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1 Averaging and calibrating the visibilities

We start from the input data, the visibilities Vi(t, R, b, ν), containing the
cross correlation of the station we aim to calibrate with all the reference
stations, as a function of time t, reference station R, beamlet b, frequency ν.
Each element contains the four products of the polarisations from the two
stations as a coherency matrix[

XX∗ XY ∗

Y X∗ Y Y ∗

]
Step 1: Average over time. Average Vi over M time samples. The averag-

ing in this step should be small (1-10 seconds) as the ionospheric and other
time variable effects are only removed in the next step.

Va(Tl, R, b, ν) =
1

M

(l+1)·M∑
m=l·M

Vi(tm, R, b, ν) (1)

With new time Tl=
tl·M+t(l+1)·M

2
, and the summation is performed in each

polarization ( XX∗, XY ∗, Y X∗, Y Y ∗ ).
There is also averaging in time in the pre-processing pipeline, but for

commissioning purposes, it’s also required in this analysis step.
Step 2: Right multiply with the inverse visibility Va at the reference

beamlet rb for each timestep.

VC(TI , R, b, ν) = Va(Tl, R, b, ν)Va(Tl, R, rb, ν)−1 (2)

For a 2 x 2 matrix the inverse is given by
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[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
Step 3: Average again over time, now over the full duration. We could

select one polarisation P here to analyse.

VR(R, b, ν, P ) =
1

M

M∑
m=0

VC(Tm, R, b, ν, P ) (3)

Step 4: Average over the reference stations, using weight wi

V (b, ν, P ) =
1

w(b, ν, P )

NR∑
i=0

wi(b, ν, P )VR(Ri, b, ν, P ) (4)

with NR the total number of stations and w(b, ν, P ) =
∑

iwi(b, ν, P ). A
choice for the weights is wi = 1/σ2

VR
(Ri, b, ν, P ), but we also want to be able

to specify other weights, that for example only change per station and not
per beam.

2 Error propagation

We’ll need to do proper error propagation. We’ll start with determining the
uncertainty in step 3, if enough time samples are available.

Step 3: The uncertainty σVR on VR is the standard deviation with degrees
of freedom M − 1. The standard deviation is determined for the real (Re)
and imaginary (Im) part separately.

σVR(R, b, ν, P ) =

√√√√ 1

M − 1

M∑
m=0

(Re[VC(Tm, R, P )− VR(R,P )])2 (5)

+ i

√√√√ 1

M − 1

M∑
m=0

(Im[VC(Tm, R, P )− VR(R,P )])2 (6)

where on the right side dependencies on b, ν are not shown.
Step 4: We are averaging using weights wi, thus the uncertainties should

also be weighted with these values. Given < V >= 1
w

∑
iwiVi

2



σ2
<V > =

∑(
d < V >

dVi

)2

σ2
Vi

=
1

w2

∑
i

w2
i σ

2
Vi

(7)

Thus

σV (b, ν, P )2 =
1

w2

NR∑
i=0

w2
i σ

2
VR

(Ri, b, ν, P ) (8)

In case wi = 1
σ2
VR

(Ri,b,ν,P )
this becomes

σV (b, ν, P )2 =
1

w(b, ν, P )
(9)

but in general the weights may be different.

3 Solving for the gains

Step 5: Solve the linear equation for each frequency ν and polarization P

V (b, ν, P ) = M(ν, b, A) ·G(ν, P,A) (10)

with G(ν, P,A) the gain of antenna A at frequency ν for polarization P ,
Mb,A = 1

NA
e−2πiν(lbxA+mbyA)/c with NA the total number of antennas.

As M is not a square matrix, we’ll need to find the best solution to the
following equation:

G = (MTM)−1MTV (11)

As there is an uncertainty in the measumerment of V, the solution is
not exact. One way to solve this, is with a least squares approach. This is
implemented in the numpy.linalg.lstsq function.

We may trust some visibilities more than others. Therefore we also want
to be able to solve a weighted equation of this form. This is the solution to:

G = (MTWM)−1MTWV (12)

where W are the squares of the weights given to V. The default value for
W is a diagonal matrix of the form:

Wbb =
1

σ2
V (b, ν, P )

(13)
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This would be the solution to the equation:

wV (b, ν, P ) = wM(ν, b, A) ·G(ν, P,A) (14)

where w =
√
W . It should also be possible to give a costum w or W

function in the (re-)analysis.

4 Interpolating the gains

The gain solution itself is the gain at each subband. We assume the gain is
of the form:

G(ν) = (a+ bν)e2πiτν+φ0 (15)

This is solved for every antenna A and polarization P for parameters a, b, τ, φ0

by using a Monte Carlo procedure. This also gives an estimate on σG. We
should also be able to estimate σG from the calculations above, but this
method still needs to be derived. We so far have picked a reference antenna
first (typically antenna 0) and divided the gains by the value for that antenna.
Some further tests need to verify if that is actually the best way to do this.
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