
LOFAR GSM database project

Alexey Mints

February 27, 2013

1 Those involved:

1. Ger van Diepen [diepen at astron.nl];

2. George Heald [heald at astron.nl];

3. Alexey Mints [a.mints at hs.uni-hamburg.de];

4. Ronald Nijboer [rnijboer at astron.nl];

5. Bart Scheers [bartscheers at gmail.com];

2 Abbreviations

The following abbreviations and designations are used in this document as
well as in the code.

GSM — Global Sky Model;

KSP — Key Science Project (of the LOFAR);

MSSS — Multifrequency Snapshot Sky Survey;

ra — right ascension;

decl — declination;

pa — positional angle;

fov — field of view;

1

Note 1: if not stated otherwise, by band we mean a combination of the
frequency band and Stokes parameter.

Note 2: by size of the extended source we mean Gaussian parameters:
minor and major axes and positional angle.

Note 3: by detections we will mean newly detected objects, reported
by the source-finder and passed to the GSM, and by sources we will mean
objects already stored in the database.

3 Project description

3.1 Goals

Main goal of the project is to provide a database solution for the Global Sky
Model (hereafter GSM), basing on MSSS data [6, 2, 3]. For a given field of
view BBS-format file with the list of the known source should be produced.

The pipeline is based on the one developed for the Transient KSP [5].

3.2 Software requirements

The next programs/modules are needed to run the GSM pipeline:

MonetDB or PostgreSQL ;

Python tested on versions 2.6 and 2.7;

psycopg2 if PostgreSQL is used;

numpy ;

configobj or lofar.parameterset ;

healpy (includes HealPix library);

To check if all requirements are met one may use validate install.py

script, provided with the package (see 7.6.2).

4 Inputs

4.1 Input data flow

Data comes from pyBDSM or pySE source detection tools in the MSSS
pipeline. Inputs for every step are:

2

a Parset file, containing image properties and list of references to the catalog
files;

b Catalog files that are ASCII-tables produced by a source-finder.

Data is first passed to the detections table1. Then it is copied (with
proper transformations and filtering) into a extractedsources table. Then
matching to known sources is done and results are stored in the temp associations

table. Source positions/fluxes are updated or inserted into runningcatalog

and runningcatalog fluxes as needed according to the temp associations

table. Relevant associations between extractedsources and runningcatalog
are kept in assocxtrsources.

5 Outputs

5.1 Tables and columns

5.1.1 Basic information

At the end data is loaded into the database into several tables 2:

1. images — one record describing the image (unique ID, frequency, fov,
pointing etc.);

2. image stats — statistics on the image associations;

3. extractedsources — all sources detected in each image;

4. temp assocxtrsources — temporary associations between detections
in extractedsources and sources from runningcatalog. All possi-
ble associations are inserted here for each image. Emptied after all
associations will be processed and all problems resolved;

5. assocxtrsources—actual associations between detections in extractedsources
and sources from runningcatalog;

6. runningcatalog — positions and sizes of sources included into the
catalog;

7. runningcatalog fluxes — fluxes (in each band) of sources from run-
ningcatalog;

1The full list of tables with descriptions see below.
2For a detailed database description see 7.2

3

Number of cross-matches to extractedsources is stored as well in the
runningcatalog and runningcatalog fluxes tables in datapoints col-
unms.

For each value V (can be: ra, decl, major/minor axes, positional angle,
peak/total flux) several columns are used in runningcatalog or runningcatalog fluxes

tables. Weights are assigned given measured error ∆V as w = 1
(∆V)2

. Columns
for each V are:

wm V — weighted average value
∑

wiVi∑
wi

;

wm V err — weighted error
√

1∑
wi

;

avg wV — sum of weighted values
∑

wiVi;

avg weight V — sum of weights
∑

wi;

5.1.2 Storing and matching extended sources

Extended sources are stored in a special way. As they can look different in
different frequencies, we have to store positional and size information in the
runningcatalog table in a per-band way. One extra record without band
is stored as well, and named “Cross-band” source. For a cross-band source
Gaussian parameters are weighted sums from per-band parameters for this
source. For each record in the extractedsources table there are therefore
two records in assocxtrsources table — one for the cross-band record in
the runningcatalog and one for the per-band record.

For a physical reason it might also happen, that some extended source will
have more than one sub-component in a given band. Thus it is allowed for
an extended source to contain several per-band sources bound to one cross-
band source. Note that in the general case a sum of datapoints values for
per-band sources is greater or equal then datapoints value for a cross-band
source (see section 6.5.1). Also there might arise a problem that two or more
extended sources share the same cross-band source.

5.2 Formulas

Here we introduce a special notation used to describe problem resolution:

A-D — point sources;

K-Q — extended sources (cross-band);

k-q — extended sources (per-band);

4

X-Z — detections (always single-band);

0-9 — band (might be multiple comma-separated values);

() — weighted average;

With such a notation a problem resolution might be expressed as a transfor-
mation from one source set to another.

Examples:

A1 +X1 = (AX)1 (1)

A1 +X2 = (AX)1, 2 (2)

Kk1, l2 +X1 = (KX)(kX)1, l2 (3)

Kk1, l2 +X3 = (KX)k1, l2,m3 (4)

A1, 2, 3 +X1 + Y 1 = (AX)1, 2, 3 + (AY)1, 2, 3 (5)

A1, 2, 3 + B1, 2, 3 +X1 = (AX)1, 2, 3 + B1, 2, 3 (6)

Kk1, l2 +X1 + Y 1 = (KX)(kX)1, l2 + (KY)(kY)1, l2 (7)

Kk1, l2 + Lk1, l2 +X1 = (KX)(kX)1, l2 + Lk1, l2 (8)

Kk1, l2 + Lk1, l2 +X3 = (KX)k1, l2,m3 + Lk1, l2 (9)

Kk1, l2 + Lm3, n4 +X5 = (KLX)k1, l2,m3, n4, o5 (10)

A1 + B1 +X1 + Y 1 = Group1 (11)

For example, in equation 7 means, that we have matched two detections
(X and Y) in band 1 to one extended (cross-band) source K that has per-
band sources k in band 1 and l in band 2. As a result we get two cross-band
sources:

1. source with cross-band position equal to weighted average of positions
of sources K and X, position and flux in band 1 equal to weighted
average of positions and flux of sources k and X, position and flux in
band 2 equal to position and flux of source l;

2. source with cross-band position equal to weighted average of positions
of sources K and Y, position and flux in band 1 equal to weighted
average of positions and flux of sources k and Y, position and flux in
band 2 equal to position and flux of source l;

5.3 API

ToDo.

5

5.4 Errors

If error an is detected, it is reported to output and to the log. Whenever
possible, the transaction is rolled back.

6 Databases and pipelines

6.1 Matching criteria

Sources for matching are pre-selected basing on the following conditions:

• source kind (point-like or extended) has to be the same;

• angular distance between source centers has to be below rmin, set in
the settings file, see 6.2;

Matching criteria for point sources is based on de Ruiter distance [1]:

R2
deRuiter =

(α1 cos δ1 − α2 cos δ2)
2

(∆α1)2 + (∆α2)2
+

(δ1 − δ2)
2

(∆δ1)2 + (∆δ2)2
(12)

where α1,2 and δ1,2 are right ascensions and declinations of the two sources
and ∆α and ∆δ are reported positional errors.

The first point comes from the runningcatalog and the second one –
from extractedsources. For all pairs that have RdeRuiter < Rx, where
Rx is a chosen critical value, an association is possible. For such a pair a
record is inserted into temp runningcatalog, containing references to both
objects, RdeRuiter and distance (in arcsec) rarc = 2arcsin (r12/2) where r12 =
√

(r1,x − r2,x)2 + (r1,y − r2,y)2 + (r1,z − r2,z)2 is the 3D geometrical distance
between sources.

For extended sources an alternative formula is used:

R̃2
deRuiter =

r2arc
g2major,1 + g2major,2

, (13)

where gmajor is a reported major axis. The criteria is then R̃deRuiter < R̃x.

6.2 Matching settings file

A special file named settings.ini is located at the src folder. It contains
several settings:

6

Value Parameter name Default
Rx match distance 1.0

R̃x match distance extended 0.5
rmin maximum association distance 0.05 (radian)
matcher type matcher - (should be SQL or F90)

6.3 Matching across 360 degrees border

It might happen, that source and detection will be close by, but separated by
zero point in right ascension. I.e. the source will have ra = 0◦.001 and the
detection ra = 359◦.99. They have to match, but eq. 12 will fail. To override
this issue for an detection close to the 0-degree border (|α−360◦| < (cos δ)−1),
a copy is created, mirrored along this border. A copied detection carries the
id of the original.

This does not apply, however, on the extended sources, as an alternative
de Ruiter distance 13 does not suffer from near-360-degree problems.

6.4 Off-database matching

For large number of sources in the field/image matching can be slow in the
database. To solve this issue it is possible to activate a F90-based matcher.
It is not very efficient, and as such provides no performance increase, at
least comparing to PostgreSQL. The improvement is that there is a parallel
version of this tiny code making use of the OpenMP technology. It scales
almost lineary with the number of CPU cores used (set from console by
export OMP NUM THREADS="4").

To activate F90-matcher set matcher=F90 in the settings file (see 6.2),
otherwise set it to SQL.

6.5 Problem resolution

Column kind of temp associations table is then set to the following values:

1 — one-to-one match;

2 — one-to-many match (one observation match many sources in the cata-
log);

3 — many-to-one match (many observations match to one source in the
catalog);

7

4 —many-to-many match. In this case group head id column is important.
It refers to the smallest ID of the source in the group;

5 — extended sources join proposed, see below;

Catalog entries
0 1 2+

Image
sources

0 x No detection -
1 New source Perfect match

(kind=1)
Merged source
(kind in (2,5))

2 New sources Resolved source
(kind=3)

Group (kind=4)

New source/New sources — add sources to database;

Perfect match — add to fluxes and associations tables (update positional
information);

Update of the point source (A) by a new observation (X) in a known
band (1):

A1 +X1 = (AX)1 (14)

Update of the point source (A) by a new observation (X) in a new band
(2):

A1 +X2 = (AX)1, 2 (15)

Update of the extended source (K) by a new observation (X) in a known
band (1), per-band source (k) is updated:

Kk1, l2 +X1 = (KX)(kX)1, l2 (16)

Update of the extended source (K) by a new observation (X) in a new
band (3), per-band source (m) is created:

Kk1, l2 +X3 = (KX)k1, l2,m3 (17)

Merged source — add association to the nearest; For point sources (X is
closer to A):

A1, 2, 3 + B1, 2, 3 +X1 = (AX)1, 2, 3 + B1, 2, 3 (18)

For extended sources (X is closer to K):

Kk1, l2 + Lk1, l2 +X1 = (KX)(kX)1, l2 + Lk1, l2 (19)

8

Same, but with new band:

Kk1, l2 + Lk1, l2 +X3 = (KX)k1, l2,m3 + Lk1, l2 (20)

If band sets for matched catalog sources (K and L) are non-intersecting
and the observation band is also not in neither of this sets than the two
extended sources are merged:

Kk1, l2 + Lm3, n4 +X5 = (KLX)k1, l2,m3, n4, o5 (21)

Resolved source — see below in section 6.5.1;

A1, 2, 3 +X1 + Y 1 = (AX)1, 2, 3 + (AY)1, 2, 3 (22)

Kk1, l2 +X1 + Y 1 = (KX)(kX)1, l2 + (KY)(kY)1, l2 (23)

No detection — so far ignored;

Group — mark and leave for manual resolution, also see 6.6:

A1 + B1 +X1 + Y 1 = Group1 (24)

6.5.1 Treating resolved sources

For point sources a “flux splitting” technique is applied. For example there
are two observations in band j with fluxes f j

1 = 0.2 and f j
2 = 0.8 observed

in place where one source with flux f j
0 = 1 was observed before. In this

case we create a new source (source “b”) and copy all existing positional
information from the old one (source “a”). Flux information for each band
i (including band j) is also copied, but weighted according to fluxes in the
new observations:

f i
a = f i

0

f j
1

f j
1 + f j

2

(25)

f i
b = f i

0

f j
2

f j
1 + f j

2

(26)

Then old and new sources are updated with one of the new observations (see
equation 22). Positional information from the old source will be updated with
(presumably) much more precise information from the new observations, thus
the new information will have much higher weight, and final positions will
have good quality. “Flux splitting” have to be used for fluxes, as light-
curve might be wanted. In this case copying the flux information will lead to

9

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30 35 40

F
lu

x

Time

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30 35 40

F
lu

x

Time

Figure 1: Lightcurves inllustrating “flux splitting” approach. Left : two con-
stant sources without (red) and with (green) “flux splitting”. Right : Same,
but fainter source is variable.

instantaneous jumps in fluxes, which might be recognized as ones of transient
nature. An example is shown at the figure 1. For constant sources this
approach works fine, removing artificial jumps. But if one of the sources is
variable, than this variability is split between both sources, which is obviously
wrong. Thus for variable sources some post-processing will be required to
remove this artifact.

For extended sources flux splitting is applied only at per-band level.
Only per-band sources are duplicated, while the cross-band source remains
the same (see equation 23). Thus several per-band sources with the same
band can appear for one cross-band source. This might cause complications,
as two different sources might end up having just one cross-band source. This
has to be resolved at post-processing. Note, that in the case of extracted
sources it is possible, that sum of values in the datapoints columns for
per-band sources will not match datapoints value in the cross-band source.
This is due to the fact that both resulting per-band sources (kX and kY in
the equation 23) will inherit datapoints from “parent” per-band source (k).
Such duplicated datapoints will not be counted twice for cross-band source.

The example of source splitting is shown below. Table 1 shows runningcatalog
content before splitting. There are two per-band sources with 2 and 1 data-
points and a corresponding cross-band source with 2+1=3 datapoints. Then
there was a detection of two objects near per-band source with id=2. This
source was splitted in two, having ids 2 and 4, with 3 datapoints each. Cross-
band source was also updated, but only 2 datapoints were added from 2 new
detections. Thus the sum of per-band datapoints is greater than the number
of cross-band datapoints, see table 2.

10

runcatid band datapoints parent id
1 - 3 -
2 1 2 1
3 2 1 1

Table 1: runningcatalog before extended source splitting

runcatid band datapoints parent id
1 - 4 -
2 1 3 1
3 2 1 1
4 1 3 1

Table 2: runningcatalog after extended source splitting

6.6 Group resolution

There are several cases when many-to-many problem can be easily solved.
Two algorithms are implemented so far. They might be used from within

the pipeline only, so groups already stored in the database cannot be treated
so far.

Although, they have to be used with care, as they might produce wrong
matching, which might be worth than no match at all.

Two-by-two problem with fluxes If there are two detections matched
to two sources with flux information in this band, than we can take this flux
information into account. We construct modified de-Ruiter distance:

R̂2
deRuiter = R2

deRuiter +
(f1 − f2)

2

(∆f1)2 + (∆f2)2
, (27)

where f1,2 are fluxes and ∆f1,2 are flux errors.
This produces a matrix of distances for sources A, B and detections X,

Y:
R̂deRuiter,AX R̂deRuiter,AY

R̂deRuiter,BX R̂deRuiter,BY

(28)

Here we assign X and Y so that R̂deRuiter,AX < R̂deRuiter,AY . We choose as

11

Figure 2: Example of nearest-neighbour group resolution

resolution condition the following:



















R̂deRuiter,AX < R̂min

R̂deRuiter,BY < R̂min

R̂deRuiter,AY /R̂deRuiter,AX > P

R̂deRuiter,BX/R̂deRuiter,BY > P

(29)

This means that in coordinate-flux space detection X is P times closer
to A then to B, and detection Y is P times closer to B then to A. Thus we
state that A matches X and B matches Y . For the current implementation
P = 10.

Nearest neighbour In this approach we can treat N-to-N problems, i.e.
when the number of confused detections and sources is equal. We find for each
detection and source it’s nearest neighbour amongst sources and detections
respectively. The resolution criteria is then:

• each detection has a mutual nearest neighbour source at de Ruiter
distance d and

• there is no other source within 50d.

An example of such situation (distances between pairs are not to scale)
is shown in figure 2.

6.7 Spectral information

Stored in the database as polinomia coefficients calculated according to [4].
Last date of spectral fitting is stored as well. Fits are done upon request, if
there are detections newer then the last fit performed.

6.8 Reprocessing and image status

Reprocessing is possible. There are two columns to indicate reprocessing in
the images table. status shows the status of this image. On creation (before
any processing was done), status is 0. After the processing stage is completed,

12

status is changed to 1. If reprocessing is done, than all data coming from a
given image is removed first from runningcatalog, runningcatalog fluxes

and assocxtrsources tables and status is set to 2. If needed, original data
from extractedsources is also removed and image status is then changed
to 3.

After removal a second stage of reprocessing is data processing itself. It
is done in the same way as the first-time processing. When this stage is
completed, status is set to 1 and counter in the reprocessing column is
incremented.

7 Development and Deployment

7.1 Coding rules

For Python use PEP8 (http://www.python.org/dev/peps/pep-0008/), wher-
ever possible. For SQL — to be defined basing on the existing code.

7.2 Database structure

13

frequencybands

freqbandid integer -

freq central float Band middle frequency (Hz)

freq low float Band lower limit frequency (Hz)

freq high float Band upper limit frequency (Hz)

datasets

dsid integer -

rerun integer -

dstype integer -

process ts timestamp -

dsinname character(64) -

dsoutname character(64) -

description character(100) -

runs

runid integer -

start date timestamp Time of run begin

end date timestamp Time of run end

status integer Run status (...)

user id character(100) User who started a run

process id integer System process id

14

images

imageid integer -

ds id integer -

tau integer -

band integer Frequency band

stokes character(1) One of IQUV

imagename character(64) LOFAR image ID

centr ra float Pointing ra (degrees)

centr decl float Pointing decl (degrees)

fov radius float Field of view (degrees)

bmaj float Beam major axis (degrees)

bmin float Beam minor axis (degrees)

bpa float Beam pitch angle (degrees)

url character(120) Image file name

reprocessing integer Number of reprocessings of this image

status integer Image status (...)

process date timestamp Last image processing date

svn version integer SVN version of the pipeline of the last pro-
cessing

run id integer -

15

extractedsources

xtrsrcid integer -

xtrsrcid2 integer Reference to xtrsrcid for sources mirrored
across 360-degrees

image id integer -

zone integer integer part of decl

healpix zone integer Zone of HEALpix division

ra float right ascention (degrees)

decl float declination (degrees)

ra err float error of ra

decl err float error of decl

x float x-coordinate on 3D unit sphere

y float y-coordinate on 3D unit sphere

z float z-coordinate on 3D unit sphere

det sigma float detection threshold

source kind smallint 0=point source, 1=extended source

g major float major axis for extended source

g major err float error of major axis for extended source

g minor float minor axis for extended source

g minor err float error of minor axis for extended source

g pa float positional angle for extended source

g pa err float error of positional angle for extended source

f peak float Peak flux

f peak err float Peak flux error

f int float Integrated flux

f int err float Integrated flux error

16

assocxtrsources

xtrsrc id integer Reference to extractedsources

runcat id integer Reference to runningcatalog

weight float Association weight

distance arcsec float Distance in arcseconds

lr method integer -

r float de Ruiter distance

lr float -

detections

run id integer -

image name character(64) -

lra float -

ldecl float -

lra err float -

ldecl err float -

lf peak float -

lf peak err float -

lf int float -

lf int err float -

g minor float -

g minor err float -

g major float -

g major err float -

g pa float -

g pa err float -

ldet sigma float -

healpix zone integer -

17

runningcatalog

runcatid integer -

first xtrsrc id integer Id of the first observation

ds id integer -

band integer Frequency band for per-band extended
source

stokes character(1) Stokes parameter for per-band extended
source

datapoints integer Number of observations

decl zone integer integer part of decl

healpix zone integer Zone of HEALpix division

wm ra float -

wm ra err float -

avg wra float -

avg weight ra float -

wm decl float -

wm decl err float -

avg wdecl float -

avg weight decl float -

source kind smallint 0=point source, 1=extended source

parent runcat id integer Id of the cross-band source for per-band ex-
tendedsource

wm g minor float -

wm g minor err float -

avg wg minor float -

avg weight g minor float -

wm g major float -

wm g major err float -

avg wg major float -

avg weight g major float -

wm g pa float -

wm g pa err float -

avg wg pa float -

avg weight g pa float -

is group boolean True if a source belongs to a group

group head id integer Group ID

deleted boolean True if this source was deleted

last update date timestamp Date of the last source update

x float x-coordinate on 3D unit sphere

y float y-coordinate on 3D unit sphere

18

runningcatalog fluxes

runcat id integer Reference to runningcatalog

band integer Frequency band

stokes character(1) Stokes parameter

datapoints integer Number of observations

wm f peak float Peak flux

wm f peak err float -

avg wf peak float -

avg weight f peak float -

wm f int float Integrated flux

wm f int err float -

avg wf int float -

avg weight f int float -

temp associations

xtrsrc id integer -

xtrsrc id2 integer -

runcat id integer -

distance arcsec float -

lr method integer -

r float -

lr float -

xtr count integer -

run count integer -

kind integer -

group head id integer -

flux fraction float -

image id integer -

19

image stats

image id integer -

run id integer -

kind integer -

lr method integer -

value integer -

20

In temp associations

1 Point-point association

2 Extended sources – per-band association

3 Extended sources – cross-band association

In assocxtrsources

1 Point-point association

2 Extended sources – per-band association

3 Extended sources – cross-band association

4 Copied during source-splitting

5 Group association

Table 3: Values of lr method

7.3 sqllist development utility

There are lots of SQL statements spread around this project. Some of them
contain repetitative parts, some have to be modified for the MonetDB com-
patibility, and most have lots of parameters.

To simplify the development, a tool named “sqllist” is included into the
project.

It loads SQL-statements from sql-files. Groups of statements are sepa-
rated by a special comment line, beginning with −−#SQLLIST NAME,
where SQLLIST NAME is a unique name of this statement. These groups
are loaded at startup and stored in the sqllist.SQL LIST hash. They can
be retrieved later by sqllits.get sql function. This function receives at
least one parameter – sqllist-name. Second and all following parameters are
passed further as SQL-parameters (see below).

There are several special syntax features that can simplify the develop-
ment:

Python functions returning SQL-string can be inserted into SQL-code.
They have to be enclosed into double dollar sign pair ($$). For example:

insert into runningcatalog_fluxes(

runcat_id , band , stokes , datapoints ,

$$get_column_insert ([’f_peak ’, ’f_int’])$$)...

will be substituted with:

insert into runningcatalog_fluxes(

21

runcat_id , band , stokes , datapoints ,

wm_f_peak , wm_f_peak_err , avg_wf_peak ,avg_weight_f_peak ,

wm_f_int , wm_f_int_err , avg_wf_int ,avg_weight_f_int)...

Positional parameters are written as {N}, where N is the parameter
index, starting from zero. For example:

select freqbandid

from frequencybands

where freq_low < {0} and freq_high > {0};

Non-positional parameters are written as %s – standart way of param-
eter substitution in Python.

Named constants are written as [S], where S is the parameter name.
Named parameters are stored in sqllist.GLOBALS hash. Values used so far
are: ’i’: image id, ’r’: run id, ’b’: frequency band, ’s’: stokes parameter.

7.4 Tests

Unit tests — test that each function is working as desired;

Consistency tests — test that the pipeline and all of it’s parts are working;

Stress tests — (or performance tests) test pipeline performance;

7.5 NVSS data load test

As a test, NVSS data was loaded into databases.

PostgreSQL MonetDB

Total load time with F90 matcher (seconds) 33 188

Total load time with SQL matcher (seconds) 207 611

Database size after load 93Mb 108Mb

7.6 Deployment and usage

7.6.1 How to install

The next programs/modules are needed to run the GSM pipeline:

MonetDB or PostgreSQL ;

22

Python tested on version 2.7, but should work on earlier versions as well;

psycopg2 if PostgreSQL is used;

numpy ;

configobj or lofar.parameterset ;

7.6.2 User scripts

cleanup.py Tool to clean all data from the database.

Optional arguments:

-h, --help show this help message and exit

-D DATABASE , --database DATABASE

name of the database to clean

(default: test)

-M, --monetdb use MonetDB instead of PostgreSQL

recreate tables.py Drops and recreates all database objects (tables/pro-
cedures/views/indices). Database should already exist. Also re-fills frequencies
table. Usage: same as for cleanup.py.

validate install.py Checks that all required modules are installed.

gsm pipeline.py Tool to run GSM pipeline for a given parset. Multiple
parsets can be listed.

usage: gsm_pipeline.py [-h] [-D DATABASE] [-M] [-p] [-q]

[filename [filename ...]]

positional arguments:

filename list of parset file names

optional arguments:

-h, --help show this help message and exit

-D DATABASE , --database DATABASE

database name to load data into

-M, --monetdb use MonetDB instead of PostgreSQL

-p, --profile add SQL timing output to log

-q, --quiet switch console logging off

23

7.6.3 Parallel runs

Running several instances of the GSM pipeline at the same time is possible.
Different instances will use the same tables, but will have different image id.

Note, that parallel runs are obviously possible on the non-overlapping
fields.

References

[1] HR De Ruiter, HC Arp, and AG Willis. A Westerbork 1415 MHz survey
of background radio sources. II-Optical identifications with deep IIIA-
J plates. Astronomy and Astrophysics Supplement Series, 28:211–293,
1977.

[2] George Heald, A G De Bruyn, Ronald Nijboer, M Wise, and Roberto F
Pizzo. The LOFAR Multifrequency Snapshot Sky Survey (MSSS). (Oc-
tober), 2011.

[3] G.H. Heald, G. de Bruyn, R. Nijboer, M. Wise, R. Pizzo, and L. Col-
laboration. The LOFAR Multifrequency Snapshot Sky Survey (MSSS):
Description and First Results. In American Astronomical Society Meeting

Abstracts, volume 219, 2012.

[4] Anna M. M. Scaife and George H. Heald. A broad-band flux scale for low-
frequency radio telescopes. Monthly Notices of the Royal Astronomical

Society: Letters, pages no–no, March 2012.

[5] Bart Scheers. Creating the initial Global Sky Model. pages 1–2, 2012.

[6] Arno Schoenmakers. MSSS specifications and software requirements.
pages 1–7, 2010.

24

