diff --git a/CEP/DP3/DPPP_DDECal/src/MultiDirSolver.cc b/CEP/DP3/DPPP_DDECal/src/MultiDirSolver.cc index 478a68d67670519d23703aead3c97fd7afde2a58..dea130880fdc0cd5b7a9a4ddfcfa98452d2ada9f 100644 --- a/CEP/DP3/DPPP_DDECal/src/MultiDirSolver.cc +++ b/CEP/DP3/DPPP_DDECal/src/MultiDirSolver.cc @@ -276,10 +276,13 @@ MultiDirSolver::SolveResult MultiDirSolver::processFullMatrix(std::vector<Comple std::vector<std::vector<Complex *> >& modelData, std::vector<std::vector<DComplex> >& solutions, double time) const { - // This algorithm is basically the same, but visibility values are - // extended to 2x2 matrices and concatenated in the matrices - // equations as block matrices. - + // This algorithm is basically the same as the scalar algorithm, + // but visibility values are extended to 2x2 matrices and concatenated + // in the matrix equations as block matrices. One difference is that + // order of operations are important because of the non-commutativity of + // matrix multiplication, as well as that A^H B^H = [BA]^H. + // + // The approach: // First we pre-apply the left-hand solutions to the model to make JM. Each // 2x2 coherence matrix Ji is matrix-multied by the lh solutions, for all // directions, and visibilities (times x channels). @@ -289,19 +292,17 @@ MultiDirSolver::SolveResult MultiDirSolver::processFullMatrix(std::vector<Comple // JM = JM0_d1 JM1_d1 // ... // such that JM is a (2D) rows x (2N) col matrix, N=nvis, D=ndir. - // The solved rh 2D x 2 solution matrix is similarly formed with the rh solution + // The solved 2D x 2 solution matrix is similarly formed with the solution // values: - // J0 - // J = J1 - // ... + // ( J0 ) + // J = ( J1 ) + // ( .. ) // And the 2N x 2 visibility matrix as well: - // V0 - // V = V1 - // ... + // ( V0 ) + // V = ( V1 ) + // ( .. ) // And we solve the equation: - // 'JM' J* = V - // Rewritten: - // 'JM'* J = V* + // 'JM' J^H = V // With dimensions: // [ 2N x 2D ] [ 2D x 2 ] = [ 2N x 2 ] @@ -323,8 +324,8 @@ MultiDirSolver::SolveResult MultiDirSolver::processFullMatrix(std::vector<Comple result._results.resize(_constraints.size()); + // Dimensions for each channelblock: // Model matrix ant x [2N x 2D] and visibility matrix ant x [2N x 2], - // for each channelblock // The following loop allocates all structures std::vector<std::vector<cx_mat> > gTimesCs(_nChannelBlocks); std::vector<std::vector<cx_mat> > vs(_nChannelBlocks); @@ -422,6 +423,17 @@ void MultiDirSolver::performFullMatrixIteration(size_t channelBlockIndex, size_t antenna2 = _ant2[baseline]; if(antenna1 != antenna2) { + // This equation is solved: + // J_1 M J_2^H = V + // for visibilities of the 'normal' correlation ant1 x ant2^H. + // Since in this equation antenna2 is solved, the solve matrices are + // called gTimesC2 and v2. The index into these matrices is depending + // on antenna1, hence the index is called dataIndex1. + // + // To use visibilities of correlation ant2 x ant1^H to solve ant1, an + // extra Herm transpose on M and V is required. The equation is: + // J_2 M^H J_1^H = V^H, + // and the relevant matrices/index are called gTimesC1, v1 and dataIndex2. cx_mat &gTimesC1 = gTimesCs[antenna1], &v1 = vs[antenna1], @@ -441,10 +453,10 @@ void MultiDirSolver::performFullMatrixIteration(size_t channelBlockIndex, MC2x2 modelMat(modelPtrs[d]), gTimesC1Mat, gTimesC2Mat; - size_t solIndex1 = antenna1*_nDirections + d; - size_t solIndex2 = antenna2*_nDirections + d; - Matrix2x2::HermATimesHermB(gTimesC2Mat.Data(), &solutions[solIndex1*4], modelMat.Data()); - Matrix2x2::HermATimesB(gTimesC1Mat.Data(), &solutions[solIndex2*4], modelMat.Data()); + size_t solIndex1 = (antenna1*_nDirections + d) * 4; + size_t solIndex2 = (antenna2*_nDirections + d) * 4; + Matrix2x2::ATimesB(gTimesC2Mat.Data(), &solutions[solIndex1], modelMat.Data()); + Matrix2x2::ATimesHermB(gTimesC1Mat.Data(), &solutions[solIndex2], modelMat.Data()); for(size_t p=0; p!=4; ++p) { gTimesC2(dataIndex1+(p/2), d*2+p%2) = gTimesC2Mat[p]; @@ -455,9 +467,9 @@ void MultiDirSolver::performFullMatrixIteration(size_t channelBlockIndex, } for(size_t p=0; p!=4; ++p) { - v1(dataIndex2+(p/2), p%2) = *dataPtr; - v2(dataIndex1+(p%2), p/2) = std::conj(*dataPtr); // note that this also performs the Herm transpose - ++dataPtr; // Goto the next element of 2x2 matrix. + v1(dataIndex2+(p%2), p/2) = std::conj(*dataPtr); + v2(dataIndex1+(p/2), p%2) = *dataPtr; // note that this also performs the Herm transpose + ++dataPtr; // Goto the next element of the 2x2 matrix. } } } @@ -471,20 +483,22 @@ void MultiDirSolver::performFullMatrixIteration(size_t channelBlockIndex, { cx_mat& gTimesC = gTimesCs[ant]; cx_mat& v = vs[ant]; - // solve [g* C] x = v + // solve x^H in [g C] x^H = v cx_mat x; - bool success = solve(x, gTimesC, v); + const bool success = solve(x, gTimesC, v); if(success) { for(size_t d=0; d!=_nDirections; ++d) { - for(size_t p=0; p!=4; ++p) - nextSolutions[(ant*_nDirections + d)*4 + p] = x(d*2+p/2, p%2); + for(size_t p=0; p!=4; ++p) { + // The conj transpose is also performed at this point (note swap of % and /) + nextSolutions[(ant*_nDirections + d)*4 + p] = std::conj(x(d*2+p%2, p/2)); + } } } else { - for(size_t d=0; d!=_nDirections*4; ++d) - nextSolutions[ant*_nDirections + d] = std::numeric_limits<double>::quiet_NaN(); + for(size_t i=0; i!=_nDirections*4; ++i) + nextSolutions[ant*_nDirections + i] = std::numeric_limits<double>::quiet_NaN(); } } } diff --git a/CEP/DP3/DPPP_DDECal/src/TECConstraint.cc b/CEP/DP3/DPPP_DDECal/src/TECConstraint.cc index 247c03b223a6c3d60f0f1ba18f927fb06b287516..74382e4435790f119bf221a58c10cb483c5bebfd 100644 --- a/CEP/DP3/DPPP_DDECal/src/TECConstraint.cc +++ b/CEP/DP3/DPPP_DDECal/src/TECConstraint.cc @@ -1,6 +1,6 @@ #ifdef AOPROJECT #include "TECConstraint.h" -#include <omp.h> // for tec constraints +#include "omptools.h" #else #include <DPPP_DDECal/TECConstraint.h> #include <Common/OpenMP.h>