diff --git a/SAS/TMSS/backend/src/tmss/tmssapp/populate.py b/SAS/TMSS/backend/src/tmss/tmssapp/populate.py index b1a4694c8df1b913fb785d3c81c8177d2e471254..ecc12d4d65dc6c660b50a9f682b8572ab6ac1c56 100644 --- a/SAS/TMSS/backend/src/tmss/tmssapp/populate.py +++ b/SAS/TMSS/backend/src/tmss/tmssapp/populate.py @@ -240,46 +240,32 @@ def populate_connectors(): # until the number of connectors throw too large. By then, we could consider introducing # wild cards, like output_of=NULL meaning "any". - # preprocessing pipeline input - TaskConnectorType.objects.create(role=Role.objects.get(value=Role.Choices.INPUT.value), - datatype=Datatype.objects.get(value=Datatype.Choices.VISIBILITIES.value), - output_of=TaskTemplate.objects.get(name='calibrator observation'), - input_of=TaskTemplate.objects.get(name='preprocessing pipeline')) - - TaskConnectorType.objects.create(role=Role.objects.get(value=Role.Choices.CORRELATOR.value), - datatype=Datatype.objects.get(value=Datatype.Choices.VISIBILITIES.value), - output_of=TaskTemplate.objects.get(name='calibrator observation'), - input_of=TaskTemplate.objects.get(name='preprocessing pipeline')) - + # calibrator observation TaskConnectorType.objects.create(role=Role.objects.get(value=Role.Choices.CORRELATOR.value), datatype=Datatype.objects.get(value=Datatype.Choices.VISIBILITIES.value), - output_of=TaskTemplate.objects.get(name='target observation'), - input_of=TaskTemplate.objects.get(name='preprocessing pipeline')) + output_of=TaskTemplate.objects.get(name='calibrator observation')) - # ingest input + # target observation TaskConnectorType.objects.create(role=Role.objects.get(value=Role.Choices.CORRELATOR.value), datatype=Datatype.objects.get(value=Datatype.Choices.VISIBILITIES.value), - output_of=TaskTemplate.objects.get(name='target observation'), - input_of=TaskTemplate.objects.get(name='ingest')) + output_of=TaskTemplate.objects.get(name='target observation')) - TaskConnectorType.objects.create(role=Role.objects.get(value=Role.Choices.CORRELATOR.value), + # preprocessing pipeline + TaskConnectorType.objects.create(role=Role.objects.get(value=Role.Choices.INPUT.value), datatype=Datatype.objects.get(value=Datatype.Choices.VISIBILITIES.value), - output_of=TaskTemplate.objects.get(name='calibrator observation'), - input_of=TaskTemplate.objects.get(name='ingest')) + input_of=TaskTemplate.objects.get(name='preprocessing pipeline')) - TaskConnectorType.objects.create(role=Role.objects.get(value=Role.Choices.CORRELATOR.value), + TaskConnectorType.objects.create(role=Role.objects.get(value=Role.Choices.OUTPUT.value), datatype=Datatype.objects.get(value=Datatype.Choices.VISIBILITIES.value), - output_of=TaskTemplate.objects.get(name='target observation'), - input_of=TaskTemplate.objects.get(name='ingest')) + input_of=TaskTemplate.objects.get(name='preprocessing pipeline')) - TaskConnectorType.objects.create(role=Role.objects.get(value=Role.Choices.CORRELATOR.value), + # ingest + TaskConnectorType.objects.create(role=Role.objects.get(value=Role.Choices.INPUT.value), datatype=Datatype.objects.get(value=Datatype.Choices.VISIBILITIES.value), - output_of=TaskTemplate.objects.get(name='preprocessing pipeline'), input_of=TaskTemplate.objects.get(name='ingest')) - TaskConnectorType.objects.create(role=Role.objects.get(value=Role.Choices.BEAMFORMER.value), + TaskConnectorType.objects.create(role=Role.objects.get(value=Role.Choices.INPUT.value), datatype=Datatype.objects.get(value=Datatype.Choices.TIME_SERIES.value), - output_of=TaskTemplate.objects.get(name='beamforming observation'), input_of=TaskTemplate.objects.get(name='ingest'))