Skip to content
Snippets Groups Projects
Select Git revision
  • spider
  • master default protected
  • v0.1.0rc6
  • v0.1.0rc5
  • v0.1.0rc4
  • v0.1.0rc3
  • v0.1.0rc2
  • v0.0.9x
  • 0.0.9x
  • v0.0.9
10 results

AGLOW

  • Clone with SSH
  • Clone with HTTPS
  • AGLOW

    Documentation Status Build Status

    Automated Grid-Enabled LOFAR Workflows

    AGLOW is a combination of the GRID LOFAR Reduction Tools and Apache Airflow. In order to efficiently use the Computational Resources provided to us at SURFsara, the AGLOW package includes custom Airflow Operators. These operators can be combined to build LOFAR workflows, from a single NDPPP run to full Direction Dependent Imaging.

    Setup

    The AGLOW package is best set up in a conda environment. The included environment.yml package will create a conda env named 'AGLOW' and set up all the prerequisites to run an AGLOW server. The usave is as such:

    conda env create -f environment.yml 
    mkdir ~/AGLOW_tutorial{,/dags}
    export AIRFLOW_HOME=~/AGLOW_tutorial
    
    conda  create -n AGLOW_tutorial python=3.6
    source activate AGLOW_tutorial
    
    export SLUGIFY_USES_TEXT_UNIDECODE=yes
    pip install aglow
    
    #To install postgress in Userspace:
    ./AGLOW/scripts/setup_postgres.sh
    ## If launching fails, check the log, you might need to change the configurations at 
    ## ${AIRFLOW_HOME}/postgres/database/postgresql.conf
    
    #Run each of these command inside a screen: 
    airflow scheduler
    airflow webserver