The LOFAR Beam Former:
Implementation and Performance Analysis

Jan David Mol and John W. Romein

Stichting ASTRON (Netherlands Institute for Radio Astronomy)
Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands
{mol,romein}@astron.nl

Abstract. Traditional radio telescopes use large, steel dishes to observe radio
sources. The LOFAR radio telescope is different, and uses tens of thousands
of fixed, non-movable antennas instead, a novel design that promises ground-
breaking research in astronomy. The antennas observe omnidirectionally, and sky
sources are observed by signal-processing techniques that combine the data from
all antennas.

Another new feature of LOFAR is the elaborate use of software to do signal pro-
cessing in real time, where traditional telescopes use custom-built hardware. The
use of software leads to an instrument that is inherently more flexible. However,
the enormous data rate (198 Gb/s of input data) and processing requirements
compel the use of a supercomputer: we use an IBM Blue Gene/P.

This paper presents a collection of new processing pipelines, collectively called
the beam-forming pipelines, that greatly enhance the functionality of the tele-
scope. Where our first pipeline could only correlate data to create sky images, the
new pipelines allow the discovery of unknown pulsars, observations of known
pulsars, and (in the future), to observe cosmic rays and study transient events.
Unlike traditional telescopes, we can observe in hundreds of directions simulta-
neously. This is useful, for example, to search the sky for new pulsars. The use of
software allows us to quickly add new functionality and to adapt to new insights
that fully exploit the novel features and the power of our unique instrument. We
also describe our optimisations to use the Blue Gene/P at very high efficiencies,
maximising the effectiveness of the entire telescope. A thorough performance
study identifies the limits of our system.

1 Introduction

The LOFAR (LOw Frequency ARray) telescope is the first of a new generation of ra-
dio telescopes. Instead of using a set of large, expensive dishes, LOFAR uses many
thousands of simple antennas. Every antenna observes the full sky, and the telescope is
pointed through signal-processing techniques. LOFAR’s novel design allows the tele-
scope to perform wide-angle observations as well as to observe in multiple directions
simultaneously, neither of which are possible when using traditional dishes. In sev-
eral ways, LOFAR will be the largest telescope in the world, and will enable ground-
breaking research in several areas of astronomy and particle physics [1].

Another novelty is the elaborate use of software to process the telescope data in real
time. Previous generations of telescopes depended on custom-made hardware to com-
bine data, because of the high data rates and processing requirements. The availability

of sufficiently powerful supercomputers however, allow the use of software to combine
telescope data, creating a more flexible and reconfigurable instrument. Because LOFAR
is driven by new science, flexibility in the design is essential to explore the possibilities
and limits of our telescope.

For processing LOFAR data, we use an IBM BlueGene/P (BG/P) supercomputer.
The LOFAR antennas are grouped into stations, and each station sends its data (up to
198 Gb/s for all stations) to the BG/P. Inside the BG/P, the data are processed using both
real-time signal-processing routines as well as two all-to-all exchanges. The output data
streams are sufficiently reduced in size to be able to stream them out of the BG/P and
store them on disks in our storage cluster.

In this paper, we will present the LOFAR beam former: a collection of software
pipelines that allow the LOFAR telescope to be pointed at hundreds of sources simulta-
neously. A beam consists of a 1D stream of data representing the signal from a certain
area in the sky, and thus is different from a correlator, that creates 2D snapshot images
of the sky. Simplified, a beam former performs a weighted addition of the input signals,
while a correlator multiplies the input signals.

It is LOFAR’s unique design that allows us to point at many sources at once. Tra-
ditional telescopes use dishes that have a narrow field-of-view: they are only sensitive
to a small region around the source they are pointed at. LOFAR’s antennas are omni-
directional. Groups of antennas (stations) are sensitive to a wide field-of-view around
the source. These views, or station beams, are sent to the BG/P, that generates weighted
additions of the station input data, called tied-array beams. Each tied-array beam rep-
resents an offset pointing within the wide field-of-view of the stations.

The primary scientific use case driving the work presented in this paper is pulsar
research [2]. A pulsar is a rapidly rotating, highly magnetised neutron star, which emits
electromagnetic radiation from its poles. Similar to the behaviour of a lighthouse, the
radiation is visible to us only if one of the poles points towards the Earth, and subse-
quently appears to us as a very regular series of pulses, with a period as low as 1.4 ms.
Pulsars are weak radio sources, and their individual pulses often do not rise above the
background noise that fills our universe. Our beam former can track several pulsars at
LOFAR'’s full observational bandwidth. Alternatively, the beam former is capable of
efficiently performing sky surveys to discover new pulsars (or other radio sources) by
covering the sky with hundreds of tied-array beams at a reduced observational band-
width.

The main contributions of this paper are threefold. First, we demonstrate the power
of a software telescope; its flexibility allows us to add new functionality with modest
effort and we show how the use of supercomputer technology enables new science in
astronomy and particle physics. Second, we describe the first system which allows a
telescope to be pointed in hundreds of directions. Third, we elaborately analyse the
performance of our application and the effectiveness of our optimisations.

This paper is organised as follows. First, we will describe the key characteristics
of the IBM BlueGene/P supercomputer in Section 2. Then, we describe LOFAR and
beam forming in more detail in Section 3. Section 4 describes the implementation of
our pipelines, followed by the performance analysis in Section 5. We briefly discuss
related work in Section 6, and conclude in Section 7.

2 IBM BlueGene/P

We use an IBM BlueGene/P (BG/P) supercomputer for the real-time processing of sta-
tion data. We will describe the key features of the BG/P; more information can be found
elsewhere [8]. Furthermore, we will describe how our BG/P is connected to its input and
output systems.

2.1 System Description

Our system consists of 3 racks, with 12,480 processor cores that provide 42.4 TFLOPS
peak processing power. One chip contains four PowerPC 450 cores, running at a modest
850 MHz clock speed to reduce power consumption and to increase package density.
Each core has two floating-point units (FPUs) that provide support for operations on
complex numbers. The chips are organised in psets, each of which consists of 64 cores
for computation (compute cores) and one chip for communication (/0 node). Each
compute core runs a fast, simple, single-process kernel, and has access to 512 MiB
of memory. The I/O nodes consist of the same hardware as the compute nodes, but
additionally have a 10 Gb/s Ethernet interface connected. They run Linux, which allows
the I/O nodes to do full multitasking. One rack contains 64 psets, which is equal to 4096
compute cores and 64 I/O nodes.

The BG/P contains several networks. A fast 3-dimensional torus connects all com-
pute nodes and is used for point-to-point and all-to-all communications over 3.4 Gb/s
links. The torus uses DMA to offload the CPUs and allows asynchronous communica-
tion. The collective network is used for communication within a pset between an I/O
node and the compute nodes, using 6.8 Gb/s links. In both networks, data is routed
through compute nodes using a shortest path.

2.2 External I/0

We customised the I/O node software stack [9] and run a multi-threaded program on
each I/O node that is responsible for the handling of both the input and the output.
Unfortunately, the I/O nodes cannot saturate their 10 Gb/s Ethernet interfaces, because
the 850 MHz cores do not have enough computational power to handle the overhead
caused by IRQs, IP, and UDP/TCP. An I/O node can output at most 3.1 Gb/s, unless it
has to handle station input (3.1 Gb/s per station), in which case it can output at most
1.1 Gb/s. We implemented a low-overhead communication protocol called FCNP [6] to
efficiently transport data between the I/O nodes and the compute nodes. The compute
nodes perform the signal processing. The I/O nodes forward the results to our storage
cluster, which can sustain a throughput up to 80 Gb/s.

3 LOFAR and Beam Forming

The LOFAR antennas are grouped in stations. The stations are strategically placed, with
20 stations in the centre (the core) and 24 stations at increasing distances from the core,
spanning five nations (see Figure 1). A core station can act as two individual stations

h o & XA -
20 core stations + Enderl v N
16 remote stations . . ,

X

United Kingdom @@ -
<
T 7 thewetheriands +
" + | § BN TN

Germany /T\ /I\

France 5

Fig.3. Tied-array beams

Fig.2. The left antenna re- (hexagons) formed within two
Fig. 1. Locations of the stations. cejves the wave later. station beams (ellipse).

in some observational modes, resulting in a total of 64 stations. A station is able to
produce 248 frequency subbands of 195 kHz in the 10 — 250 MHz sensitivity range.
Each sample consists of two complex 16-bit integers, representing the amplitude and
phase of the X and Y polarisations of the antennas.

Even though the antennas are omnidirectional, they can be pointed due to the fact
that the speed of electromagnetic waves is finite. Signals emitted by a source reach
different antennas at different times (see Figure 2). A process called delay compensa-
tion delays the signals such that they align (are coherent) for the desired source. Beam
forming subsequently adds the aligned signals. The stations perform delay compensa-
tion and beam forming to combine the antenna signals into a station beam with a wide
field-of-view. The BG/P subsequently combines the signals from different stations to
form tied-array beams within the sensitive area of the station beams (see Figure 3). In
the BG/P, the samples from different stations are shifted with respect to each other to
compensate delay at a sample-level granularity. Sub-sample delay compensation is per-
formed by a complex multiplication per sample, which shifts the phase of each sample.
The weights used in the complex multiplication depend on the location of the stations,
the observational frequency of the sample, and the sky coordinates of the tied-array
beam. The beam former thus creates tied-array beams by adding the station signals
using different complex weights for each beam.

Our beam former supports several pipelines. The complex voltages pipeline stores
the tied-array beams as is (X and Y polarisation samples). The Stokes IQUV pipeline
transforms the complex voltages into Stokes parameters, which are a different repre-
sentation of the signal. Finally, the Stokes I pipeline stores just the signal strength for
each beam, and can be integrated in time to reduce the output data rate and to increase
the number of tied-array beams that can be formed. Finally, our software can produce
the Stokes parameters of an incoherent beam, which is an accumulation of unweighted
station signals. The incoherent beam is less sensitive than a coherent beam, but it main-
tains the wide field-of-view of the stations. The incoherent beam is typically formed in
parallel with other pipelines, and is used to detect the presence of pulsars, but does not
reveal their location within the station beams.

4 Beam Former Pipelines

In this section, we will describe in detail how the full signal-processing pipelines op-
erate, in and around the beam former. The use of a software pipeline allows us to re-
configure the components and design of our standard imaging pipeline, described else-
where [7]. Due to the flexibility of software, we can run several pipelines in parallel on
the same data, as long as resource limits are not exceeded. Figure 4 gives an overview
of our system. Our software is written in C++, with core routines ported to assembly to
obtain maximal performance.

from stationl A to TBB

circular buffer

best-effort queue trigger

sample delay

UHEP mode

MESED § BG/P storage
£ /0 node node
v i BG/P compute node
exchange 1 integrate E

,—)[inc. Stokes |
inc. Stokes IQUV
r—)[coh. Stokes |

A4 coh. Stokes IQUV
clock correction >
e ——
phase delay

v j
[bandm[superstation BF i){ tied-array BF]L—>{ FFT]

Fig. 4. The on-line pipelines of LOFAR. The imaging and UHEP pipelines are outside the scope
of this work.

[exchange 2]
A

correlate

2
|

FFT

PPF bank
~N—

integrate |

dedispersion

beam-forming modes

4.1 Input from Stations

Each station sends data to a different I/O node. The beam former, however, needs data
from all stations together to form tied-array beams. The station data thus have to be
rearranged inside the BG/P, to collect the data from different stations but also to split
it along different dimensions in order to distribute the workload. At the I/O nodes, the
station data are split into chunks of one subband and 0.25 seconds. The chunk size is
chosen such that the compute cores have enough memory to perform all of the necessary
processing. Due to the BG/P design, an I/O node sends chunks to its own compute cores
using the collective network. The compute cores then exchange these chunks over the
torus network using an all-to-all exchange, shown in Figure 5.

first exchange beam forming second exchange

—— ¢ e | —" — - - P
1 station, ‘,“\ 4‘ all stations, all beams, ":“ 4‘ 1 beam,
allsubbands iy 1 subband all polistokes, 4" 1 pol/stokes,
,'\" £ 1 subband ,"" \'“ all subbands
—— -} - — — - -
v it
kY Nt
A i
4 A
it wal
o S, o Oy
— .'.--;‘ — —) :--;‘ —

Fig. 5. The data flow and data ordening in our pipelines.

4.2 First All-to-all Exchange

The first all-to-all exchange allows the compute cores to distribute the chunks from a
single station, and to collect all the chunks of the same subband from all of the sta-
tions. The exchange is performed over the fast torus network, but with up to 198 Gb/s
of station data to be exchanged, special care still has to be taken to avoid network
bottlenecks. It is impossible to optimise for short network paths due to the physical dis-
tances between the different psets across a BG/P rack. Instead, we optimised the data
exchange by creating as many paths as possible between compute cores that have to
exchange data. Within each pset, we employ a virtual mapping such that the number of
possible routes between communicating cores in different psets is maximised.

The all-to-all exchange is asynchronous. Once a compute core receives a complete
chunk from a single subband, it performs a sequence of processing steps on it. The first
step is a conversion from 16-bit little-endian integers into 32-bit big-endian floats, to be
able to use the BlueGene’s powerful FPUs. Figure 4 shows which steps are performed
before the tied-array beam forming occurs. Note the Fast Fourier Transform (FFT) that
divides the 195 kHz subbands into (typically) 12 kHz channels. We use the efficient
Vienna version of FFTW [5]. The superstation beam former is a simplified version of
our beam former, used to combine multiple stations as if it were one, and is used in our
imaging pipeline to reduce the workload. Once the chunks from all stations are received
and processed asynchronously, the processed data are ready to be beam formed.

4.3 Beam Forming

The beam former combines the chunks from all stations, producing a chunk for each
tied-array beam. Each beam is formed using different complex weights for the fre-
quency of the channel, the locations of the stations, and the beam coordinates. The
positional weights are precomputed by the I/O nodes and sent along with the data to
avoid a duplicated effort by the compute nodes. The delays are applied to the station
data through complex multiplications and additions.

All time-consuming pipeline components are written in assembly, to achieve max-
imum performance. The assembly code minimises the number of memory accesses,

minimises load delays, minimises FPU pipeline stalls, and maximises instruction-level
parallelism. We learnt that optimal performance is often achieved by combining multi-
ple iterations of a multi-dimensional loops:

FOR Channel IN 1 .. NrChannels DO
FOR Station IN 1 .. NrStations STEP 6 DO
FOR Time IN 1 .. NrTimes STEP 128 DO
FOR Beam IN 1 .. NrBeams STEP 3 DO
BeamForm6StationsAnd128TimesTo3BeamsAssembly(...)

This is much more efficient than to create all beams one at a time, due to better reuse
of data loaded from main memory. Finding the most efficient way to group work is a
combination of careful analysis and, unfortunately, trial-and-error. The coherent beam
former achieves 86% of the FPU peak performance, not as high as the 96% of the
correlator [7], but still 16 times more than the C++ reference implementation.

4.4 Channel-level Dedispersion

Another major component in the pulsar-observation pipeline is real-time dedispersion.
Since light of a high frequency travels faster through the interstellar medium than light
of a lower frequency, the arrival time of a pulse differs for different wave lengths. To
combine data from multiple frequency channels, the channels must be aligned (shifted
in time). Otherwise, the pulse will be smeared or even overlap with the next pulse,
causing many details to be lost. This process, called dedispersion, is done by post-
processing software that runs after the observation has finished. However, to observe
at the lowest frequencies, or to observe fast-rotating millisecond pulsars, dedispersion
must also be performed within a channel, since our channels (typically 12 kHz) are too
wide to ignore dispersion.

Figure 6 shows pulses of pulsar J0034-0534 at four frequencies. The pulse period
is 1.88 ms. On the left is the original dispersed signal, which results in a smeared pulse
when the frequencies are collapsed into a 12 kHz channel. On the right is the dedis-
persed signal, which results in a sharp pulse profile when collapsed.

= = = No channel dedispersion

E M Channel dedispersion

S 139.074 :

& 139.070 2 N

£ A

£ 139.066 N AW

g ' M

& 139.062 : | : | : |
I'!'l'l'!'l'rl'l'!'l'l'rl'!‘l'l'!‘rl’!‘l’!‘l‘l LI Trrr T T T T T T T

000 188 376 0.00 188 3.76 0 1.88 3.76

Time (ms) Time (ms) Time (ms)

Fig. 6. Pulse arrival times within a 12 kHz channel before Fig.7. Pulse profiles with and
(left) and after (right) channel-level dedispersion. without channel-level dedisper-
sion.

Dedispersion is performed in the frequency domain, effectively by doing a 4096-
point FFT that splits a channel into 3 Hz subchannels. The phases of the observed
samples are corrected by applying a chirp function, i.e., by multiplication with precom-
puted, channel-dependent, complex weights. These multiplications are programmed
in assembly, to reduce the computational costs. A backward FFT is done to revert to
12 kHz channels.

Figure 7 shows the observed effectiveness of channel-level dedispersion, which im-
proves the effective time resolution from 0.51 ms to 0.082 ms, revealing a more detailed
pulse and a better signal-to-noise ratio. Dedispersion thus contributes significantly to the
data quality, but it also comes at a significant computational cost due to the two FFTs
it requires. The channel-level dedispersion demonstrates the power of using a software
telescope: the pipeline component was implemented, verified, and optimised in only
one month time.

4.5 Stokes Calculations

The beams are optionally converted into Stokes IQUV or Stokes I parameters, again
using assembly routines to achieve optimal performance. The Stokes parameters are
calculated through I = XX +YY,Q=XX—YY,U =2-Re(XY),V =2-Im(XY), with X
as the complex conjugate of X. Although the formulas are simple, the Stokes parameters
are expensive to calculate. The required operations for I and Q do not map well onto
the FPU instruction set of the BG/P, even though the instruction set is extended with
support for operations on complex numbers.

4.6 Second All-to-all Exchange

Even though the beams are formed and optionally converted into Stokes parameters,
they are still distributed as chunks across the BlueGene. Because the compute nodes
cannot send their data directly to the I/O node that sends it to storage, a second all-to-all
exchange is required to rearrange the chunks for output. Only chunks that are sent to
the same I/O node can be sent to storage as a single data stream.

Unfortunately, the output bandwidth available at each I/O node can be less than the
bandwidth required by the beams. An I/O node can output 3.1 Gb/s, and only 1.1 Gb/s
if the I/O node also has to process station input at the same time. The bandwidth re-
quired for a complex voltages, Stokes IQUYV, or (unintegrated) Stokes I beam however
is 6.2 Gb/s, 6.2 Gb/s, and 1.5 Gb/s, respectively. We therefore split the beams and send
the differerent polarisations or Stokes parameters to different I/O nodes and therefore
store them in different files in our storage cluster. In some cases, it is also necessary to
split the beams further.

Due to memory constrains on the compute cores, the cores that performed the beam
forming cannot be the same cores that receive the beam data after the second exchange.
We assign a set of cores (output cores) to receive the chunks. The output cores are
chosen before an observation, and are distinct from the input cores which perform the
earlier computations in the pipeline.

The output cores again receive the chunks asynchronously, which we overlap with
computations. For each chunk, the dimensions of the data are reordered into their final

ordering. Reordering is necessary, because the data order that will be written to disk
is not the same order that can be produced by our computations without taking heavy
cache penalties. Once all of the chunks are received and reordered, they are forwarded
to the I/O node.

For the distribution of the workload over the available output cores, three factors
are considered. First, all of the data belonging to the same beam has to be processed
by output cores in the same pset, to ensure that one I/O node can concatenate all of the
0.25 second chunks that belong to the beam. Second, the maximum output rate per I/O
node has to be respected. Finally, the presence of the first all-to-all exchange, which
uses the same network at up to 198 Gb/s. The second exchange uses up to 81 Gb/s.
Even though each link sustains 3.4 Gb/s, it has to process the traffic from four cores,
as well as traffic routed through it between other nodes. The network links in the BG/P
become overloaded unless the output cores are scattered sufficiently.

4.7 Transport to Disks

Once an output core has received and reordered all of its data, the data are sent to the
core’s I/0O node. The I/O node forwards the data over TCP/IP to the storage cluster. To
avoid any stalling in our pipeline due to network congestion or disk issues, the I/0 node
uses a best-effort buffer which drops data in the unusual case that it cannot be sent.

5 Performance Analysis

We will focus our performance analysis on the most challenging cases that are of astro-
nomical interest. In all cases, we respect the real-time nature of our system by limiting
the load such that there is at most 0.1% of data loss, but typically, data loss is much
rarer. Almost all variance occurs in the networks within the BG/P due to clashes caused
by scheduling intricacies. We present measurements for a single BG/P rack.

5.1 Overall Performance 441 @, Stokes, 16x integration
361 4 Stok;s.f'“- -=-- Torus routing

: : >t —— CPU bound
Figure 8 shows the maximum numbgr of g0 Sxintegraiion ™ Q\. T o bou
beams that can be created when usinga & .1 ________ 7
various number of stations, in each of the % 160 -] Stokes L 4 integration™ = = === == ~
three pipelines: complex voltages, Stokes g 5,]

S] mmmm e~ -
IQUYV, and Stokes I. Both the complex E g] SwokesI2xintegration ===~ ==~~~
. . =

voltages and the Stokes IQUY pipelines 4 1 no integration ®
are /O bound. Each beam is 6.2 Gb/s E]
wide. We can make at most 13 beams od T~ Q----- ~——e -)

. . . C 1 Itages / Stokes IQUV
without exceeding the available 81 Gb/s] Complexvoliages /Stokes 1Q
to our storage cluster. If 64 stations are o 0 o 60
used, the available bandwidth is 70 Gb/s number of stations

due to the fact that an I/O node can only
output 1.1 Gb/s if it also has to process Fig. 8. The maximum number of beams that can
station data. The granularity with which be created in various configurations.

1. Ist all-to-all exchange
mmmm |. [nput from station === 4. Qutput to storage

100 & inpu.t har?dling 100 7 g 2! Positional weights =2 5. IRQ handling
== 2. Beam forming | = 3.1/0 with compule cores
3. Channel dedispersion
80 (cases D-F)
;5 —= 4. Stokes calculations §
; 60 == 5. 2nd all-to-all exchange ;
g == 6. Output reordering 3
- = 7. Output to I/0 node =
§ 40+ £
% %
20
0= : 0
0000060606 0 00006
Case (see Table 1) Case (see Table 1)
Fig. 9. The load of the compute cores. Fig. 10. The load of the busiest I/O nodes.
Table 1. Several highlighted cases.
Case Mode Channel Int. Stations Beams Input Output Bound Used for
dedisp. factor rate rate
o Stokes I N 16 4 450 12 Gb/s 44 Gb/s Torus Surveys
e Stokes I N 16 24 310 74 Gb/s 30 Gb/s CPU Surveys
e Stokes I N 8 64 155 198 Gb/s 30 Gb/s CPU Surveys
Q Stokes IQUV Y - 24 13 74 Gb/s 81 Gb/s /O Known sources
G Stokes IQUV Y - 64 10 198 Gb/s 62 Gb/s /O Known sources
e Stokes [Y 1 64 42 198 Gb/s 65 Gb/s /O Known sources

the output can be distributed over the I/O nodes, as well as scheduling details, determine
the actual number of beams that can be created, but in all cases, the beam former can
create at least 10 beams at LOFAR’s full observational bandwidth.

In the Stokes I pipeline, we applied several integration factors (1, 2, 4, 8, and 16) in
order to show the trade-off between beam quality and the number of beams. Integration
factors higher than 16 does not allow significantly more beams to be created, but could
be used in order to further reduce the total output rate. For low integration factors, the
beam former is again limited by the available output bandwidth. At 8x integration, the
number of beams is limited by the virtual mapping we applied to optimise both of the
all-to-all exchanges (see Section 4.2): the high number of routes causes more collisions
than the compute cores have spare time for to handle. With higher integration factors,
a few more beams can be formed before the compute cores run out of computational
resources. For observations for which a high integration factor is acceptable, the beam
former is able to form between 155 and 450 tied-array beams, depending on the num-
ber of stations used. For observations that need a high time resolution and thus a low
integration factor, the beam former is still able to form at least 42 tied-array beams.

5.2 System Load

We further analyse the workload of the compute cores by highlighting a set of cases,
summarised in Table 1. We will focus on case o, which creates the highest number of
beams, and on CPU-bound cases useful for performing surveys, with either 24 stations
(@) or 64 stations () as input. Cases @) and @ represent high-resolution observations
of known sources, and are I/O bound configurations with 24 and 64 stations, respec-
tively. Case @) focusses on the observations of known sources as well, using Stokes I
output, which allows more beams to be created. Channel-level dedispersion is applied
for all cases that observe known sources.

The average workload of the compute cores for each case is shown in Figure 9.
For the CPU-bound cases @ and @), the average load has to be lower than 100% to
recover from small delays in the processing, that can occur since the BG/P is not a real-
time system. These fluctuations typically occur due to clashes within the BG/P torus
network which is used for both all-to-all-exchanges, and cannot be avoided in all cases.

In the cases where we create many beams ((JEU), most of the cycles are spent on
beam forming and on calculating the Stokes I parameters. The beam forming scales with
both the number of stations and the number of beams, while the Stokes I calculation
costs depends solely on the number of beams. Case @) has to beam form only four
stations, and thus requires most of its time calculating the Stokes I parameters. Cases
e and Q use more stations, and thus need more time to beam form.

The costs for both the first and the second all-to-all exchange are mostly hidden due
to overlaps with computation. The remaining cost for the second exchange is propor-
tional to the output bandwidth required in each case.

For the I/O-bound cases Q)@F). only a few tied-array beams are formed and trans-
formed into Stokes I(QUV) parameters, which produces a lot of data but requires little
CPU time. Enough CPU time is therefore available to include channel-level dedisper-
sion, which scales with the number of beams and is an expensive operation.

Figure 10 shows the workload for the busiest I/O nodes in each case, including the
system time spent to handle IRQs. The processing of station data and the communica-
tion with the compute cores cause most of the load. In cases @), the output is handled
by I/O nodes that do not process station data. In both cases, a significant amount of time
is spent computing the positional weights (see Section 4.3). A similar amount of time
is required in cases (QEIEF to process the output.

6 Related Work

The LOFAR beam former is the only beam former capable of producing hundreds of
tied-array beams. A radio dish can be extended to focus on multiple sources by placing
additional receivers in its focal point (a focal plane array) [4], but such a solution does
not scale. The Murchison Widefield Array (MWA) uses a design similar to LOFAR,
and plans to build a beam former, but is still under construction [3].

7 Conclusions

We have shown the capabilities of our beam former pipelines, running in software on
an IBM BlueGene/P supercomputer. Our system is capable of producing 13 tied-array
beams at LOFAR’s full observational bandwidth before our output limit of 81 Gb/s is
met. Alternatively, it can form hundreds of beams at a reduced resolution, the exact
number depending on the number of stations and the pipeline used. Finally, an incoher-
ent beam can be created, which retains the wide field-of-view offered by our stations.
None of these feats are possible with any other telescope.

The use of a software solution on powerful interconnected hardware is a key as-
pect in the development and deployment of our pipeline. Because we use software,
rapid prototyping is cheap, allowing novel features to be tested to aid the exploration
of the design space of a new instrument. The resulting pipelines retain the flexibility
that software allows. The control flow and bookkeeping has become complex while re-
maining manageable through software abstraction. We are able to run the same station
data through multiple pipelines in parallel, and even multiple independent observations
in parallel, as long as there are enough available resources. The science which drives
LOFAR, and which is driven by it, is greatly accelerated through the use of an easily
reconfigurable instrument.

The BG/P supercomputer provides us with enough computing power and powerful
networks to be able to implement the signal processing and all-to-all-exchanges that
we require, without having to resort to a dedicated system which inevitably curbs the
design freedom that the supercomputer provides. As with any system, platform-specific
parameters nevertheless become important when maximal performance is desired. Al-
though a C reference implementation allowed us to quickly develop and test features,
we needed handcrafted assembly to keep the double FPUs of each compute core busy.

The architecture of the BG/P makes some tasks more difficult as well. The fact that
an I/O node can only communicate with its own compute cores prevents us from freely
scheduling the workload. Instead, we have to manually route the data using two all-to-
all exchanges in order to stream the data from and to the right I/O nodes. To achieve
maximum performance, we tuned the distribution of the workload over the cores to
avoid network collisions.

References

1. A.G.de Bruyn et al. Exploring the Universe with the Low Frequency Array, A Scientific Case,
September 2002. http://www.lofar.org/PDF/NL-CASE-1.0.pdf.

2. B.W. Stappers et al. Observing pulsars and fast transients with LOFAR. Astronomy & Astro-
physics, 2011. To appear.

3. CJ. Lonsdale et al. The Murchison Widefield Array: Design Overview. Proceedings of the
IEEE, 97(8):1497-1506, August 2009.

4. L. Staveley-Smith et al. The Parkes 21cm Multibeam Receiver. Publications Astronomical
Society of Australia, 13(3):243-248, November 1996.

5. J. Lorenz, S. Kral, F. Franchetti, and C.W. Ueberhuber. Vectorization Techniques for the Blue
Gene/L Double FPU. IBM Journal of Research and Development, 49(2/3):437-446, 2005.

6. J.W. Romein. FCNP: Fast I/O on the Blue Gene/P. In Parallel and Distributed Processing
Techniques and Applications (PDPTA’09), pages 225-231, Las Vegas, NV, July 2009.

7. J.W. Romein, P.C. Broekema, J.D. Mol, and R.V. van Nieuwpoort. The LOFAR Correlator:
Implementation and Performance Analysis. In ACM SIGPLAN Symposium on Principles and
Practice on Parallel Programming (PPoPP’10), pages 169—178, January 2010.

8. IBM Blue Gene team. Overview of the IBM Blue Gene/P Project. IBM Journal of Research
and Development, 52(1/2), January/March 2008.

9. K. Yoshii, K. Iskra, H. Naik, P. Beckman, and P.C. Broekema. Performance and Scalability
Evaluation of “Big Memory” on Blue Gene Linux. International Journal of High Performance
Computing. To appear.

