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1 Introduction

Cobalt is LOFAR’s new digital back end, succeeding the BG/P at 2013-12-31
at the latest (Broekema et al. 2013). It will consist of several Linux servers
equipped with NVIDIA Graphical Processing Units (GPUs), interconnected by
an infiniband network. The GPUs will do most of the number crunching, while
the servers themselves are responsible for data I/O and higher level logic.

Besides cross-correlating station data streams to produce interferometric vis-
ibilities, Cobalt will be combining data streams from multiple stations by coher-
ently or incoherently adding them. This is done by the beam former pipeline.

This memo presents a mathematical description of the Cobalt beam for-
mer pipeline, including an analysis of delay compensationand a proposal for a
coherent dedispersion algorithm that properly takes into account all relevant
preceding and succeeding time frames.

2 High level design

Cobalt supports coherent and incoherent addition of station data. A fly’s eye
mode, in which all stations may point in different directions, is implemented
through multiple parallel observations. All modes allow optional online coherent
dedispersion. If time permits, online flagging of broad-band pulsed RFI and
narrow band RFI will be implemented on the station streams, and bit-reduction
will be implemented just before writing the data to storage.

Figure 1 gives an overview of the successive operations performed on a single
sub band’s data by Cobalt’s beam former pipeline.

2.1 Per station

The first step is full sample delay compensation of the incoming station data at
a resolution of 5.12 or 6.4 µs for the 200 and 160 MHz clocks, respectively. The
delay that is compensated for is the sum of the geometrical delay, known clock
delay, and normalization delays per polarization and antenna set at the stations
due to station calibration. In other words, the total delay from the moment the
wave front hits the antenna set’s phase centre until time stamping at the RSP
boards just before the data are sent to Groningen.

This is followed by conversion of the samples from integers to floats. Fringe
stopping is done by taking an F -point FFT, multiplying by a phase slope across
the band, and an inverse F -point FFT. The upper limit to the transform length
F is determined by the maximum allowable time between sub-sample delay
compensation corrections. See Sect. 4 for details.

At this stage, each sample again has the full band width of the sub band. The
high time resolution allows for sensitive flagging of broad band, impulsive inter-
ference. The data stream is subsequently Fourier transformed to the frequency
domain. To guarantee sufficient parallelism, this must be at least a 4096 point
transform, but coherent dedispersion may require even more micro-channels. At
this stage, the station’s poly phase filter’s band pass is compensated, and we
allow for additional flagging of narrow-band interference.

All steps until now have been performed on the data streams from individual
stations. What happens next depends on which data products are required.
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Figure 1: High level flow diagram of the Cobalt tied array beam former pipeline
for a single sub band.
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Each data product is a combination of data from one or more stations. For
each data product, one must therefore make a selection of stations required to
compute it.

2.2 Coherent Stokes

The coherent stokes mode performs coherent averaging of one or more stations.
If coherent dedispersion is required, this can be done either before, or after
the averaging of the complex voltages. If the number of tied array beams M
is larger than the number of stations S, and every tied array beam has the
same dispersion measure, it will be done before averaging, otherwise afterwards.
This approach maximizes the amount of memory available to buffer data for
compensating large dispersion measures at low frequencies.

There is much more memory available at the CPUs than at the GPUs, so
preferably, coherent dedispersion is done in CPU memory. Unfortunately, it is
not yet clear if the band width between GPU and CPU memory is large enough
to accommodate the data rate.

After coherent dedispersion and averaging over the stations, the data are
Fourier transformed back to the maximum time resolution. In Fig. 1 this is
indicated by a 4K inverse Fourier transform. Evidently, this transform must
have the same length as the Fourier transform before correction of the station’s
poly phase filter band pass. The data are transformed to the final frequency
resolution using a combination of a 16-tap poly phase filter (PPF) and a Fourier
transform to guarantee excellent channel separation.

If the user required Stokes parameters, they are computed at this stage.
For complex voltages in x and y, the Stokes conversion step is skipped. Note
that the Stokes parameters are not Stokes parameters in the IAU definition and
celestial reference frame, but rather just

I = xx∗ + yy ∗ (1)

Q = xx∗ − yy∗ (2)

U = xy∗ + yx∗ (3)

V = i (xy∗ − yx∗) (4)

These quantities can be converted to true astronomical Stokes parameters by
applying the appropriate Mueller matrix of the element beam during post pro-
cessing.

The final time resolution of the data can optionally be reduced by averaging
spectra in time before writing them to the storage cluster. The pulsar group
also requests an optional bit reduction step to reduce the data rate by a factor
up to 4. This will only be implemented if time permits.

2.3 Incoherent Stokes

The incoherent Stokes mode uses the same processing steps as the coherent
Stokes mode, but in a different order. For incoherent averaging, the Stokes
conversion is always required, and must be done before averaging the station
streams. A direct consequence in this design is that dedispersion of incoherent
stokes data will only be implemented before averaging the station streams.
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2.4 Fly’s eye

Fly’s eye observations, in which all stations may be pointing in different, inde-
pendent directions, will be implemented as parallel observations. A limited fly’s
eye mode, with all stations pointing in the same direction, but recording data
for each station individually, can be implemented as a single observation with
one tied array beam per station and a different station selected for each tied
array beam.

3 Fourier transforms

For developing a constant flux scale at the output of Cobalt, it is important
that all Fourier transform pairs are normalized. Cobalt uses the FFTW library
to implement the Fourier transforms. The time domain to frequency transforms
are using FFTW FORWARD, which computes

yi =
n−1∑
j=0

xje
−2πiij/n, (5)

where i =
√
−1. The frequency-to-time domain transforms use FFTW BACKWARD:

yi =

n−1∑
j=0

xje
+2πiij/n. (6)

From the FFTW manual:

FFTW computes an unnormalized transform, that is, the equa-
tion F−1(F(~x)) = n~x holds. In other words, applying the forward
and then the backward transform will multiply the input by n.

An FFTW FORWARD transform corresponds to a sign of −1 in the
exponent of the DFT. Note also that we use the standard ”in-order”
output ordering – the k-th output corresponds to the frequency k/n
(or k/t, where t is your total sampling period). For those who like
to think in terms of positive and negative frequencies, this means
that the positive frequencies are stored in the first half of the output
and the negative frequencies are stored in backwards order in the
second half of the output. (The frequency −k/n is the same as the
frequency (n− k)/n.)

To make the amplitude of an astrophysical signal independent of the num-
ber of channels that is used, the output of the time-to-frequency transforms
(FFTW FORWARD) must be divided by the number of points in that transform.
The transforms back to the time domain (FFTW BACKWARD) may then not be
normalized.

4 Delay compensation

The path length difference between radiation from a source arriving at the centre
of LOFAR (CS002LBA), and at a distant station, changes as a function of time
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due to the earth’s rotation. The rate of change is largest for stations exactly
east or west of the centre and with the source at transit mid-way between the
centre and that station.

In this configuration, the maximum rate of change in the path length towards
a source at declination δ is

ṡ = ωed cos δ m s−1, (7)

where ωe = 7.29211585 · 10−5 rad s−1 is the sidereal angular velocity of the
earth, and d is the distance between the station and LOFAR’s core in m. The
same equation can be written in units of time:

τ̇ =
ωe

c
d cos δ s s−1, (8)

where c is the speed of light in vacuo, or in phase:

φ̇ =
2πνωe

c
d cos δ rad s−1. (9)

Fringe stopping of the residual delay is done at an interval tu. If tu is too
large, the signal will decorrelate by a fraction

fd = 1−
sin 1

2∆φ
1
2∆φ

, (10)

where ∆φ is the phase change over the interval tu. For a dynamic range of order
1 000 000:1, given a point spread function with side lobes at the 10−3 level, one
requires the visibility amplitudes to be good to about 1 part in a 1 000. When
∆φ� 1,

fd ≈
∆φ2

24
, (11)

hence
∆φ ≈

√
24fd. (12)

Filling in fd ≤ 10−3 yields ∆φ ≤ 0.155 rad, or ∆φ ≤ 8.9◦. The interval tu is
then given by

tu =
∆φ

φ̇
. (13)

These update intervals, along with the corresponding maximum FFT lengths
for the 200 MHz clock, are listed in Tab. 2. The FFT lengths are calculated as
follows:

nFFT ≤ tu
νclk
1024

, (14)

where νclk is the clock frequency at the stations: either 200 or 160 MHz.
Because the fringe correction is done by applying a per-channel phase rota-

tion, only the centre of each channel is fully corrected. Within a channel, there
remains a phase slope that goes back and forth at the same interval, and with
the same slope as a function of frequency as the one that is being corrected for
the sub band as a whole. The amplitude of this phase wiggle at the edge of a
channel is ∆φ = 2π

nch
, where nch is the number of channels in a sub band. This

leads to a small amount of decorrelation, increasing towards the edges of the
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Table 1: Maximum delay rates for core, remote, and international stations.
Includes phase rates at 80, 180, and 250 MHz.

Distance ṡ τ̇ φ̇80 φ̇180 φ̇250
(km) (m s−1) (ns s−1) (rad s−1) (rad s−1) (rad s−1)
3 0.219 0.730 0.367 0.825 1.15
100 7.29 24.3 12.2 27.5 38.2
1500 109 365 183.4 412 573

Table 2: Maximum update interval and FFT length for sub-sample delay com-
pensation for core, remote, and international stations 80, 180, and 250 MHz. tu
is the maximum allowed interval between successive fringe corrections. nFFT is
computed for the 200 MHz clock.

Distance tu,80 nFFT tu,180 nFFT tu,250 nFFT
(km) (ms) (ms) (ms)
3 422 82421 188 36718 135 26367
100 12.7 2480 5.64 1101 4.05 791
1500 0.845 165 0.376 73 0.271 53

channels used for fringe stopping. The average decorrelation within a channel
is thus given by the integral of Eq. (11) over the channel width:

fd,ch = 2

∫ 2π/nch

0

φ2

24
dφ. (15)

Solving for nch:

nch = π 3

√
2

9fd,ch
. (16)

Filling in fd ≤ 10−3 yields nch ≥ 19. Of course, because we are in the complex
domain, nFFT from Eq. (14) is equal to nch in Eq. (16). The optimum FFT
length in terms of delay compensation accuracy and decorrelation, seems there-
fore given by the maximum of 32 and the first power of two below nFFT as given
in Eq. (14).

Path length differences up to 1500 km must be computed with errors of at
most about 6 cm, but preferably much smaller (mm). This implies one needs
at least 7 significant digits in the computation of the path length difference,
requiring double precision numbers in the calculation thereof. Once this delay
is divided into an integer number of time samples and a fractional sample delay,
application of the sub sample delay (fringe stopping) can easily be done in single
precision.
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5 Int to float conversion

Here, the constant scaling factor of 16 between 8-bit and 16-bit mode should be
applied. That is, 8-bit data must be multiplied by a factor 16 when they are
converted to floats. 16-bit data can be left as-is.

6 Online flagging

Because all streams of station data are added in real time, beam formed obser-
vations are very sensitive to radio frequency interference (RFI) at the stations.
One misbehaving station, electric fence, or thunderstorm, can ruin an entire
observation. This is why the LOFAR pulsar group requests the ability to ex-
cise suspicious data at the station level, before the station data streams are
combined.

Question: Replace with zeroes?
Question: Propagate flag mask?
Question: Propagate flag count?

7 Station PPF correction

The station poly phase filter correction will be computed in the same way as
is done on the BG/P. The main difference in the application is that that is
happening at (much) higher frequency resolution here.

8 Coherent dedispersion

The interstellar medium (ISM) disperses cosmic radio signals propagating through
it. Signals arrive later at lower frequencies. The delay

t = D
(

DM

ν2

)
, (17)

where the dispersion measure

DM =

∫ d

0

ne(s) ds pc cm−3, (18)

and the dispersion constant

D =
kee

2

2πmec
≈ 4148.808± 0.003 MHz2 pc−1 cm3 s. (19)

Because the delay t is proportional to the square of the wave length, absolute
delays of minutes to hours are possible in the lower end of the LOFAR frequency
range. For example, the Lorimer burst (DM ≈ 375 pc cm−3) would be delayed
by almost half an hour at 30 MHz.

Fortunately, only the differential delay between the top and bottom of a sub
band determines the smearing within a sub band, not the absolute delay. For
the same burst at 30 MHz, the differential delay across a sub band is “only” 22
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Table 3: Differential dispersion delays in seconds across a sub band of 195 kHz
(200 MHz clock).

ν (MHz) 30 50 110 150 210
DM (pc cm−3)

100 6 1.3 0.12 0.05 0.017
500 30 6.5 0.61 0.24 0.087

2500 150 32 3.04 1.20 0.437

seconds. Table 3 lists differential delays for a number of (very) high dispersion
measures at several representative LOFAR frequencies.

To correct for dispersion, one needs to apply a frequency dependent delay
to the data. In the current BG/P implementation, this is done by computing
τk, the delay between channel k and the central frequency of the sub band,
converting this delay to a complex phase factor

e+2πi(νk−νc)τk , (20)

with

τk = D ×DM×
(

1

ν2k
− 1

ν2c

)
, (21)

where νc is the frequency of the sub band’s central channel, and νk is the
frequency of channel k.

In Eq. (20), if τk is positive (pulse arrives later than at νc), the pulse is shifted
to an earlier time (array index closer to 0), if the time-to-frequency transform
is FFTW FORWARD, and samples are sorted such that time increases linearly with
array index. After applying this chirp factor, the data are transformed back to
the time domain. This is done one time slice (spectrum) at a time.

The main problem with this approach is that information that is shifted
into the previous or next spectrum, is lost. Table 3 clearly shows that we must
aim at buffering data for of order seconds to be able to dedisperse the most
strongly dispersed pulsars or flashes, which have dispersion measures around
1500 pc cm−3. This would require humongous Fourier transforms, without
actually solving the problem.

The approach for Cobalt will therefore be slightly different. In Cobalt, the
data are at a frequency resolution of a few thousand micro-channels by the time
dedispersion is to be performed. For Cobalt, νc will be the central frequency of
the output channel that is closest in frequency to νk to ensure that the pulse
is still dispersed from channel to channel and sub band to sub band. Figure 2
illustrates the situation for all the micro channels that together make up one
output channel. It shows consecutive complex spectra at t0, t1, t2, t3, t4, t5,
etc, at intervals

∆t =
nch
∆ν

, (22)

where nch is the number of micro-channels in each time slice and ∆ν is the
band width of a sub band. The grey squares indicate high amplitudes due to a
dispersed pulse in the data.
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Figure 2: Coherent dedispersion in Cobalt.

For every micro-channel k, one can calculate the delay τk from Eq. (21),
where a negative delay indicates the pulse arrives at micro-channel k before it
arrives at the central channel. This delay can subsequently be divided into an
integer number of time slices

τk,int =

⌊
τk
∆t

+
1

2

⌋
, (23)

and a fraction of a time slice

τk,frac =
τk
∆t
− τk,int. (24)

Note that |τk,frac| ≤ 1
2 .

In Fig. 2, time slice t3 is being dedispersed. The shifted output value for
channel k at time ti is computed by taking the three-point FFTW FORWARD Fourier
transform of channel k of time slices i+ τk,int − 1 until i+ τk,int + 1, applying a
constant fractional delay factor in the Fourier domain to compensate for τk,frac,
and taking a three-point FFTW BACKWARD transform back. The central pixel of
the result is the output of channel k at time slice i.

Because these are only three-point Fourier transforms, and we only need one
output value, we can write out the expression analytically. We first define t−1,
t0, and t+1 to be the complex samples in channel k one time slot before, exactly
at, and one time slot after the time slot τk,int away from the time slot we are
currently de-dispersing. Fourier transforming to the frequency domain, we get

f−1 =
1

3

(
t−1e−2πi/3 + t0 + t+1e+2πi/3

)
(25)

f0 =
1

3
(t−1 + t0 + t+1) (26)
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f+1 =
1

3

(
t−1e+2πi/3 + t0 + t+1e−2πi/3

)
, (27)

where 1
3 is the normalization of the Fourier transform. Multiplying with the

phase factor to do the sub-sample shift gives:

f ′−1 = f−1e−2πiτk,frac/3 (28)

f ′0 = f0 (29)

f ′+1 = f+1e+2πiτk,frac/3 (30)

The corrected value t′0 is now simply

t′0 = f ′−1 + f ′0 + f ′+1. (31)

There is no need to compute t′−1 and t+1, because we do not need them for this
step.

After completing this procedure for time slice i, we repeat the entire process
for time slice i + 1. Because the assumed DM is constant during the entire
processing stage, τk,int and τk,frac can be computed in advance.

We do still need to evaluate how the change of νc between blocks of micro-
channels affects the transform back to the time domain, followed by the PPF+FFT
to the final frequency resolution.

9 Final channel separation

• Same as BG/P, except at the end of the pipeline, instead of at the begin-
ning.

• 16-tap PPF plus FFT in forward direction.

10 Bit reduction

• Scaling and offset re-computed from data every N samples, where N is a
“reasonably large” number.

• Needs file format definition to agree on where and how to store the scales
and offsets.
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