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Abstract. One of the major challenges for the self-calibration of the new
generation of radio telescopes is to handle the sheer amount of observational
data. For LOFAR, an average observation consists of several tens of terabytes
of data. Fortunately, many operations can be done in parallel on only part of
the data. So, one way to take up this challenge is to employ a large cluster of
computers and to distribute both data and computing power. This paper focuses
on the architectural design of the LOFAR self-calibration system, which is loosely
based on the Blackboard architectural pattern. Key design consideration was to
provide maximum scalability by complete separation of the global controller—
issuing sequences of commands—on the one side; and the local controllers—
controlling the so-called ‘kernels’ that execute the commands—on the other side.
In between, resides a database system that acts as a shared memory for the global
and local controllers by storing the commands and the results.

1. Introduction

The LOFAR telescope, once fully operational, will produce raw data sets that
are very large. These data sets need to be calibrated in an iterative way to
correct for instrumental effects, like band-pass and beam shape; and ionospheric
effects, like Faraday and phase rotation. In this paper, we will focus on the
architectural design of the LOFAR self-calibration system from a system control
point-of-view.

2. Architectural Design

The data volume of an average LOFAR observation will in the order of tens
of terabytes. This size must be reduced, otherwise it will be impossible to do
long-term archiving and local (post-)processing. Moreover, the output data rate
of the correlator will be in the order of a gigabyte per second. Neither a single
disk, nor a computer system can handle this data rate, therefore data must be
distributed.

2.1. Design Considerations

Data should be distributed such that: all processing can be done without re-
ordering; large chunks of data can be processed locally; and only few data have
to be exchanged. Data can be distributed along a few axes.

Time is a bad choice, because a time-slot contains a lot of data (up to several
gigabytes), which may lead to problems in the on-line system when all data
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of a time-slot are sent to a single machine. It will also make parallelization
of imaging difficult, because the data of all time-slots have to be combined.

Baseline seems a better candidate. However, it will lead to imaging problems,
because data from large amounts of gridded Fourier transformed data have
to be sent around.

Frequency is the best choice. Images are usually created per channel, so, in
principle, imaging could be done locally. This distribution scheme matches
nicely with the way the correlator and the on-line system is designed.

One important requirement is scalability. A heterogeneous cluster will be
a fact of life, since hardware will be bought in stages and will be replaced in
stages. Therefore, unnecessary coupling between the different computing nodes
should be avoided, and data should be processed locally as much as possible.
Communication between the computing nodes should be done using a global
shared memory. Several architectural patterns describe this approach. Among
these, the Blackboard pattern (Buschmann et al. 1996) is probably the best-
known.

2.2. Blackboard pattern

The Blackboard architecture is ideal for solving problems for which no prede-
termined algorithm or solve strategy is known. However, the “best” algorithm
to perform a self-calibration run can be chosen from a relatively short list of
calibration strategies in advance, giving us a significant performance gain. In
fact, the Shared Repository pattern (Lalanda 1998), which can be seen as a
generalization of the Blackboard pattern, is probably a better match for the
BlackBoard Selfcal (BBS) system. It realizes indirect communication using a
repository as shared memory. Figure 1 shows the specialization hierarchy of
patterns based on the Shared Repository pattern.

Controller
/ pattern Blackboard-based
Control pattern
Shared Repository Blackboard /
pattern pattern
\ Hierarchical Blackboard
Repository Manager pattern
pattern

Figure 1.  Patterns based on the Shared Repository pattern (Lalanda 1998).
The two patterns in a thick framebox are of special interest for BBS.

Controller pattern introduces a control component in the system, which rules
the system and schedules activation of other components. This pattern can be
applied to deterministic problems where sequences of components activation can
be determined off-line and coded in the controller using various techniques.

Repository Manager pattern is applicable in a distributed environment. It
introduces a repository manager which sends notification of data creation or
modification to the software components.
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3. System Overview

3.1. Subsystems

The Blackboard Self-Cal system is split into three parts. BBS Control takes
care of the distributed processing by means of the Blackboard pattern. BBS
Kernel does the actual processing; it executes a series of steps, where each step
consists of an operation like SOLVE or CORRECT. The BBS Database consists of
two databases—Command Queue and Parameter Database—that together form
the blackboard. This separation of concerns maximizes scalability.

BBS Control is responsible for controlling the execution of a self-calibration
strategy (figure 2). A strategy describes one iteration in the so-called Major Cy-
cle (Nijboer & Noordam 2006). It defines the relationship between the observed
data and the model data, and consists of an ordered list of commands that will
be executed by the BBS Kernel subsystem. The key idea is that the BBS Kernel
keeps a subset of the data (the so-called work domain) in memory. As many
commands as possible are executed on these data before the next chunk of data
is accessed.

commands

BBS Kernel

Global Control Local Control

results

fetch

fetch

Parameter
Solutions

Figure 2.  Design of the BBS Control system. Global Control posts com-
mands to the Command Queue. These commands are asynchronously re-
trieved by Local Control and forwarded to the BBS Kernel. After execution
of the command, BBS Kernel returns the result to Local Control, which in
turn posts it to the Parameter Database. Global Control checks the quality
of these solutions and takes appropriate action.

BBS Kernel implements the Measurement Equation (Hamaker, Bregman &
Sault 1996), which models the response of an interferometer given a description
of the sky, the environment, and the interferometer. It consists of two compo-
nents. The kernel implements operations like PREDICT, SUBTRACT, and COR-
RECT. The solver calculates estimates for the model parameters by minimizing
the difference between model and observation.

BBS Database  consists of two different databases. The Command Queue stores
the command to be executed by the BBS Kernel and the status results re-
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turned by each kernel. The Parameter Database stores (intermediate) solutions
of the model parameters calculated by the BBS Kernel. Access to the Parameter
Database is minimized in order to avoid performance penalties.

4. Current Status and Future Work

Currently, the control framework runs on a 12-node Linux cluster, using a Post-
greSQL database as shared memory. Figure 3 shows the result of one of the first
successful calibration runs on a gigabyte-sized dataset.
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Figure 3. Image produced from a 16-hour CS-1 observation on 30 March
2007, using six 160 kHz subbands between 47.5 and 65 MHz. Note the rem-
nants of two strong radio sources, CasA and CygA, after their subtraction.

The scalability of the framework will be tested in the coming period, as the
cluster is expected to grow to several hundreds of nodes. Support for calibration
of beam-shape, and ionospheric effects will be added to the BBS Kernel.
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