From 1104b6b1de37b8331526ebe0582bdb9b20c3d117 Mon Sep 17 00:00:00 2001 From: Mario Raciti <mario.raciti@inaf.it> Date: Mon, 7 Jun 2021 16:22:36 +0200 Subject: [PATCH] TMSS-610: Update data_ingested_per_site_and_type info --- .../src/tmss/tmssapp/adapters/reports.py | 44 ++++++++++--------- 1 file changed, 24 insertions(+), 20 deletions(-) diff --git a/SAS/TMSS/backend/src/tmss/tmssapp/adapters/reports.py b/SAS/TMSS/backend/src/tmss/tmssapp/adapters/reports.py index 21e1e0aa483..3f0b97b4b32 100644 --- a/SAS/TMSS/backend/src/tmss/tmssapp/adapters/reports.py +++ b/SAS/TMSS/backend/src/tmss/tmssapp/adapters/reports.py @@ -156,26 +156,30 @@ def _get_data_ingested_per_site_and_type(request: Request, cycle: models.Cycle) """ result = [] - # Get DataProducts related to the cycle with an ArchiveInfo - archive_info = models.DataproductArchiveInfo.objects.filter(dataproduct__producer__subtask__task_blueprints__draft__scheduling_unit_draft__scheduling_set__project__cycles=cycle.pk) - dataproducts = [ai.dataproduct for ai in archive_info] - # Filter DataProducts from Subtasks of type 'observation' - dp_from_observations = dataproducts.filter(producer__subtask__specifications_template__type='observation') - # Filter DataProducts from Subtasks of type 'pipeline' - dp_from_pipelines = dataproducts.filter(producer__subtask__specifications_template__type='pipeline') - - # TODO: Filter categories basing on DataType, TaskType, DataFormat. - # Filter DataProducts of type 'visibilities' and 'time series' from observations and pipelines - dp_visibilities = dp_from_observations.filter(datatype='visibilities') | dp_from_pipelines.filter(datatype='visibilities') - dp_time_series = dp_from_observations.filter(datatype='time series') | dp_from_pipelines.filter(datatype='time series') - - # TODO: Group dataproducts also per site. - # Iterate over categories - # categories = ('', '', '', '') - # for dt in datatypes: - # dataproducts_per_type = dataproducts.filter(datatype=dt.value) - # dataproducts_per_type_data = [serializers.DataproductSerializer(dp, context={'request': request}).data for dp in dataproducts_per_type] - # result.append({'type': dt.value, 'dataproducts': dataproducts_per_type_data}) + # TODO: Currently there is no way to fitler per LTA site. + # # Get DataProducts related to the cycle with an ArchiveInfo + # archive_info = models.DataproductArchiveInfo.objects.filter(dataproduct__producer__subtask__task_blueprints__draft__scheduling_unit_draft__scheduling_set__project__cycles=cycle.pk) + # dataproducts = [ai.dataproduct for ai in archive_info] + + # Get DataProducts related to the cycle + dataproducts = models.Dataproduct.objects.filter(producer__subtask__task_blueprints__draft__scheduling_unit_draft__scheduling_set__project__cycles=cycle.pk) + + # Combine and filter DataPrducts accordingly + dps_interferometric_obs = dataproducts.filter(producer__subtask__specifications_template__type='observation', dataformat='MeasurementSet', datatype='visibilities') + dps_interferometric_obs_data = [serializers.DataproductSerializer(dp, context={'request': request}).data for dp in dps_interferometric_obs] + result.append({'category': 'Interferometric Observation', 'dataproducts': dps_interferometric_obs_data}) + + dps_beamformed_obs = dataproducts.filter(producer__subtask__specifications_template__type='observation', dataformat='Beamformed', datatype='time series') + dps_beamformed_obs_data = [serializers.DataproductSerializer(dp, context={'request': request}).data for dp in dps_beamformed_obs] + result.append({'category': 'Beamformed Observation', 'dataproducts': dps_beamformed_obs_data}) + + dp_averaging_pip = dataproducts.filter(producer__subtask__specifications_template__type='pipeline', dataformat='MeasurementSet', datatype='visibilities') + dp_averaging_pip_data = [serializers.DataproductSerializer(dp, context={'request': request}).data for dp in dp_averaging_pip] + result.append({'category': 'Averaging Pipeline', 'dataproducts': dp_averaging_pip_data}) + + dp_pulsar_pip = dataproducts.filter(producer__subtask__specifications_template__type='pipeline', dataformat__in=['pulp summary', 'pulp analysis'], datatype__in=['visibilities', 'pulsar profile']) + dp_pulsar_pip_data = [serializers.DataproductSerializer(dp, context={'request': request}).data for dp in dp_pulsar_pip] + result.append({'category': 'Pulsar Pipeline', 'dataproducts': dp_pulsar_pip_data}) return result -- GitLab