
Revision 1.8

OpenCL Fast Fourier Transforms (FFTs)

clAmdFft

AMD Math Libraries

A p r i l 2 0 1 2

ii

© 2012 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo,
AMD Accelerated Parallel Processing, the AMD Accelerated Parallel Processing logo, ATI,
the ATI logo, Radeon, FireStream, FirePro, Catalyst, and combinations thereof are trade-
marks of Advanced Micro Devices, Inc. Microsoft, Visual Studio, Windows, and Windows
Vista are registered trademarks of Microsoft Corporation in the U.S. and/or other jurisdic-
tions. Other names are for informational purposes only and may be trademarks of their
respective owners. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by
permission by Khronos.

The contents of this document are provided in connection with Advanced Micro Devices,
Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the
accuracy or completeness of the contents of this publication and reserves the right to
make changes to specifications and product descriptions at any time without notice. The
information contained herein may be of a preliminary or advance nature and is subject to
change without notice. No license, whether express, implied, arising by estoppel or other-
wise, to any intellectual property rights is granted by this publication. Except as set forth
in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever,
and disclaims any express or implied warranty, relating to its products including, but not
limited to, the implied warranty of merchantability, fitness for a particular purpose, or
infringement of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as compo-
nents in systems intended for surgical implant into the body, or in other applications
intended to support or sustain life, or in any other application in which the failure of AMD’s
product could create a situation where personal injury, death, or severe property or envi-
ronmental damage may occur. AMD reserves the right to discontinue or make changes to
its products at any time without notice.

Advanced Micro Devices, Inc.
One AMD Place
P.O. Box 3453

Sunnyvale, CA 94088-3453
www.amd.com

For AMD Accelerated Parallel Processing:
URL: developer.amd.com/appsdk
Developing: developer.amd.com/
Support: developer.amd.com/appsdksupport
Forum: developer.amd.com/openclforum

For AMD Math Library pages:

developer.amd.com/libraries/appmathlibs/Pages/default.aspx

http://www.amd.com/
http://developer.amd.com/appsdk
http://developer.amd.com/
http://developer.amd.com/appsdksupport
http://developer.amd.com/openclforum
http://developer.amd.com/libraries/appmathlibs/Pages/default.aspx

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

iii
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

Contents

Chapter 1 OpenCL Fast Fourier Transforms (FFTs)
1.1 Installation of clAmdFft library...1-1

1.1.1 Downloadable Binaries..1-1
1.1.1.1 CMake..1-1
1.1.1.2 Boost ...1-3

1.2 Introduction to clAmdFft ...1-4
1.2.1 Supported Transform Sizes ..1-4
1.2.2 Transform Size Limits..1-4
1.2.3 Dimensionality ..1-5
1.2.4 Setup and Teardown of clAmdFft ..1-5
1.2.5 Thread Safety..1-6
1.2.6 Row-Major Formats..1-6
1.2.7 OpenCL Object Creation ...1-6
1.2.8 Flushing Command Queues ...1-6

1.3 clAmdFft Plans ...1-7
1.3.1 Default Plan Values..1-7
1.3.2 Supported Memory Layouts ...1-8

1.3.2.1 Strides and Distances ...1-8
1.3.3 Supported Precisions in clAmdFft...1-9
1.3.4 clAmdFftDirection ..1-9
1.3.5 In-Place and Out-of-Place ...1-10
1.3.6 Batches..1-10

1.4 Using clAmdFft on a Client Application ...1-10
1.5 FFTs of Real Data...1-11

Chapter 2 Class Documentation
2.1 clAmdFftSetupData Struct Reference ...2-1

2.1.1 Description..2-1
2.1.2 Member Data Documentation ...2-1

2.1.2.1 cl ulong clAmdFftSetupData::debug Flags2-1
2.1.2.2 cl uint clAmdFftSetupData::major...2-1
2.1.2.3 cl uint clAmdFftSetupData::minor...2-1
2.1.2.4 cl uint clAmdFftSetupData::patch...2-1

2.2 Global Values..2-2
2.2.1 Detailed Description...2-2
2.2.2 Define Documentation ...2-2

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

iv
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

2.2.2.1 #define CLAMDFFTAPI...2-2
2.2.2.2 #define CLFFT DUMP PROGRAMS 0x1...2-2

2.2.3 Enumeration Type Documentation...2-2
2.2.3.1 enum clAmdFftDim ..2-2
2.2.3.2 enum clAmdFftDirection ...2-2
2.2.3.3 enum clAmdFftLayout ...2-3
2.2.3.4 enum clAmdFftPrecision...2-3
2.2.3.5 enum clAmdFftResultLocation ...2-4
2.2.3.6 enum clAmdFftStatus ..2-4
2.2.3.7 enum clAmdFftResultTransposed..2-4

Chapter 3 Function Documentation
3.1 Libary Management Functions...3-1

Initialize an clAmdFftSetupData struct for the client ..3-1
Release all internal resources...3-1
Query the FFT library for version information...3-1
Initialize internal FFT resources ...3-2

3.2 Plan Management Functions ..3-3
Create a plan object initialized entirely with default values...3-3
Create a copy of an existing plan ...3-3
Prepare the plan for execution..3-4
Release the resources of a plan ...3-4
Retrieve the OpenCL context of a previously created plan ...3-5
Enqueue an FFT transform operation, and return immediately (non-blocking).........................3-6

3.3 Plan Accessors Functions..3-7
Retrieve the floating point precision of the FFT data ...3-7
Set the floating point precision of the FFT data..3-7
Retrieve the scaling factor that should be applied to the FFT data ..3-8
Set the scaling factor that should be applied to the FFT data ...3-8
Retrieve the number of discrete arrays that this plan can handle concurrently........................3-8
Set the number of discrete arrays that this plan can handle concurrently3-9
Retrieve the dimensionality of FFTs to be transformed in the plan ..3-9
Set the dimensionality of FFTs to be transformed by the plan..3-9
Retrieve the length of each dimension of the FFT ..3-10
Set the length of each dimension of the FFT...3-10
Retrieve the distance between consecutive elements for input buffers in a dimension3-11
Set the distance between consecutive elements for input buffers in a dimension3-11
Retrieve the distance between consecutive elements for output buffers in a dimension3-12
Set the distance between consecutive elements for output buffers in a dimension...............3-12
Retrieve the distance between Array objects..3-13
Set the distance between Array objects ..3-13
Retrieve the expected layout of the input and output buffers ...3-14
Set the expected layout of the input and output buffers..3-14
Determine if the input buffers are going to be overwritten with results3-14
Set whether the input buffers are going to be overwritten with results3-15
Get buffer size (in bytes), which may be needed internally for an intermediate buffer...........3-15
Retrieve the final transpose setting of a multi-dimensional FFT...3-15
Set the final transpose setting of a multi-dimensional FFT ...3-16

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

AMD Math Libraries - FFTs 1-1
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

Chapter 1
OpenCL Fast Fourier Transforms
(FFTs)

The clAmdFft library is an OpenCL library implementation of discrete Fast Fourier
Transforms. It:

• Provides a fast and accurate platform for calculating discrete FFTs.

• Works on CPU or GPU backends.

• Supports in-place or out-of-place transforms.

• Supports 1D, 2D, and 3D transforms with a batch size that can be greater
than 1.

• Supports planar (real and complex components in separate arrays) and
interleaved (real and complex components as a pair contiguous in memory)
formats.

• Supports dimension lengths that can be any mix of powers of 2, 3, and 5.

• Supports single and double precision floating point formats.

1.1 Installation of clAmdFft library

1.1.1 Downloadable Binaries

AMD provides clAmdFft pre-compiled library packages for recent versions of
Microsoft Windows operating systems and several flavors of Linux.

The downloadable binary packages are freely available from AMD at
http://developer.amd.com/gpu/appmathlibs/Pages/default.aspx.

Once the appropriate package for the respective OS has finished downloading,
uncompress the package using the native tools available on the platform in a
directory of the user’s choice. Everything needed to build a program using
clAmdFft is included in the directory tree, including documentation, header files,
binary library components, and sample programs for programming illustration.

1.1.1.1 CMake

After the clAmdFft package is uncompressed on the user's hard drive, a samples
directory exists with source code, but no Visual Studio project files, Unix
makefiles, or other native build system exist. Instead, it contains a
CMakeLists.txt file. clAmdFft uses CMake as its build system, and other build
files, such as Visual Studio projects, nmake makefiles, or Unix makefiles, are

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

1-2 Installation of clAmdFft library
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

generated by the CMake build system, during configuration. CMake is freely
available for download from: http://www.cmake.org/

NOTE: CMake generates the native OS build files, so any changes made to the
native build files are overwritten the next time CMake is run.

CMake is written to pull compiler information from environment variables, and to
look in default install directories for tools. Once installed, a popular interface to
control the process of creating native build files is CMake-gui. When the GUI is
launched, two text boxes appear at the top of the dialog: a path to source and a
separate path to generate binaries. For the browse source... box, find the path
to where you unzipped clAmdFft, and select the root samples directory that
contains the CMakeLists.txt; for clAmdFft, this should be clAmdFft/samples.
For browse build..., select an appropriate directory where the build
environment generates build files; a convenient location is a sibling directory to
the source. This makes it easy to wipe all the binaries and start a fresh build. For
instance, for a debug configuration of NMake, an example directory could be
clAmdFft/bin/NMakeDebug. This is where the generated makefile, native build
files, and intermediate object files are built. These generated files are kept
separate from the source; this is referred to as ‘out-of-source’ builds, and is very
similar in concept to what ‘autotools’ does for Linux. To build using NMake,
simply type NMake in the build directory containing the makefile. To build using
Visual Studio, generate the solution and project files into a directory such as
clAmdFft/bin/vs10, find the generated .sln file, and open the solution.

The first time the configure button near the bottom of the screen is clicked, it
causes CMake to prompt for what type of native build files to make. Various
properties appear in red in the properties box. Red indicates that the value has
changed since last time configure was clicked. (The first time configure is
clicked, everything is red.) CMake tries to configure itself automatically to the
client’s system by looking at a systems environment variables and by searching
through default install locations for project dependencies. Take a moment to
verify the settings and paths that are displayed on the configuration screen; if any
changes must be made, you can provide correct paths or adjust settings by
typing directly into the CMake configuration screen. Click the configure button
a second time to ‘bake’ those settings and serialize them to disk.

Options relevant to the clAmdFft project include:

• AMDAPPSDKROOT — Location of the Stream SDK installation. This value is
already populated if CMake could determine the location by looking at the
environment variables. If not, the user must provide a path to the root
installation of the Stream SDK here.

• BOOST_ROOT — Location of the Boost SDK installation. This value is already
populated if CMake could determine the location by looking at the
environment variables or default install locations. If not, the user must
provide a path to the root installation of the Stream SDK here. This
dependency is only relevant to the sample client; the FFT library does not
depend on Boost.

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

Installation of clAmdFft library 1-3
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

• CMAKE_BUILD_TYPE — Defines the build type (default is debug). For Visual
Studio projects, this does not appear (modifiable in IDE); for makefile-based
builds, this is set in CMake.

• CMAKE_INSTALL_PREFIX — The path to install all binaries and headers
generated from the build. This is used when the user types make install
or builds the INSTALL project in Visual Studio. All generated binaries and
headers are copied into the path prefixed with CMAKE_INSTALL_PREFIX.

The Visual Studio projects are self explanatory, but a few other projects are
autogenerated; these might be unfamiliar.

• ALL_BUILD — A project that is empty of files, but since it depends on all user
projects, it provides a convenient way to rebuild everything.

• ZERO_CHECK — A CMake-specific project that checks to see if the generated
solution and project files are in sync with the CMakeLists.txt file. If these
files are modified, the solutions and projects are now out-of-sync, and this
project prompts the user to regenerate their environment.

Note: If the user chooses to build on Windows with a NMake based build, it is
important to launch CMake from within a Visual Studio Command Prompt (20xx).
This is because CMake must be able to parse environment variables to properly
initialize NMake. This is not necessary if a Visual Studio solution is generated,
because solution files contain their own environmental setup.

1.1.1.2 Boost

clAmdFft includes one sample project that has source dependencies on Boost:
the sample client project. Boost is freely available from:
http://www.boost.org/.

The command-line clFFT sample client links with the program_options library,
which provides functionality for parsing command-line parameters and .ini files
in a cross-platform manner. Once Boost is downloaded and extracted on the hard
drive, the program_options library must be compiled. The Boost build system
uses the BJam builder (a project for a CMake-based Boost build is available for
separate download). This is available for download from the Boost website, or
the user can build BJam; Boost includes the source to BJam in its distribution,
and the user can execute bootstrap.bat (located in the root boost directory) to
build it.

After BJam is either built or installed, an example BJam command-line is given
below for building a 64-bit program_options binary, for both static and dynamic
linking:

bjam --with-program_options address-model=64 link=static,shared stage

The last step to make boost readily available and usable by CMake and the
native compiler is to add an environment variable to the system called
BOOST_ROOT. In Windows, right click on the computer icon and go to

Properties|Advanced system settings|Advanced|Environment Variables...

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

1-4 Introduction to clAmdFft
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

Remember to relaunch any new processes that are open, in order to inherit the
new environment variable. On Linux, consider modifying the .bash_rc file (or
shell equivalent) to export a new environment variable every time you log in.

If you are on a Linux system and have used a package manager to install Boost,
you may have to confirm where the Boost include and library files have been
placed. For example, after installing Boost with the Ubuntu Synaptic Package
Manager, the Boost include files are in /usr/include/boost, and the library
files either /usr/lib or /usr/lib64. The CMakeLists.txt file in this project
defaults the BOOST_ROOT value to /usr on Linux; so, if the system is set up
similarly, no further action is necessary. If the system is set up differently, you
may have to set the BOOST_ROOT environmental variable accordingly.

Note that CMake does not recognize version numbers at the end of the library
filename; so, if the package manager only created a
libboost_module_name.so.x.xx.x file (where x.xx.x is the version of Boost),
the user may need to manually create a soft link called
libboost_module_name.so to the versioned
libboost_module_name.so.x.xx.x. See the clAmdFft binary artifacts in the
install directory for an example.

1.2 Introduction to clAmdFft
The FFT is an implementation of the Discrete Fourier Transform (DFT) that
makes use of symmetries in the FFT definition to reduce the mathematical
intensity required from O(N2) to O(N logN) when the sequence length, N, is the
product of small prime factors. Currently, there is no standard API for FFT
routines. Hardware vendors usually provide a set of high-performance FFTs
optimized for their systems: no two vendors employ the same interfaces for their
FFT routines. clAmdFft provides a set of FFT routines that are optimized for AMD
graphics processors, but also are functional across CPU and other compute
devices.

1.2.1 Supported Transform Sizes

clAmdFft supports powers of 2, 3 and 5 sizes. This means that the vector lengths
that can be configured through a plan can be any length that is a power of two,
three, and five; examples include 20, 21*31, 33*55, 22*33*55; up to the limit that
the device can support.

1.2.2 Transform Size Limits

Currently, there is an upper bound on the transform size the library supports. This
limit is 224 for single precision and 222 for double precision. This means that the
product of transform lengths must not exceed these values. As an example, a
1D single-precision FFT of size 1024 is valid since 1024 ≤ 224. Similarly, a 2D
double-precision FFT of size 1024x1024 is also valid, since 1024*1024 ≤ 222.
But, a 2D single-precision FFT of size 4096x8192 is not valid because
4096*8192 > 224.

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

Introduction to clAmdFft 1-5
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

1.2.3 Dimensionality

clAmdFft currently supports FFTs of up to three dimensions, given by the enum
clAmdFft-Dim. This enum is a required parameter into
clAmdFftCreateDefaultPlan() to create an initial plan; there is no default for
this parameter. Depending on the dimensionality that the client requests,
clAmdFft uses the formulations shown below to compute the DFT.

The definition of a 1D complex DFT used by clAmdFft is given by:

where xk are the complex data to be transformed, are the transformed data,
and the sign of ± determines the direction of the transform: − for forward, and +
for backward. Note that the user must provided the scaling factor. Typically, the
scale is set to 1 for forward transforms, and for backward transforms.

The definition of a complex 2D DFT used by clAmdFft is given by:

for j = 0,1, . . ., n − 1 and k = 0,1, . . ., m − 1, where xrq are the complex data
to be transformed, are the transformed data, and the sign of ± determines
the direction of the transform. Typically, the scale is set to 1 for forward
transforms, and for backward transforms.

The definition of a complex 3D DFT used by clAmdFft is given by:

for j = 0,1, . . ., n − 1 and k = 0,1, . . ., m − 1 and l = 0,1, . . ., p − 1, where xrqs

are the complex data to be transformed, are the transformed data, and the
sign of ± determines the direction of the transform. Typically, the scale is set to
1 for forward transforms, and for backward transforms.

1.2.4 Setup and Teardown of clAmdFft

clAmdFft is initialized by a call to clAmdFftSetup(), which must be called before
any other API exported from clAmdFft. This allows the library to create resources
used to manage the plans that are created and destroyed by the user. This API
also takes a structure clAmdFftInitSetupData that is initialized by the client to
control the behavior of the library. The corresponding clAmdFftTeardown()
method must be called by the client when it is done using the library. This
instructs clAmdFft to release all resources, including any acquired references to
any OpenCL objects that may have been allocated or passed to it through the
API.

jx̃ =
1

scale

n-1

k=0
∑ Xk exp ±i

2

n

π jk() for j = 0, 1, . . .,n − 1

x̃ j

1
N

jkx̃ =
1

scale

m-1

q=0
∑ Xrq exp ±i 2

n
π jr()n-1

r=0
∑ exp ±i 2

m
πkq()

x̃ jk

1
M N.

jklx̃ =
1

scale

p-1

s=0
∑ Xrqs exp ±i 2

n
π jr()m-1

q=0
∑ exp ±i 2

p
πls()n-1

r=0
∑ exp ±i 2

m
πkq()

x̃ jkl

1
M N P. .

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

1-6 Introduction to clAmdFft
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

1.2.5 Thread Safety

The clAmdFft API is designed to be thread-safe. It is safe to create plans from
multiple threads, and to destroy those plans in separate threads. Multiple threads
can call clAmdFftEnqueueTransform() to place work into a command queue at
the same time. clAmdFft does not provide a single-threaded version of the library.
It is expected that the overhead of the synchronization mechanisms inside of
clAmdFft thread safe is minor.

Currently, multi-device operation must be managed by the user. OpenCL
contexts can be created that are associated with multiple devices, but clAmdFft
only uses a single device from that context to transform the data. Multi-device
operation can be managed by the user by creating multiple contexts, where each
context contains a different device, and the user is responsible for scheduling
and partitioning the work across multiple devices and contexts.

1.2.6 Row-Major Formats

clAmdFft expects all multi-dimensional input passed to it to be in row-major
format. This is compatible with C-based languages. However, clAmdFft is very
flexible in the input and output data organization it accepts by allowing the user
to specify a stride for each dimension. This feature can be used to process data
in column major arrays, and other non-contiguous data formats. See
clAmdFftSetPlanInStride and clAmdFftSetPlanOutStride.

1.2.7 OpenCL Object Creation

OpenCL objects, such as contexts, cl_mem buffers, and command queues, are
the responsibility of the user application to allocate and manage. All of the
clAmdFft interfaces that must interact with OpenCL objects take those objects as
references through the API. Specifically, the plan creation function
clAmdFftCreateDefaultPlan() takes an OpenCL context as a parameter
reference, increments the reference count on that object, and keeps the object
alive until the corresponding plan has been destroyed through a call to
clAmdFftDestroyPlan().

1.2.8 Flushing Command Queues

The clAmdFft API operates asynchronously, and with the exception of thread
safety, all APIs return immediately. Specifically, the
clAmdFftEnqueueTransform() API does not explicitly flush the command
queues passed by reference to it; it pushes the transform work into the command
queue and returns the modified queue to the client. The client is free to issue its
own blocking logic, using OpenCL synchronization mechanisms, or push further
work onto the queue to continue processing.

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

clAmdFft Plans 1-7
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

1.3 clAmdFft Plans
A plan is the collection of (almost) all parameters needed to specify an FFT
computation. This includes:

• What OpenCL context executes the transform?

• Is this a 1D, 2D or 3D transform?

• What are the lengths or extents of the data in each dimension?

• How many datasets are being transformed?

• What is the data precision?

• Should a scaling factor be applied to the transformed data?

• Does the output transformed data replace the original input data in the same
buffer (or buffers), or is the output data written to a different buffer (or
buffers).

• How is the input data stored in its data buffers?

• How is the output data stored in its data buffers?

The plan does not include:

• The OpenCL handles to the input and output data buffers.

• The OpenCL handle to a temporary scratch buffer (if needed).

• Whether to execute a forward or reverse transform.

These are specified when the plan is executed.

1.3.1 Default Plan Values

When a new plan is created by calling clAmdFftCreateDefaultPlan, its
parameters are initialized as follows:

• Dimensions: as provided by the caller.

• Lengths: as provided by the caller.

• Batch size:1.

• Precision: CLFFT_SINGLE.

• Scaling factors:

a. For the forward transform, the default is 1.0, or no scale factor is applied.

b. For the reverse transform, the default is 1.0 / P, where P is the product
of the FFT lengths.

• Location: CLFFT_INPLACE.

• Input layout: CLFFT_COMPLEX_INTERLEAVED.

• Input strides: the strides of a multidimensional array of the lengths specified,
where the data is compactly stored using the row-major convention.

• Output layout: CLFFT_COMPLEX_INTERLEAVED.

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

1-8 clAmdFft Plans
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

• Output strides: same as input strides.

Writing client programs that depend on these initial values is not recommended.

1.3.2 Supported Memory Layouts

There are two main families of Discrete Fourier Transform (DFT):

• Routines for the transformation of complex data. clAmdFft supports two
layouts to store complex numbers: a 'planar' format, where the real and
imaginary components are kept in separate arrays:

Buffer1: RRRRR

Buffer2: IIIII

and an interleaved format, where the real and imaginary components are
stored as contiguous pairs:

Buffer1: RIRIRIRIRIRI

• Routines for the transformation of real to complex data and vice versa;
clAmdFft provides enums to define these formats. For transforms involving
real data, there are two possibilities:

– Real data being subject to forward FFT transform that results in complex
data.

– Complex data being subject to backward FFT transform that results in
real data. See the Section 1.5, “FFTs of Real Data,” page 1-11.

1.3.2.1 Strides and Distances

For one-dimensional data, if clStrides[0]=strideX=1, successive elements in the
first dimension are stored contiguously in memory. If strideX is an integral value
greater than 1, gaps in memory exist between each element of the vectors.

For multi-dimensional data, if clStrides[1]=strideY = LenX for 2 dimensional data
and clStrides[2]=strideZ = LenX*LenY for 3 dimensional data, no gaps exist in
memory between each element, and all vectors are stored tightly packed in
memory. Here, LenX, LenY, and LenZ denote the transform lengths clLengths[0],
clLengths[1], and clLengths[2], respectively, which are used to set up the plan.

By specifying non-default strides, it is possible to process either row-major or
column-major arrays. Data can be extracted from arrays of structures. Almost
any regular data storage pattern can be accommodated.

Distance is the amount of memory that exists between corresponding elements
in an FFT primitive in a batch. Distance is measured in the units of the FFT
primitive; complex data measures in complex units, and real data measures in
real data. Stride between tightly packed elements is 1 in either case. Typically,
one can measure the distance between any two elements in a batch primitive,
be it 1D, 2D, or 3D data. For tightly packed data, the distance between FFT
primitives is the size of the FFT primitive, such that dist=LenX for 1D data,
dist=LenX*LenY for 2D data, and dist=LenX*LenY*LenZ for 3D data. It is

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

clAmdFft Plans 1-9
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

possible to set the distance of a plan to be less than the size of the FFT vector;
most often 1 for this case. When computing a batch of 1D FFT vectors, if
distance == 1, and strideX == length(vector), a transposed output is produced
for a batch of 1D vectors. It is left to the user to verify that the distance and
strides are valid (not intersecting); if not valid, undefined results can occur.

A simple example is to perform a 1D length 4096 on each row of an array of
1024 rows x 4096 columns of values stored in a column-major array, such as a
FORTRAN program might provide. (This would be equivalent to a C or C++
program that had an array of 4096 rows x 1024 columns stored in a row-major
manner, and you wanted to perform a 1-D length 4096 transform on each
column.) In this case, specify the strides [1024, 1].

For a more complex example, an input buffer contained a raster grid of 1024 x
1024 monochrome pixel values, and you want to compute a 2D FFT for each 64
x 64 subtile of the grid. Specifying strides allows you to treat each horizontal band
of 1024 x 64 pixels as an array of 16 64 x 64 matrixes, and process an entire
band with a single call to clAmdFftEnqueueTransform. (Specifying strides is not
quite flexible enough to transform the entire grid of this example with a single
kernel execution.) It is possible to create a Plan to compute arrays of 64 x 64 2D
FFTs, then specify three strides: [1, 1024, 64]. The first stride, 1, indicates that
the rows of each matrix are stored consecutively; the second stride, 1024, gives
the distance between rows, and the third stride, 64, defines the distance from
matrix to matrix. Then call clAmdFftEnqueueTransform 16 times: once for each
horizontal band of pixels.

1.3.3 Supported Precisions in clAmdFft

Both CLFFT_SINGLE and CLFFT_DOUBLE precisions are supported by the library
for all supported radices. With both of these enums the host computer’s math
functions are used to produce tables of sines and cosines for use by the OpenCL
kernel.

Both CLFFT_SINGLE_FAST and CLFFT_DOUBLE_FAST are meant to generate faster
kernels with reduced accuracy, but are disabled in the current build..

See clAmdFftPrecision, clAmdFftSetPlanPrecision, and
clAmdFftGetPlanPrecision.

1.3.4 clAmdFftDirection

The direction of the transform is not baked into the plan; the same plan can be
used to specify both forward and backward transforms. Instead,
clAmdFftDirection is passed as a parameter into
clAmdFftEnqueueTransform().

1.3.5 In-Place and Out-of-Place

The clAmdFft API supports both in-place and out-of-place transforms. With in-
place transforms, only input buffers are provided to the
clAmdFftEnqueueTransform() API, and the resulting data is written in the same

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

1-10 Using clAmdFft on a Client Application
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

buffers, overwriting the input data. With out-of-place transforms, distinct output
buffers are provided to the clAmdFftEnqueue-Transform() API, and the input
data is preserved. In-place transforms require that the cl_mem objects the client
creates have both read and write permissions. This is given in the nature of the
in-place algorithm. Out-of-place transforms require that the destination buffers
have read and write permissions, but input buffers can still be created with
read-only permissions. This is a clAmdFft requirement because internally the FFT
algorithms may go back and forth between the destination buffers and internally
allocated temp buffers. For out-of-place transforms, clAmdFft never writes back
to the input buffers.

1.3.6 Batches

The efficiency of clAmdFft is improved by utilizing transforms in batches. Sending
as much data as possible in a single transform call leverages the parallel
compute capabilities of OpenCL devices (and GPU devices in particular), and
minimizes the penalty of transfer overhead. It’s best to think of an OpenCL device
as a high-throughput, high-latency device. Using a networking analogy as an
example, it’s similar to having a massively high-bandwidth pipe with very high
ping response times. If the client is ready to send data to the device for compute,
it should be sent in as few API calls as possible. This can be done by batching.
clAmdFft plans have a parameter to describe the number of transforms being
batched: clAmdFftSetPlanBatchSize(), and to describe how those batches are
laid out and spaced in memory: clAmdFft-SetPlanDistance(). 1D, 2D, or 3D
transforms can be batched.

1.4 Using clAmdFft on a Client Application
To perform FFT calculations using clAmdFft, the client program must:

• Initialize the library by calling clAmdFftSetup.

• For each distinct type of FFT needed:

a. Create an FFT Plan object. This usually is done by calling the factory
function clAmdFftCreateDefaultPlan. Some of the most fundamental
parameters are specified at this time, and others assume default values.
The OpenCL context must be provided when the plan is created; it
cannot be changed. Another way is to call clAmdFftCopyPlan. In either
case, the function returns an opaque handle to the Plan object.

b. Complete the specification of all of the Plan parameters by calling the
various parameter-setting functions, clAmdFFtSet_____.

c. Optionally, “bake” or finalize the plan, calling clAmdFftBakePlan. This
signals to the library the end of the specification phase, and causes it to
generate and compile the exact OpenCL kernels needed to perform the
specified FFT on the OpenCL device provided.

At this point, all performance-enhancing optimizations are applied,
possibly including executing benchmark kernels on the OpenCL device
context in order to maximize runtime performance.

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

FFTs of Real Data 1-11
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

Although this step is optional, most users probably want to include it so
that they can control when this work is done. Usually, this time-
consuming step is done when the application is initialized. If the user
does not call clAmdFftBakePlan, this work is done during the first call to
clAmdFftEnqueueTransform.

The OpenCL FFT kernels now are ready to execute as many times as
needed.

a. Call clAmdFftEnqueueTransform. At this point, specify forward or
reverse transform. The OpenCL cl_mem handles for the input buffer(s),
output buffer(s) are provided--unless you want the transformed data to
overwrite the input buffers, and (optionally) scratch buffer.

clAmdFftEnqueueTransform performs one or more calls to the OpenCL
function clEnqueueNDRangeKernel. Like clEnqueueNDRangeKernel,
clAmdFftEnqueueTransform is a non-blocking call. The commands to
execute the FFT compute kernel(s) are added to the OpenCL context
queue to be executed asynchronously. An OpenCL event handle is
returned to the caller. If multiple NDRangeKernel operations are queued,
the final event handle is returned.

b. The application now can add additional OpenCL tasks to the OpenCL
context’s queue. For example, if the next step in the application’s process
is to apply a filter to the transformed data, the application would generate
that clEnqueueNDRangeKernel, specifying the transform’s output
buffer(s) as the input to the filter kernel, and providing the transform’s
event handle to ensure proper synchronization.

c. If the application must access the transformed data directly, it must call
one of the OpenCL functions for synchronizing the host computer’s
execution with the OpenCL device (for example: clFinish()).

• Terminate the library by calling clAmdFftTeardown.

1.5 FFTs of Real Data
When real data is subject to DFT transformation, the resulting complex output
follows a special property. About half of the output is redundant because they are
complex conjugates of the other half. This is called the Hermitian redundancy.
So, for space and performance considerations, it is only necessary to store the
non-redundant part of the data. Most FFT libraries use this property to offer
specific storage layouts for FFTs involving real data. clAmdFft provides 3
enumerated types to deal with real data FFTs:

• CLFFT_REAL

• CLFFT_HERMITIAN_INTERLEAVED

• CLFFT_HERMITIAN_PLANAR

The first enum specifies that the data is purely real. This can be used to feed
real input or get back real output. The second and third enums specify layouts
for storing FFT output. They are similar to the corresponding full complex enums

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

1-12 FFTs of Real Data
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

in the way they store real and imaginary components. The difference is that they
store only about half of the complex output. Client applications can do just a
forward transform and analyze the output. Or they can do some processing of
the output and do a backward transform to get back real data. This is illustrated
in Figure 1.1.

Figure 1.1 Forward and Backward Transform Processes

Let us consider a 1D real FFT of length N. The full output looks as shown in
Figure 1.2.

Figure 1.2 1D Real FFT of Length N

Here, C* denotes the complex conjugate of. Since the values at indices greater
than N/2 can be deduced from the first half of the array, clAmdFft stores data
only up to the index N/2. This means that the output contains only 1 + N/2

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

FFTs of Real Data 1-13
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

complex elements, where the division N/2 is rounded down. Examples for even
and odd lengths are given below.

Example for N = 8 is shown in Figure 1.3.

Figure 1.3 Example for N = 8.

Example for N = 7 is shown in Figure 1.4.

Figure 1.4 Example for N = 7.

For length 8, only (1 + 8/2) = 5 of the output complex numbers are stored, with
the index ranging from 0 through 4. Similarly for length 7, only (1 + 7/2) = 4 of
the output complex numbers are stored, with the index ranging from 0 through 3.

For 2D and 3D FFTs, the FFT length along the least dimension is used to
compute the (1 + N/2) value. This is because the FFT along the least dimension
is what is computed first and is logically a real-to-hermitian transform. The FFTs
along other dimensions are computed afterwards; they are simply ‘complex-to-
complex’ transforms. For example, assuming clLengths[2] is used to set up a 2D
real FFT, let N1 = clLengths[1], and N0 = clLengths[0]. The output FFT has
N1*(1 + N0/2) complex elements. Similarly, for a 3D FFT with clLengths[3] and
N2 = clLengths[2], N1 = clLengths[1], and N0 = clLengths[0], the output has
N2*N1*(1 + N0/2) complex elements.

1.5.1 Supported Modes

Out-of-place transforms:

• CLFFT_REAL to CLFFT_HERMITIAN_INTERLEAVED

• CLFFT_REAL to CLFFT_HERMITIAN_PLANAR

• CLFFT_HERMITIAN_INTERLEAVED to CLFFT_REAL

• CLFFT_ CLFFT_HERMITIAN_PLANAR to CLFFT_REAL

In-place transforms:

• CLFFT_REAL to CLFFT_HERMITIAN_INTERLEAVED

• CLFFT_HERMITIAN_INTERLEAVED to CLFFT_REAL

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

1-14 FFTs of Real Data
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

1.5.2 Examples

The following pages provide figures and examples to explain in detail the real
FFT features of this library.

Figure 1.5 1D FFT - Real to Hermitian

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

FFTs of Real Data 1-15
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

Figure 1.6 1D FFT - Real to Hermitian, Example 1

Figure 1.7 1D FFT - Real to Hermitian, Example 2

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

1-16 FFTs of Real Data
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

Figure 1.8 1D FFT - Real to Hermitian, Example 3

Figure 1.9 1D FFT - Hermitian to Real, Example

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

FFTs of Real Data 1-17
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

Figure 1.10 1D FFT - Hermitian to Real Example 4

Figure 1.11 2D FFT - Real to Hermitian In Place

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

1-18 FFTs of Real Data
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

Figure 1.12 2D FFT Real to Hermitian, Example

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

AMD Math Libraries - FFTs 2-1
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

Chapter 2
Class Documentation

2.1 clAmdFftSetupData Struct Reference
Data structure that can be passed to clAmdFftSetup() to control the behavior
of the FFT runtime.

Public attributes are:

• cl_uint major

• cl_uint minor

• cl_uint patch

• cl_ulong debugFlags

2.1.1 Description

Data structure that can be passed to clAmdFftSetup() to control the behavior
of the FFT runtime. This structure contains values that can be initialized before
instantiation of the FFT runtime with clAmdFftSetup(). To initialize this structure,
a pointer is passed to clAmdFftInitSetupData(), which clears the structure and
sets the version member variables to current values.

2.1.2 Member Data Documentation

2.1.2.1 cl ulong clAmdFftSetupData::debug Flags

Bitwise flags that control the behavior of library debug logic.

2.1.2.2 cl uint clAmdFftSetupData::major

Major version number of the project; signifies major API changes.

2.1.2.3 cl uint clAmdFftSetupData::minor

Minor version number of the project; minor API changes that could break
backwards compatibility.

2.1.2.4 cl uint clAmdFftSetupData::patch

Patch version number of the project, always incrementing number; signifies
change over time.

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

2-2 Global Values
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

2.2 Global Values
This section introduces all global values available from the clAmdFft header file.
These values typically are passed into the clAmdFft API to control some behavior
of the FFT plan.

2.2.1 Detailed Description

clAmdFft.h defines all of the public interfaces and types that are meant to be
used by clFFT clients This is the one public header file that must be consumed
by clFFT clients.

It is written to adhere to native C interfaces to make the clAmdFft library as
portable as possible; it is callable from C, C++, .NET and Fortran, either with the
proper linking or using wrapper classes.

2.2.2 Define Documentation

2.2.2.1 #define CLAMDFFTAPI

This preprocessor definition is the standard way of making exporting APIs from
a DLL simpler. All files within this DLL are compiled with the
CLAMDFFT_EXPORTS symbol defined on the command line. This symbol must
not be defined on any project that uses this DLL. This way any other project
whose source files include this file see clAmdFft functions as being imported from
a DLL, whereas this DLL sees symbols defined with this macro as being
exported.

2.2.2.2 #define CLFFT DUMP PROGRAMS 0x1

BitMasks to be used with clAmdFftSetupData.debugFlags.

2.2.3 Enumeration Type Documentation

2.2.3.1 enum clAmdFftDim

The dimensions of the input and output buffers that are fed into all FFT
transforms.

Enumerator

CLFFT_1D — 1 Dimensional FFT transform (default).

CLFFT_2D — 2 Dimensional FFT transform.

CLFFT_3D — 3 Dimensional FFT transform.

ENDDIMENSION — This value is always last; it marks the length of clAmdFftDim.

2.2.3.2 enum clAmdFftDirection

This is the expected direction of each FFT, time or the frequency domains.

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

Global Values 2-3
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

Enumerator

CLFFT_FORWARD — FFT transform from the time to the frequency domain.

CLFFT_BACKWARD — FFT transform from the frequency to the time domain.

CLFFT_MINUS — Alias for the forward transform.

CLFFT_PLUS — Alias for the backward transform.

ENDDIRECTION — This value is always last; it marks the length of
clAmdFftDirection.

2.2.3.3 enum clAmdFftLayout

These are the expected layouts of the complex numbers.

Currently, only the CLFFT_COMPLEX_INTERLEAVED and CLFFT_COMPLEX_PLANAR
formats are supported.

Enumerator

CLFFT_COMPLEX_INTERLEAVED — An array of complex numbers, with real and
imaginary components together (default).

CLFFT_COMPLEX_PLANAR — Arrays of real components and arrays of imaginary
components that have been separated out.

CLFFT_HERMITIAN_INTERLEAVED — Compressed form of complex numbers;
complex conjugates not stored, real and imaginary components in same array.

CLFFT_HERMITIAN_PLANAR — Compressed form of complex numbers; complex-
conjugates not stored, real and imaginary components in separate arrays.

CLFFT_REAL — An array of real numbers, with no corresponding imaginary
components.

ENDLAYOUT — This value is always last; it marks the length of clAmdFftLayout.

2.2.3.4 enum clAmdFftPrecision

This is the expected precision of each FFT. Strides and Pitches.

Enumerator

CLFFT_SINGLE — An array of complex numbers, with real and imaginary
components as floats (default).

CLFFT_DOUBLE — An array of complex numbers, with real and imaginary
components as doubles.

CLFFT_SINGLE_FAST — Faster implementation preferred.

CLFFT_DOUBLE_FAST — Faster implementation preferred.

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

2-4 Global Values
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

ENDPRECISION — This value is always last; it marks the length of
clAmdFftPrecision.

2.2.3.5 enum clAmdFftResultLocation

Are the input buffers overwritten with the results.

Enumerator

CLFFT_INPLACE — The input and output buffers are the same (default).

CLFFT_OUTOFPLACE — Separate input and output buffers.

ENDPLACE — This value is always last; it marks the length of
clAmdFftPlaceness.

2.2.3.6 enum clAmdFftStatus

The clAmdFft error codes definition, incorporating OpenCL error definitions.

This enumeration is a superset of the OpenCL error codes. For example,
CL_OUT_OF_HOST_MEMORY, which is defined in cl.h is aliased as
CLFFT_OUT_OF_HOST_MEMORY. The set of basic OpenCL error codes is extended
to add extra values specific to the clAmdFft package.

Enumerator

CLFFT_NOTIMPLEMENTED — Functionality is not implemented yet.

CLFFT_FILE_NOT_FOUND — Tried to open an existing file on the host system, but
failed.

CLFFT_FILE_CREATE_FAILURE — Tried to create a file on the host system, but
failed.

CLFFT_VERSION_MISMATCH — Version conflict between client and library.

CLFFT_INVALID_PLAN — Requested plan could not be found.

CLFFT_DEVICE_NO_DOUBLE — Double precision not supported on this device.

2.2.3.7 enum clAmdFftResultTransposed

This determines whether the result is returned in original order. It is valid only for
dimensions greater than 1.

Enumerator

CLFFT_NOTRANSPOSE -The results are returned in the original preserved order
(default).

CLFFT_TRANSPOSED - The result is transposed where transpose kernel is
supported (possibly faster).

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

Global Values 2-5
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

ENDTRANSPOSED -This value is always last and marks the length of
clAmdFftResultTransposed.

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

2-6 Global Values
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

AMD Math Libraries - FFTs 3-1
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

Chapter 3
Function Documentation

3.1 Libary Management Functions
Initialize an clAmdFftSetupData struct for the client

Function clAmdFftStatus clAmdFftInitSetupData (clAmdFftSetupData * setupData)

Description Initialize an clAmdFftSetupData struct for the client.
clAmdFftSetupData is passed to clAmdFftSetup to control the behavior of the FFT runtime.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

out setupData Data structure is cleared, then initialized with version information and
default values.

Release all internal resources
Function CLAMDFFTAPI clAmdFftStatus clAmdFftTeardown ()

Description Release all internal resources.
Call when client is done with this FFT library, allowing the library to destroy all resources it has
cached.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

None.

Query the FFT library for version information
Function CLAMDFFTAPI clAmdFftStatus clAmdFftGetVersion (cl_uint * major, cl_uint *

minor,cl_uint * patch)

Description Query the FFT library for version information.
Return the major, minor, and patch version numbers associated with this FFT library.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

out major Major functionality change.

out minor Minor functionality change.

out patch Bug fixes, documentation changes, no new features introduced.

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

3-2 Libary Management Functions
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

Initialize internal FFT resources
Function CLAMDFFTAPI clAmdFftStatus clAmdFftSetup (const clAmdFftSetupData * setupData)

Description Initialize internal FFT resources.
The AMD FFT implementation caches kernels, programs, and buffers for its internal use.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

in setupData Data structure that can be passed into the setup routine to control FFT
generation behavior and debug functionality.

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

Plan Management Functions 3-3
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

3.2 Plan Management Functions
Create a plan object initialized entirely with default values

Function CLAMDFFTAPI clAmdFftStatus clAmdFftCreateDefaultPlan (clAmdFftPlanHandle *
plHandle, cl_context context, const clAmdFftDim dim, const size_t * clLengths)

Description Create a plan object initialized entirely with default values.
A plan is a repository of state for calculating FFTs. Allows the runtime to pre-calculate kernels,
programs, and buffers, then associate them with buffers of specified dimensions.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

out plHandle Handle to the newly created plan.

in context Client is responsible for providing an OpenCL context for the plan.

in dim The dimensionality of the FFT transform; describes how many
elements are in the array.

in clLengths An array of lengths, of size dim. Each value describes the length of
additional dimensions.

Create a copy of an existing plan
Function CLAMDFFTAPI clAmdFftStatus clAmdFftCopyPlan (clAmdFftPlanHandle * out_plHandle,

cl_context new_context, clAmdFftPlanHandle in_plHandle)

Description Create a copy of an existing plan.
This API allows a client to create a new plan based upon an existing plan. This is a convenience
function provided for quickly creating plans that are similar, but can differ slightly.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

out out_plHandle Handle to the newly created plan that is based on in_plHandle.

in new_context Client is responsible for providing a new context for the new plan.

in in_plHandle Handle to a plan to be copied, previously created.

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

3-4 Plan Management Functions
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

Prepare the plan for execution
Function CLAMDFFTAPI clAmdFftStatus clAmdFftBakePlan (clAmdFftPlanHandle plHandle,cl_uint

numQueues, cl_command_queue * commQueueFFT, void(CL_CALLBACK * pfn_notify)
(clAmdFftPlanHandle plHandle, void * user_data), void * user_data)

Description Prepare the plan for execution.
After all plan parameters are set, the client has the option of ’baking’ the plan, which tells the
runtime no more changes to the plan’s parameters are expected, and the OpenCL kernels are
to be compiled. This optional function allows the client application to perform this function when
the application is being initialized instead of on the first execution. At this point, the clAmdFft
runtime applies all implemented optimizations, possibly including running kernel experiments on
the devices in the plan context.
Users should assume that this function takes a long time to execute. If a plan is not baked before
being executed, users should assume that the first call to clAmdFftEnqueueTransform takes a
long time to execute.
If any significant parameter of a plan is changed after the plan is baked (by a subsequent call
to one of the clAmdFftSetPlan____ functions), it is not considered an error. Instead, the plan
reverts to the unbaked state, discarding the benefits of the baking operation.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes

in plHandle Handle to a previously created plan.

in numQueues Number of command queues in commQueueFFT. 0 is a valid value, in
which case client does not want the runtime to run load experiments
and only pre-calculate state information.

in commQueue
FFT

An array of cl_command_queues created by the client; the command
queues must be a proper subset of the devices included in the plan
context.

in pfn_notify A function pointer to a notification routine. The notification routine is a
callback function that an application can register and that is called
when the program executable has been built (successfully or
unsuccessfully). Currently, this parameter MUST be NULL or nullptr.

in user_data Passed as an argument when pfn_notify is called. Currently, this
parameter MUST be NULL or nullptr.

Release the resources of a plan
Function CLAMDFFTAPI clAmdFftStatus clAmdFftDestroyPlan (clAmdFftPlanHandle * plHandle)

Description Release the resources of a plan.
A plan can include kernels, programs, and buffers associated with it that consume memory.
When a plan is no longer needed, the client must release the plan.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

in, out plHandle Handle to a previously created plan.

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

Plan Management Functions 3-5
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

Retrieve the OpenCL context of a previously created plan
Function CLAMDFFTAPI clAmdFftStatus clAmdFftGetPlanContext (const clAmdFftPlanHandle

plHandle, cl_context * context)

Description Retrieve the OpenCL context of a previously created plan.
User should pass a reference to an cl_context variable, which will be changed to point
to a context set in the specified plan.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

in plHandle Handle to a previously created plan.

out context Reference to user allocated cl_context, which points to the context
set in plan.

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

3-6 Plan Management Functions
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

Enqueue an FFT transform operation, and return immediately (non-blocking)
Function CLAMDFFTAPI clAmdFftStatus clAmdFftEnqueueTransform (clAmdFftPlanHandle

plHandle, clAmdFftDirection dir, cl_uint numQueuesAndEvents, cl_command_queue *
commQueues, cl_uint numWaitEvents, const cl_event * waitEvents, cl_event *
outEvents, cl_mem * inputBuffers, cl_mem * outputBuffers, cl_mem tmpBuffer)

Description Enqueue an FFT transform operation, and return immediately (non-blocking).
This transform API is specific to the interleaved complex format, taking an input buffer with real
and imaginary components paired together, and outputting the results into an output buffer in the
same format.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

in plHandle Handle to a previously created plan.

in dir Forwards or backwards transform.

in numQueuesAnd
Events

Number of command queues in commQueues; number of expected
events to be returned in outEvents.

in commQueues An array of cl_command_queues created by the client; the command
queues must be a proper subset of the devices included in the plan
context.

in numWaitEvents Specify the number of elements in the eventWaitList array.

in waitEvents Events that this transform should wait to complete before executing
on the device.

out outEvents The runtime fills this array with events corresponding 1-to-1 with the
input command queues passed in commQueues. This parameter
can be NULL or nullptr, in which case client does not need to receive
notifications when transforms are finished; otherwise, if not NULL,
the client must allocate this array, with at least as many elements as
specified in numQueuesAndEvents.

in inputBuffers An array of cl_mem objects that contain data for processing by the
FFT runtime. Only OpenCL buffer objects are supported; OpenCL
image objects return an error code. If the transform is in place, the
FFT results overwrite the input buffers.

out outputBuffers An array of cl_mem objects that store the results of out-of-place
transforms. Only OpenCL buffer objects are supported; OpenCL
image objects return an error code. If the transform is in place, this
parameter can be NULL, in which case it is completely ignored.

in tmpBuffer A cl_mem object that is reserved as a temporary buffer for FFT
processing. Only OpenCL buffer objects are supported; OpenCL
image objects return an error code. If clTmpBuffers is NULL or
nullptr, and the runtime needs temporary storage, an internal
temporary buffer is created on the fly and managed by the runtime.

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

Plan Accessors Functions 3-7
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

3.3 Plan Accessors Functions
Retrieve the floating point precision of the FFT data

Function CLAMDFFTAPI clAmdFftStatus clAmdFftGetPlanPrecision (const clAmdFftPlanHandle
plHandle, clAmdFftPrecision * precision)

Description Retrieve the floating point precision of the FFT data.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

in plHandle Handle to a previously created plan.

out precision Reference to user clAmdFftPrecision enum.

Set the floating point precision of the FFT data
Function CLAMDFFTAPI clAmdFftStatus clAmdFftSetPlanPrecision (clAmdFftPlanHandle

plHandle, clAmdFftPrecision precision)

Description Set the floating point precision of the FFT data.
Set the plan property which is the precision of the FFT complex data in the plan.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

in plHandle Handle to a previously created plan.

in precision Reference to user clAmdFftPrecision enum.

Currently, only CLFFT_SINGLE and CLFFT_SINGLE_FAST are supported.

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

3-8 Plan Accessors Functions
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

Retrieve the scaling factor that should be applied to the FFT data
Function CLAMDFFTAPI clAmdFftStatus clAmdFftGetPlanScale (const clAmdFftPlanHandle

plHandle, clAmdFftDirection dir, cl_float * scale)

Description Retrieve the scaling factor to be applied to the FFT data.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

in plHandle Handle to a previously created plan.

in dir The direction to which the scaling factor applies.

out scale Reference to user cl_float variable.

Set the scaling factor that should be applied to the FFT data
Function CLAMDFFTAPI clAmdFftStatus clAmdFftSetPlanScale (clAmdFftPlanHandle plHandle,

clAmdFftDirection dir, cl_float scale)

Description Retrieve the floating point scaling factor to be multiplied across the FFT data.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

in plHandle Handle to a previously created plan.

in dir The direction to which the scaling factor applies.

in scale Reference to user cl_float variable.

Retrieve the number of discrete arrays that this plan can handle concurrently
Function CLAMDFFTAPI clAmdFftStatus clAmdFftGetPlanBatchSize (const clAmdFftPlanHandle

plHandle, size_t * batchSize)

Description Retrieve the number of discrete arrays that this plan can handle concurrently.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

in plHandle Handle to a previously created plan.

out batchSize How many discrete FFTs are to be performed.

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

Plan Accessors Functions 3-9
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

Set the number of discrete arrays that this plan can handle concurrently
Function CLAMDFFTAPI clAmdFftStatus clAmdFftSetPlanBatchSize (clAmdFftPlanHandle

plHandle, size_t batchSize)

Description Set the number of discrete arrays (1D or 2D) to be batched (that this plan can handle
concurrently).

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

in plHandle Handle to a previously created plan.

in batchSize How many discrete FFTs are to be performed.

Retrieve the dimensionality of FFTs to be transformed in the plan
Function CLAMDFFTAPI clAmdFftStatus clAmdFftGetPlanDim (const clAmdFftPlanHandle

plHandle, clAmdFftDim * dim, cl_uint * size)

Description Retrieve the dimensionality of FFTs to be transformed in the plan.
Queries a plan object and retrieves the dimensionality that the plan is set for. A size is returned
to help the client allocate the proper storage to hold the dimensions in a further call to
clAmdFftGetPlanLength.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

in plHandle Handle to a previously created plan.

out dim The dimensionality of the FFTs to be transformed

out size Value used to allocate an array to hold the FFT dimensions.

Set the dimensionality of FFTs to be transformed by the plan
Function CLAMDFFTAPI clAmdFftStatus clAmdFftSetPlanDim (clAmdFftPlanHandle plHandle,

const clAmdFftDim dim)

Description Set the dimensionality of FFTs to be transformed by the plan.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

in plHandle Handle to a previously created plan.

in dim The dimensionality of the FFTs to be transformed.

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

3-10 Plan Accessors Functions
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

Retrieve the length of each dimension of the FFT
Function CLAMDFFTAPI clAmdFftStatus clAmdFftGetPlanLength (const clAmdFftPlanHandle

plHandle, const clAmdFftDim dim, size_t * clLengths)

Description Retrieve the length of each dimension of the FFT.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes

in plHandle Handle to a previously created plan.

in dim The dimension of the length parameters; describes how many elements
are in the array.

out clLengths An array describing the length of each discrete dimension of the FFT
computation. The size of the array is given by the dim parameter.

Set the length of each dimension of the FFT
Function CLAMDFFTAPI clAmdFftStatus clAmdFftSetPlanLength (clAmdFftPlanHandle plHandle,

const clAmdFftDim dim, const size_t * clLengths)

Description Set the length of each discrete dimension of the FFT.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes

in plHandle Handle to a previously created plan.

in dim The dimension of the length parameters. Describes how many
elements are in the array.

in clLengths An array describing the length of each discrete dimension of the FFT
computation. The size of the array is given by the dim parameter.

Currently, all lengths must be powers of 2.

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

Plan Accessors Functions 3-11
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

Retrieve the distance between consecutive elements for input buffers in a dimension
Function CLAMDFFTAPI clAmdFftStatus clAmdFftGetPlanInStride (const clAmdFftPlanHandle

plHandle, const clAmdFftDim dim, size_t * clStrides)

Description Retrieve the distance between consecutive elements for input buffers in a dimension.
Depending on how the dimension is set in the plan (for 2D or 3D FFTs), strideY or strideZ can
be safely ignored.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

in plHandle Handle to a previously created plan.

in dim The dimension of the stride parameters. Describes how many elements
are in the array.

out clStrides An array of strides, of size ’dim’. Usually strideX=1 so that successive
elements in the first dimension are stored contiguously.
Typically strideY=LenX, strideZ=LenX∗LenY such that successive
elements in the second and third dimensions are stored contiguously.

Set the distance between consecutive elements for input buffers in a dimension
Function CLAMDFFTAPI clAmdFftStatus clAmdFftSetPlanInStride (clAmdFftPlanHandle plHandle,

const clAmdFftDim dim, size_t * clStrides)

Description Set the distance between consecutive elements for input buffers in a dimension.
Set the distance between elements in a given dimension (units are in terms of
clAmdFftPrecision).

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

in plHandle Handle to a previously created plan.

in dim The dimension of the stride parameters. Describes how many elements
are in the array.

in clStrides An array of strides, of size dim. See Strides and Pitches for details.

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

3-12 Plan Accessors Functions
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

Retrieve the distance between consecutive elements for output buffers in a dimension
Function CLAMDFFTAPI clAmdFftStatus clAmdFftGetPlanOutStride (const clAmdFftPlanHandle

plHandle, const clAmdFftDim dim, size_t * clStrides)

Description Retrieve the distance between consecutive elements for output buffers in a dimension.
Depending on how the dimension is set in the plan (for 2D or 3D FFTs), strideY or strideZ can
be safely ignored.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

in plHandle Handle to a previously created plan.

in dim The dimension of the stride parameters; describes how many elements
are in the array

out clStrides An array of strides, of size ’dim’. Usually strideX=1 so that successive
elements in the first dimension are stored contiguously.
Typically strideY=LenX, strideZ=LenX∗LenY such that successive
elements in the second and third dimensions are stored contiguously.

Set the distance between consecutive elements for output buffers in a dimension
Function CLAMDFFTAPI clAmdFftStatus clAmdFftSetPlanOutStride (clAmdFftPlanHandle

plHandle, const clAmdFftDim dim, size_t * clStrides)

Description Set the distance between consecutive elements for output buffers in a dimension.
Set the distance between elements in a given dimension (units are in terms of
clAmdFftPrecision).

Parameters

See also clAmdFftSetPlanInStride

Returns Enum describing error condition; superset of OpenCL error codes.

in plHandle Handle to a previously created plan.

in dim The dimension of the stride parameters. Describes how many elements
are in the array.

in clStrides An array of strides, of size dim. Usually strideX=1, so that successive
elements in the first dimension are stored contiguously. Typically,
strideY=LenX, and strideZ=LenX∗LenY, so that successive elements in
the second and third dimensions are stored contiguously.

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

Plan Accessors Functions 3-13
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

Retrieve the distance between Array objects
Function CLAMDFFTAPI clAmdFftStatus clAmdFftGetPlanDistance (const clAmdFftPlanHandle

plHandle, size_t * iDist, size_t * oDist)

Description Retrieve the distance between array objects.
Pitch is the distance between each discrete array object in an FFT array. This is only used for
array dimensions in clAmdFftDim; see clAmdFftSetPlanDimension (units are in terms of
clAmdFftPrecision).

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

in plHandle Handle to a previously created plan.

out iDist The distance between the beginning elements of the discrete array
objects in memory on input. For contiguous arrays in memory,
iDist=(strideX∗strideY∗strideZ).

out oDist The distance between the beginning elements of the discrete array
objects in memory on output. For contiguous arrays in memory,
oDist=(strideX∗strideY∗strideZ).

Set the distance between Array objects
Function CLAMDFFTAPI clAmdFftStatus clAmdFftSetPlanDistance (clAmdFftPlanHandle

plHandle, size_t iDist, size_t oDist)

Description Set the distance between Array objects.
Pitch is the distance between each discrete array object in an FFT array. This is only used for
array dimensions in clAmdFftDim; see clAmdFftSetPlanDimension (units are in terms of
clAmdFftPrecision).

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

in plHandle Handle to a previously created plan.

out iDist The distance between the beginning elements of the discrete array
objects in memory on input. For contiguous arrays in memory,
iDist=(strideX∗strideY∗strideZ).

out oDist The distance between the beginning elements of the discrete array
objects in memory on output. For contiguous arrays in memory,
oDist=(strideX∗strideY∗strideZ).

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

3-14 Plan Accessors Functions
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

Retrieve the expected layout of the input and output buffers
Function CLAMDFFTAPI clAmdFftStatus clAmdFftGetLayout (const clAmdFftPlanHandle

plHandle, clAmdFftLayout * iLayout, clAmdFftLayout * oLayout)

Description Retrieve the expected layout of the output buffers.
Output buffers can be filled with either hermitian or complex numbers. Complex numbers can be
stored in various layouts; this informs the FFT engine what layout to produce on output

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

in plHandle Handle to a previously created plan.

out iLayout Indicates how the input buffers are laid out in memory.

out oLayout Indicates how the output buffers are laid out in memory.

Set the expected layout of the input and output buffers
Function CLAMDFFTAPI clAmdFftStatus clAmdFftSetLayout (clAmdFftPlanHandle plHandle,

clAmdFftLayout iLayout, clAmdFftLayout oLayout)

Description Set the expected layout of the output buffers.
Output buffers can be filled with either hermitian or complex numbers. Complex numbers can be
stored in various layouts; this informs the FFT engine what layout to produce on output.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

in plHandle Handle to a previously created plan.

in iLayout Indicates how the input buffers are laid out in memory.

in oLayout Indicates how the output buffers are laid out in memory.

Determine if the input buffers are going to be overwritten with results
Function CLAMDFFTAPI clAmdFftStatus clAmdFftGetResultLocation (const clAmdFftPlanHandle

plHandle, clAmdFftResultLocation * placeness)

Description Determine if the input buffers are going to be overwritten with results.
If the setting is to do an in-place transform the input buffers are overwritten with the results of
the transform. If the setting is for out-of-place transforms, the engine knows to look for separate
output buffers on the enqueue call.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

in plHandle Handle to a previously created plan.

out placeness Tells the FFT engine to overwrite the input buffers, or to expect output
buffers for results.

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

Plan Accessors Functions 3-15
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

Set whether the input buffers are going to be overwritten with results
Function CLAMDFFTAPI clAmdFftStatus clAmdFftSetResultLocation (clAmdFftPlanHandle

plHandle, clAmdFftResultLocation placeness)

Description Set whether the input buffers are going to be overwritten with results.
If the setting is to do an in-place transform, the input buffers are overwritten with the results of
the transform. If the setting is for out-of-place transforms, the engine knows to look for separate
output buffers on the enqueue call.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

in plHandle Handle to a previously created plan.

in placeness Tells the FFT engine to overwrite the input buffers or to expect output
buffers for results.

Get buffer size (in bytes), which may be needed internally for an intermediate buffer
Function CLAMDFFTAPI clAmdFftStatus clAmdFftGetTmpBufSize (const clAmdFftPlanHandle

plHandle, size_t * buffersize)

Description Get buffer size (in bytes), which may be needed internally for an intermediate buffer.
Very large FFT transforms may need multiple passes, and the operation might need a temporary
buffer to hold intermediate results. This function is only valid after the plan is baked; otherwise,
an invalid operation error is returned. If buffersize returns 0, the runtime needs no temporary
buffer.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

in plHandle Handle to a previously created plan.

out buffersize Size in bytes for intermediate buffer.

Retrieve the final transpose setting of a multi-dimensional FFT
Function CLAMDFFTAPI clAmdFftStatus clAmdFftGetPlanTransposeResult(const

clAmdFftPlanHandle plHandle, clAmdFftResultTransposed *transposed)

Description Retrieve the final transpose setting of a muti-dimensional FFT. A multi-dimensional FFT typically
transposes the data several times during calculation. If the client does not care about the final
transpose to put data back in proper dimension, the final transpose can be skipped for possible
speed improvements.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

in plHandle Handle to a previously created plan.

out transposed Parameter specifies whether the final transpose can be skipped.

A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G TE C H N O L O G Y

3-16 Plan Accessors Functions
Copyright © 2012 Advanced Micro Devices, Inc. All rights reserved.

Set the final transpose setting of a multi-dimensional FFT
Function CLAMDFFTAPI clAmdFftStatus clAmdFftSetPlanTransposeResult(clAmdFftPlanHandle

plHandle, clAmdFftResultTransposed transposed)

Description Set the final transpose setting of a muti-dimensional FFT. A multi-dimensional FFT typically
transposes the data several times during calculation. If the client does not care about the final
transpose to put data back in proper dimension, the final transpose can be skipped for possible
speed improvements.

Parameters

Returns Enum describing error condition; superset of OpenCL error codes.

in plHandle Handle to a previously created plan.

out transposed Parameter specifies whether the final transpose can be skipped.

	OpenCL Fast Fourier Transforms (FFTs)
	clAmdFft
	Contents
	Chapter 1 OpenCL Fast Fourier Transforms (FFTs)
	1.1 Installation of clAmdFft library
	1.1.1 Downloadable Binaries
	1.1.1.1 CMake
	1.1.1.2 Boost

	1.2 Introduction to clAmdFft
	1.2.1 Supported Transform Sizes
	1.2.2 Transform Size Limits
	1.2.3 Dimensionality
	1.2.4 Setup and Teardown of clAmdFft
	1.2.5 Thread Safety
	1.2.6 Row-Major Formats
	1.2.7 OpenCL Object Creation
	1.2.8 Flushing Command Queues

	1.3 clAmdFft Plans
	1.3.1 Default Plan Values
	1.3.2 Supported Memory Layouts
	1.3.2.1 Strides and Distances

	1.3.3 Supported Precisions in clAmdFft
	1.3.4 clAmdFftDirection
	1.3.5 In-Place and Out-of-Place
	1.3.6 Batches

	1.4 Using clAmdFft on a Client Application
	1.5 FFTs of Real Data
	Figure 1.1 Forward and Backward Transform Processes
	Figure 1.2 1D Real FFT of Length N
	Figure 1.3 Example for N = 8.
	Figure 1.4 Example for N = 7.
	1.5.1 Supported Modes
	1.5.2 Examples
	Figure 1.5 1D FFT - Real to Hermitian
	Figure 1.6 1D FFT - Real to Hermitian, Example 1
	Figure 1.7 1D FFT - Real to Hermitian, Example 2
	Figure 1.8 1D FFT - Real to Hermitian, Example 3
	Figure 1.9 1D FFT - Hermitian to Real, Example
	Figure 1.10 1D FFT - Hermitian to Real Example 4
	Figure 1.11 2D FFT - Real to Hermitian In Place
	Figure 1.12 2D FFT Real to Hermitian, Example

	Chapter 2 Class Documentation
	2.1 clAmdFftSetupData Struct Reference
	2.1.1 Description
	2.1.2 Member Data Documentation
	2.1.2.1 cl ulong clAmdFftSetupData::debug Flags
	2.1.2.2 cl uint clAmdFftSetupData::major
	2.1.2.3 cl uint clAmdFftSetupData::minor
	2.1.2.4 cl uint clAmdFftSetupData::patch

	2.2 Global Values
	2.2.1 Detailed Description
	2.2.2 Define Documentation
	2.2.2.1 #define CLAMDFFTAPI
	2.2.2.2 #define CLFFT DUMP PROGRAMS 0x1

	2.2.3 Enumeration Type Documentation
	2.2.3.1 enum clAmdFftDim
	2.2.3.2 enum clAmdFftDirection
	2.2.3.3 enum clAmdFftLayout
	2.2.3.4 enum clAmdFftPrecision
	2.2.3.5 enum clAmdFftResultLocation
	2.2.3.6 enum clAmdFftStatus
	2.2.3.7 enum clAmdFftResultTransposed

	Chapter 3 Function Documentation
	3.1 Libary Management Functions
	3.2 Plan Management Functions
	3.3 Plan Accessors Functions

