_nof_gx-1..0). Alignment requires the
transmission of the alignment pattern on the connecting
transmitter.

rx_state

Indicates the state of each receiver using 2 bits per
receiver, e.g. bits [1..0] = receiver 0.

RX state; normal FSM sequence:

00: Init

01: Byte aligning

10: Word alignning

11: Aligned; normal state when RX is
operating correctly. When the FSM is in this state,
the user can force the FSM to restart the
alignment procedure by writing to the rx_align_en
register.

rx_dataout 0

Parallel RX data out of transceiver 0.

rx_dataout 1

Parallel RX data out of transceiver 1.

rx_dataout 2

Parallel RX data out of transceiver 2.

rx_dataout 3

Parallel RX data out of transceiver 3.

rx_dataout 4

N[O

RlRRk Rk

puipeiplpuipy)

Parallel RX data out of transceiver 4.

8/22

UniBoard

ASTRON-RP-449
Rev.: 0.5

24-09-2012
Public

Doc.nr.:

Date:

Class.:

ASTRON

rx_dataout 5 |9 1 R Parallel RX data out of transceiver 5.
rx_dataout 6 | 10 1 R Parallel RX data out of transceiver 6.
rx_dataout 7 | 11 1 R Parallel RX data out of transceiver 7.
rx_dataout 8 | 12 1 R Parallel RX data out of transceiver 8.
rx_dataout 9 | 13 1 R Parallel RX data out of transceiver 9.
rx_dataout_10 | 14 1 R Parallel RX data out of transceiver 10.
rx_dataout_11 | 15 1 R Parallel RX data out of transceiver 11.

Table 4: tr_nonbonded module registers

Doc.nr.: ASTRON-RP-449
Rev.: 0.5

Date: 24-09-2012

Class.: Public

UniBoard

9/22

ASTRON

4 Design

This chapter describes the tr_nonbonded module that is instantiated by mms_tr_nonbonded, focussing on
the different clock domains, the FIFOs and the options to bypass these.

4.1 Clock domains

Figure 3 shows an overview of the tr_nonbonded module, in which one can distinguish four user provided
clocks and two derived clocks (not including the serial clocks in tx_dataout and rx_datain). These clocks and
their descriptions are listed in Table 1. The read sides of the TX FIFOs are clocked by the generated tx_clk
signals, and the write sides of the RX FIFOs are clocked by the generated rx_clk signals.

Figure 4 shows the clock domains in case no FIFOs are instantiated (g_fifos = FALSE), and the streaming
interfaces access (TX) or emerge from (RX) the generated transceiver clock domains directly.

tt:_c?konbonded JJALTGX
\,al_r_ec_cl'n > (g_nof_gx-1..0)
fi FN_BN/
tx_fifo BN BI
(g_nof_gx-1..0) -
ST DP TX interfaces(g_nof_fx-1..0)
—tx_dataout(g_nof_gx-1..0)-#
dp_clk———
tr_nonbonded: reg -a—tx_clk(g_nof_gx-1..0—
—MM_clk— — -
-a—rx_clk(g_nof_gx-1..0y——
dp_clk——————»| rx_fifo
(g—nOf—gX-l' .0) («—x_datain(g_nof_gx-1..0)—
ST DP RX interfaces(g_nof_fx-1..0)
Figure 3: clock domains with FIFOs
‘tt:_c?konbonded JJALTGX
al_rec_clk » (g_nof_gx-1..0)
FN_BN/
BN_BI

ST TX interfaces(g_nof_fx-1..0)

—tx_dataout(g_nof_gx-1..0)-m

tr nonbonded -a—tx_clk(g_nof_gx-1..0)——

=

e
—MM_clk—»! 9

-a—rx_clk(g_nof_gx-1..0y——

r--rx_datain(g_nof_gx-1..0)—

ST RX interfaces(g_nof_fx-1..0)

Figure 4: clock domains without FIFOs

Doc.nr.: ASTRON-RP-449
Rev.: 0.5

Date: 24-09-2012

Class.: Public

UniBoard

10/22

ASTRON

Name Frequency (MHz) Description
tr_clk 156.25 Used to generate transmitter clock, also provides receiver
reference clock.
tx_clk 156.25 (6250Mbps) Transmitter clock, one for each instantiated transceiver, derived
125 (5000Mbps) from tr_clk. Used to clock in parallel transmitter data.
78,125 (3125Mbps)
62,5 (2500Mbps)
rx_clk 156.25 (6250Mbps) Receiver clock, one for each instantiated transceiver, derived
125 (5000Mbps) from the clock that is recovered from the received serial stream.
78,125 (3125Mbps) Used to clock out parallel receiver data.
62,5 (2500Mbps)
mm_clk user MM clock for the memory-mapped bus shared with e.g. a NIOS
Il processor. Default = 50MHz.
dp_clk user Clock for the streaming interfaces on user side. Default =
200MHz.
cal_reconf_clk 37,5-50 Used to clock the ALTGX calibration block and the

ALTGX_RECONFIG transceiver reconfiguration block. The
frequency must lie between 37.5 and 50MHz [3].

Table 5: tr_nonbonded clock signals

4.2 Parameters

Available parameters when instantiating the tr_nonbonded module are listed in Table 2.

Generic Type Description

g_nof_gx NATURAL The number of instantiated transceivers. Limited to 32 as result of
control register width, also limited by the FPGA device used. Defaults to
12, the maximum number of full-speed transceivers on one side of a
UniBoard FPGA.

g_mbps NATURAL Transceiver data rate in Mbps. Supported: 2500, 3125, 5000, 6250

g_tx BOOLEAN Transmitters are instantiated when TRUE. The number of instances
equals g_nof gx.

g_rx BOOLEAN Receivers are instantiated when TRUE. The number of instances
equals g_nof gx.

g_fifos BOOLEAN Instantiate FIFOs between user clock domain (DP clock domain) and
TX/RX clock domains.

Table 6: tr_nonbonded parameters

4.3 Interface signals

The interface signals of the tr_nonbonded module are shown in Figure 5. Table 3 lists the general
specifications of these interfaces, while the next paragraphs provide more detailed information. The status
and control signals of the tr_nonbonded module can be accessed via a memory mapped interface, using
tr_nonbonded_reg, or can be used without tr_nonbonded_reg. The functions of the status and control signals
between tr_nonbonded_reg and the tr_nonbonded module are listed in Table 8.

11/22

Doc.nr.: ASTRON-RP-449
. Rev.: 0.5
U ni B O ard Date: 24-09-2012
Class.: Public

ASTRON

tr_nonbonded

‘ dp_tx_sosi_arr(g_nof_gx-1..0)

< dp_tx_siso_arr(g_nof gx-1..0)

FN_BN/
BN_BI

tr_nonbonded_reg
- - [-—tx_state(g_nof_gx*2-1..0)——

r-—rx_state(g_nof_gx*2-1..0——

tx_dataout(g_nof_gx-1..0)—»

mm mosi—#|
~4——mm_miso

—tx_align_en(g_nof_gx-1..0)—# <—x_datain(g_nof_gx-1..0)

——rx_align_en(g_nof_gx-1..0)—m|

dp_rx_sosi_arr(g_nof_gx-1..0)

dp_rx_siso_arr(g_nof gx-1..0)

Figure 5: interface signals (with FIFOs)

Interface

Type

Description

tx_sosi_arr

t dp_sosi_arr

Array (g_nof_gx-1..0) of streaming TX data ports, source to sink
(tr_nonbonded module).

When no FIFOs are used, these streaming interfaces connect
directly to the transmitters. When FIFOs are used, this array
remains unconnected.

tx_siso_arr

t dp_siso_arr

Array (g_nof_gx-1..0) of flow control signals from tr_nonbonded
TX ports, sink to source.

When no FIFOs are used, these streaming interfaces connect
directly to the transmitters. When FIFOs are used, this array
remains unconnected.

rx_sosi_arr

t dp_sosi_arr

Array (g_nof_gx-1..0) streaming RX data ports, source
(tr_nonbonded module) to sink.

When no FIFOs are used, these interfaces connect directly to
the receivers. When FIFOs are used, this array is still available
to allow the user to view the RX data as it is before it enters the
FIFO.

rx_siso_arr

t dp_siso_arr

Array (g_nof_gx-1..0) flow control signals to tr_nonbonded RX
ports, sink to source.

When no FIFOs are used, these interfaces connect directly to
the receivers. When FIFOs are used, this array remains
unconnected.

dp_tx_sosi_arr

t dp_sosi_arr

Array (g_nof_gx-1..0) of streaming TX data ports, source to sink
(tr_nonbonded module).

These streaming interfaces connect to the write sides of the TX
FIFOs.

dp_tx_siso_arr

t dp_siso_arr

Array (g_nof_gx-1..0) of flow control signals from tr_nonbonded
TX ports, sink to source.

These interfaces provide flow control from the write sides of the
TX FIFOs.

dp_rx_sosi_arr

t dp_sosi_arr

Array (g_nof_gx-1..0) streaming RX data ports, source
(tr_nonbonded module) to sink.

These streaming interfaces connect to the read sides of the RX
FIFOs.

dp_rx_siso_arr

t dp_siso_arr

Array (g_nof_gx-1..0) flow control signals to tr_nonbonded RX

12/22

Doc.nr.: ASTRON-RP-449
Rev.: 0.5

Date: 24-09-2012

Class.: Public

UniBoard

ASTRON

These interfaces provide flow control to the read sides of the
RX FIFOs.

tx_dataout STD_LOGIC_VECTOR | Array of transmitter serialized data outputs.
(g_nof gx-1..0)
rx_datain STD_LOGIC_VECTOR | Array of receiver serialized data inputs.

(g_nof gx-1..0)

Table 7: interfac

e signals

Interface

Type

Description

tx_state

STD_LOGIC_VECTOR
(g_nof_gx*2-1..0)

Indicates the state of each transmitter using 2 bits per
transmitter, e.g. signals [1..0] = state of transmitter O.

TX state; normal FSM sequence:

00: Init

01: Sending alignment pattern

11: Allowing user data; normal state when TX is
operating correctly.

TX state; manually overridden

10: Manually forcing alignment pattern;
tx_align_en="1". Once user sets tx_align_en back
to ‘0, tx_state will return to normal ‘11,

rx_state

STD_LOGIC_VECTOR
(g_nof_gx*2-1..0)

Indicates the state of each receiver using 2 bits per receiver,
e.g. signals [1..0] = receiver 0.

RX state; normal FSM sequence:

00: Init

01: Byte aligning

10: Word alignning

11: Aligned; normal state when RX is
operating correctly. When the FSM is in this state,
the user can force the FSM to restart the
alignment procedure by writing to the rx_align_en
register.

tx_align_en

STD_LOGIC_VECTOR
(g_nof_gx-1..0)

‘1’ overrides any user data and puts an alignment pattern on the
transmitter(g_nof_gx-1..0) parallel TX input.

rx_align_en

STD_LOGIC_VECTOR
(g_nof_gx-1..0)

A rising edge enables alignment for a receiver(g_nof_gx-1..0).
Full alignment to a received alignment pattern requires this
signal(for each receiver) to be asserted twice:

e The first time performs word alignment

e The second time performs byte ordering

Table 8: tr_nonbonded status and control signals

13/22

Doc.nr.: ASTRON-RP-449
. Rev.: 0.5
U ni B O ard Date: 24-09-2012
Class.: Public

ASTRON

5 Implementation

5.1 Architecture

Figure 6 shows the internal architecture of the tr_nonbonded module. Its main components are the used IP
block (one to twelve ALTGX instances), the required reset circuitry (phy_tx_rst and phy_rx_rst), the FIFOs
and logic to control alignment and validation of data. User data is fed into the TX FIFOs via an array of
streaming interfaces, and is clocked out of the RX FIFO via an identical array of streaming interfaces.

tr_nonbonded

phy_gx
Ik ALTGX
I_rec_clk »|(9_nof_gx-1..0)
phy_tx_align
- (_state(g_nof_gx*2-1..0) (9_nof_gx- {——x_clk(g_nof_gx-1..0)
_align_en(g_nof_gx-1..0) 1.0 F-tx_align_en_out

——tx_sosi_arr(g_nof_gx-1..0).valid

¢_invalid_pattern

—tx_sosi_arr(g_nof_gx-1..0).data- tx_datain(g_nof_gx-1..0)—m|

tx_fifo
(g_nof_gx-1..0)

c_alignment_pattern

dp_tx_sosi_ar(g_nof_gx-1..0) x_sosi_arr(g_nof_gx-1.0)

—tx_dataout(g_nof_gx-1..0)-
—others=>'1"

—others=>"0: tx_ctrlenable(g_nof_gx-1..0)#

others=>'1"

<« t_rst(g_nof_gx-1..0) phy_tx_rst trc_tx_digital_rst———p»
tre_tx_pll_pc >

ke l¢——tx_pll_locked(g_nof_gx-1..0——

—tr clk—m phyfrxert tre_rx_digital _rst——————m|

——tr_rst-= trc_rx_analog_rst———m|

. x_rst(g_nof_gx-1.0) |«—nx_freq_locked(g_nof_gx-1..0——|

rx_fifo
(g_nof_gx-1..0)

{~4—rx_datain(g_nof

«——tx_clk(g_nof_gx-1..0)————— Lgx-1.0—

dp_rx_sosi_arr(g_n

of_gx-1..0)

rx_sosi_arr(g_nof_gx-1..0)

~a—rx_sosi_arr(g_nof_gx-1..0).data——

i_rx_rst(g_nof_gx-1..0)
.4 rx_ctrldetect(g_nof_gx-1..0—
~a—rx_sosi_arr(g_nof_gx-1..0).valid- 0

phy_rx_align
- x_state(g_nof_gx*2-1..0) (9_nof_gx- {—x_clk(g_nof_gx-1..0)
(align_en(g_nof_gx-1..0) 1.0)

Figure 6: tr_nonbonded architecture

5.2 ALTGX Megafunction

The ALTGX Megafunction is instantiated g_nof_gx times. Quartus will map the transceiver instances onto
the 3 available transceiver blocks (so up to four transceivers per block) on one side of the FPGA. The side
(left = FN_BN or right = BN_BI interface) depends on which pins the user assigned the tr_clk and the serial
I/0O pins of tr_nonbonded.

Doc.nr.: ASTRON-RP-449
Rev.: 0.5

Date: 24-09-2012

Class.: Public

UniBoard

14/ 22

ASTRON

5.2.1 Alignment of received data

Upon serialization of parallel data, the word boundary is lost. To restore this word boundary, an alignment
block is used on the receiver side. Besides that, depending on when the system comes out of reset, the byte
order may not match the original byte order. This problem is addressed by the byte ordering block, available
as part of the Altera ALTGX IP block. This paragraph describes the alignment procedure and these two
necessary blocks.

5.2.1.1 Word alignment

When a 32-bit width is used for the fabric-transceiver interface, as illustrated in Figure 7, the 32-bit data is
byte serialized into half the width at twice the frequency. The resulting 16 bits are fed into the 8b/10b
encoder that encodes the MSB and LSB into 10-bits each and outputs these 20 bits to the serializer. On the
receiver side, the word aligner is located before the 8b/10b decoder and thus looks for word alignment
patterns that are 8b/10b encoded. This word alignment pattern, 10 (single width) or 20 (double width) bits
wide, is entered as a parameter in the corresponding ALTGX Megafunction field (see Figure 8).

BB/106 Encoder

datain[15:8] 10 N
MSB Encoding La
32 16 M-H]ﬁz_m
Serializer —
B Byte Seriglizer [<e I
datain[7:0] 10
LSB Encoding +-

Low-Spead
Parallel Clock

High-Spe=d Serial Clack

Figure 7: Transmitter data path within ALTGX

Word Aligner
#: Use manual word alignment mode
When should the word aligner realign?
> Realign continuously while 'rx_enapatternalign' is high
® Realign at the rising edge of 'rx_enapatternalign'

Use manual bitslipping mode

{3 Use the automatic synchronization state machine mode

Mumber of continuous valid code groups received to reduce -
the error count by 1
Mumber of erroneous code groups{error count) received to lose sync
Mumber of valid code groups received to achieve sync

What is the word alignment pattern length? 20 ~

What is the word alignment pattern? 0101111100001 0111100 SFOBC

Fiip word glignment pattern bits

=
=1
<

Enable runHength violation checking with a run length of

Enable word aligner output reverse bit ordering

Create 'rx_syncstatus' output port for pattern detector and word aligner
 Create 'rx_patterndetect' port to indicate pattern detected

Create 'mx_invpolarity' to enable word aligner polarity inversion

Create mi_revbyteorderwa' to enable receiver symbol swap

Create 'm_bitslipboundaryselectout’ port to indicate the number of bits slipped
in the word aligner

Figure 8: Word alignment

Doc.nr.: ASTRON-RP-449
Rev.: 0.5

Date: 24-09-2012

Class.: Public

UniBoard

15/22

ASTRON

The 20-bit default alignment pattern for the tr_nonbonded module is:

0011110100 0011111010 = 8b/10b encoded, LS Bits right
K28.0 K.28.5 = Comma symbol followed by control word
0xBC 0x1C = 8b/10b decoded

This corresponds to 0xBC1C after 8b/10b decoding at the receiver end and before 8b/10b encoding at the
transmitter end. The comma symbol (K.28.5 or OxBC) differs from the second byte so their places cannot be
swapped during alignment. The second byte (0x1C) is also used in the byte ordering block described in the
next paragraph.

The alignment pattern is input in the Megafunction in reverse, the way it is sent after serialization:
0101111100 0010111100 (0Ox5F0BC) = 8b/10b encoded, LS Bits left (reversed)

5.2.1.2 Byte ordering

As described in the previous paragraph, the 0x1C byte is used for byte ordering. The byte ordering block
(available as option in the ALTGX Megafunction, see Figure 9) uses the synchronization status output of the
word aligner to start the byte ordering — this is necessary because the byte deserializer at the receiver could
output the bytes in the wrong order. When it finds byte ordering pattern 0x1C at the LSB position, it
considers the data to be aligned. Otherwise, it inserts a padding pattern (set to 0x00) to effectively shift the
data onto the LSB position.

Byte Ordering Block

What do you want the byte ordering to be based on?
#) The sync status signal from the word aligner

The enabyteord signal from the PLD

Use a twao word byte ordering pattern

Whatis the byte ordering pattern? | 0000000000 | 000011100
What is the byte ordering pad pattern? 00ooon0ao

Figure 9: Byte ordering options

Doc.nr.: ASTRON-RP-449
Rev.: 0.5

Date: 24-09-2012

Class.: Public

UniBoard

16/22

ASTRON

6 Reference design

A reference design, unb_tr_nonbonded, instantiates mms_tr_nonbonded along with yet another
mms_diagnostics module (besides the mms_diagnostics module inside mms_tr_nonbonded). This second
mms_diagnostics module emulates an external user data stream, whereas the internal mms_diagnostics is
able to override this user data stream with a test data stream that can be verified independently from the
user stream.

unb_tr_nonbonded

ctrl_unb_common

node_unb_tr_nonbonded

mms_diagnostics mms_tr_nonbonded

ALTGX IP
[0..11]

Streaming TX interfaces [0..11]

mms_diagnostics

<L

Test data stream [0..11]

————TX_DATAOUT[0..11}——m
| i
~4——RX_DATAIN[0..11}

Test data stream [0..11]

< Streaming RY interfaces [0..11]

T

sopc_unb_tr_nonbonded

Figure 10 - design unb_tr_nonbonded

The second instance of mms_diagnostics operates in exactly the same way as the internal instance, with the
exception that the internal one, when enabled, overrides the external diagnostics stream.

The NIOS Il processor in the SOPC can run a dedicated C application, see Chapter 9, or unb_osy to allow
Python programs to target the design.

There are three revisions of this design, which are discussed in Chapter 8.

Doc.nr.: ASTRON-RP-449
. Rev.: 0.5
U ni B O ard Date: 24-09-2012

Class.: Public
17122

ASTRON

7 Verification

Verification of the tr_nonbonded module is done using the diagnostics module to generate and verify data.
This basic scheme is used in three levels:
e tb _tr nonbonded
0 uses VHDL stimuli
e tb _node_unb_tr_nonbonded
0 uses VHDL functions to access tr_nonbonded module via dedicated MM bus
0 uses VHDL functions to access diagnostics module via dedicated MM bus
e tb_unb_tr nonbonded
0 conducts the same MM accesses through one shared MM bus using a C application
(main.c) running on a NIOS Il processor

In addition, two instances of tb_node_unb_tr_nonbonded are verified in ‘multi test bench’-test bench:
e tb tbh node_unb_tr nonbonded
0 uses two instances of tb_node_unb_tr_nonbonded

Doc.nr.: ASTRON-RP-449
Rev.: 0.5

Date: 24-09-2012

Class.: Public

UniBoard

18/22

ASTRON

8 Validation

The unb_tr_nonbonded design instantiates one mms_tr_nonbonded instance, of which the transceivers can
be connected to the UniBoard’s FN_BN interface or BN_BI interface. As these interfaces are permanently
connected to the FPGA'’s left transceiver blocks in case of the FN_BN interface, and to the right transceiver
blocks in case of the BN_BI interface, two separate Quartus revisions are necessary for each interface. This
is caused by the fact that Quartus requires a design containing all transceiver pins in the QSF (for both the
FN_BN and BN_BI) to use all of these pins. Therefore, a unb_* revision can run on any node and connects
the tr_nonbonded module to the FPGA's transceiver blocks that use the FN_BN interface, and the bn_*
revision can run on the back nodes only because it instantiates a tr_nonbonded module on the BN_BI side.
The next paragraphs list the properties of each existing Quartus project revision.

8.1 Design revisions
8.1.1 Front node and/or back node revisions

8.1.1.1 Unb_tr_nonbonded

FN_BN interface

Tr clk =SB_CLK

Transmitters and receivers

QSF sets g_mbps to g_mbps_fn_bi (= 6250Mbps by default)

8.1.1.2 Unb_tx_nonbonded

FN_BN interface

Tr_clk = SB_CLK

Transmitters only

QSF sets g_mbps to g_mbps_fn_bi (= 6250Mbps by default)
QSF sets g_rx to FALSE

8.1.1.3 Unb_rx_nonbonded

FN_BN interface

Tr_clk =SB_CLK

Receivers only

QSF sets g_mbps to g_mbps_fn_bi (= 6250Mbps by default)
QSF sets g_tx to FALSE

8.1.2 Back node only revisions

8.1.2.1 Bn_tr_nonbonded

BN_BI interface

Tr_clk = SA_CLK

Transmitters and receivers

QSF sets g_mbps to g_mbps_bn_bi (= 5000Mbps by default)

8.1.2.2 Bn_tx_nonbonded

BN_BI interface

Tr_clk = SA_CLK

Transmitters only

QSF sets g_mbps to g_mbps_bn_bi (= 5000Mbps by default)
QSF sets g_rx to FALSE

Doc.nr.: ASTRON-RP-449
Rev.: 0.5

Date: 24-09-2012

Class.: Public

UniBoard

19/22

ASTRON

8.1.2.3 Bn_rx_nonbonded

BN_BI interface

Tr_clk = SA_CLK

Receivers only

QSF sets g_mbps to g_mbps_bn_bi (= 5000Mbps by default)
QSF sets g_tx to FALSE

Python programs tc_tr_nonbonded.py, tc_tr_nonbonded_dgn.py and a utility script can be used to target
these designs. In addition, the dedicated C application main.c can be used. The results of the first tests with
this C application are discussed in paragraph 8.2.

8.2 Dedicated C application

This paragraph describes the test results that were obtained using the dedicated C application.

8.2.1 JTAG output

The output printed by unb_tr_nonbonded closely reflects the actions performed by the NIOS (IOWR and
IORD). As an example, the following is the JTAG output of back node 0 that receives data from front node 0
only.

UNB_TR_NONBONDED: 28 Oct 2011

Waiting for TX to be ready.
Waiting for RX to be ready.
TX: sending alignment pattern.
RX: Disabling alignment.

RX: Enabling alignment.

RX: Disabling alignment.

RX: Enabling alignment.

TX: Disabling alignment.
Enabling diagnostics sink to flush any RX data.
Resetting diagnostics sink.
Enabling diagnostics source.
Diag valid : fff

Diag result: 1ff

Diag valid : fff

Diag result: 1ff

8.2.2 Interpreting the diagnostics result

The printed diag valid and diag_result values will vary between 0 and 12 (decimal). The values are printed in
hexadecimal format. For example, a diag valid and result value indicating all 12 receivers are interpreting the
received data as valid (the Ox is not printed), followed by the binary representation, one bit for each receiver:

Diag valid: OxFFF =111111111111 (12 valid input streams)
Diag result 0x0 = 000000000000 (12 OK results)

On the FB_BN interface, each front node is connected to each back node with 3 transceiver links. This
means the result should be interpreted as follows:

Diag valid: OXFFF =111.111.111.111
Diag result 0x0 = 000.000.000.000

The least significant bit maps to transceiver 0. One can distinguish four transceiver bundles this way, one
bundle of 3 coming from each connected node. The connection scheme is summarized in Table 9, which
shows which front node connects to which back node, and via which interface.

Doc.nr.: ASTRON-RP-449
Rev.: 0.5

Date: 24-09-2012

Class.: Public

UniBoard

20/22

ASTRON

Front node Transceivers | Front node Back node | Transceivers | Back node
interface interface

0 0,1,2 FN_BN_O FN_BN_3 9,10,11 0
3,45 FN_BN_1 FN_BN_1 3,45 3
6,7,8 FN_BN_2 FN_BN_2 6,7,8 2
9,10,11 FN_BN_3 FN_BN_3 9,10,11 1

1 0,1,2 FN_BN_O FN_BN_2 6,7,8 0
3,45 FN_BN_1 FN_BN_2 6,7,8 1
6,7,8 FN_BN_2 FN_BN_3 9,10,11 3
9,10,11 FN_BN_3 FN_BN_3 9,10,11 2

2 0,1,2 FN_BN_O FN_BN_1 3,45 0
34,5 FN_BN_1 FN_BN_1 34,5 1
6,7,8 FN_BN_2 FN_BN_1 3,45 2
9,10,11 FN_BN_3 FN_BN_2 6,7,8 3

3 0,1,2 FN_BN_O FN_BN_O 01,2 1
3,45 FN_BN_1 FN_BN_O 01,2 0
6,7,8 FN_BN_2 FN_BN_O 01,2 2
9,10,11 FN_BN_3 FN_BN_O 01,2 3

Table 9: Transceiver connections FN_BN

8.2.3 Performed tests

The tr_nonbonded module was tested on the UniBoard using design unb_tr_nonbonded and revision
bn_tr_nonbonded. The tests ran error-free for 16 hours (total test duration per test). The maximum data rate
tested on the mesh was 6250Mbps. This data rate was also tested on the BN_BI interface using a prototype
PCB to loop back a back node’s transmitters to its receivers, for several hours. During this time, no errors
occurred. The same test was repeated using CX4 cables instead of PCB traces, connecting back nodes bn0
to bnl and bn2 to bn3. Errors occurred after which another test was performed at a lower data rate of
5000Mbps. This test ran error-free for 16 hours. Finally, the last test was repeated, connecting the back
nodes of one UniBoard to the back nodes of another UniBoard. This test also ran error-free for 16 hours.

Doc.nr.: ASTRON-RP-449
Rev.: 0.5

Date: 24-09-2012

Class.: Public

UniBoard

21/22

ASTRON

9 Appendix — list of files

9.1 tr_nonbonded

The tr_nonbonded directory contains the source code for the tr_nonbonded module and the test benches. It
is located at:

$UNB/Firmware/modules/tr_nonbonded/src/vhdl
The pre-generated ALTGX and ALTGX_RECONFIG files are available from:

$UNB/Firmware/modules/tr_nonbonded/build/synth/quartus

9.2 unb_tr_nonbonded

The files for synthesis and simulation of the unb_tr_nonbonded design are in the following directory:
$UNB/Firmware/designs/unb_tr_nonbonded
In addition, a C main program to run on the design is located at:

$UNB/Firmware/software/apps/unb_tr_nonbonded

9.3 Python programs

The test cases that target design unb_tr_nonbonded or one of its revisions:

$UNB/Software/python/peripherals/tc_tr_nonbonded.py
$UNB/Software/python/peripherals/tc_tr_nonbonded_dgn.py

The main peripherals used by these scripts are found in:

$UNB/Software/python/peripherals/pi_tr_nonbonded.py
$UNB/Software/python/peripherals/pi_diagnostics.py

A utility script is located at:
$UNB/Software/python/peripherals/util_pi_tr_nonbonded.py

More information on targeting simulations using Python can be obtained by reading [14].

Doc.nr.: ASTRON-RP-449
Rev.: 0.5

Date: 24-09-2012

Class.: Public

UniBoard

22122

