Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
L
LOFAR-calculator
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Iterations
Merge Requests
0
Merge Requests
0
Requirements
Requirements
List
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Test Cases
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Package Registry
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issue
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Astronomy and Operations
SDC Operations
LOFAR-calculator
Commits
d2058b39
Commit
d2058b39
authored
Jan 13, 2020
by
sarrvesh
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
pylinted code
parent
f29860fa
Changes
5
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
1091 additions
and
1058 deletions
+1091
-1058
.pylintrc
.pylintrc
+22
-0
backend.py
backend.py
+186
-185
calculator.py
calculator.py
+297
-290
generatepdf.py
generatepdf.py
+134
-130
targetvis.py
targetvis.py
+452
-453
No files found.
.pylintrc
0 → 100644
View file @
d2058b39
[MASTER]
ignore=
[BASIC]
good-names =
lv,
ie,
d,
i,
c,
ra,
dec,
ax,
bandwidth,
n
[FORMAT]
max-line-length = 84
[TYPECHECK]
ignored-modules=astropy,ephem
backend.py
View file @
d2058b39
"""Functions to validate user-input"""
import
numpy
as
np
from
astropy.coordinates
import
SkyCoord
def
compute_baselines
(
nCore
,
nRemote
,
nInt
,
hbaMode
):
"""For a given number of core, remote, and international stations
and the HBA mode, compute the number of baselines formed by
the array. The number of baselines includes autocorrelations."""
if
'hba'
in
hbaMode
:
nStations
=
(
2
*
nCore
)
+
nRemote
+
nInt
else
:
nStations
=
nCore
+
nRemote
+
nInt
return
(
nStations
*
(
nStations
+
1
))
/
2
def
compute_baselines
(
n_core
,
n_remote
,
n_int
,
hba_mode
):
"""For a given number of core, remote, and international stations
and the HBA mode, compute the number of baselines formed by
the array. The number of baselines includes autocorrelations."""
if
'hba'
in
hba_mode
:
n_stations
=
(
2
*
n_core
)
+
n_remote
+
n_int
else
:
n_stations
=
n_core
+
n_remote
+
n_int
return
(
n_stations
*
(
n_stations
+
1
))
/
2
def
calculate_im_noise
(
n_core
,
n_remote
,
n_int
,
hba_mode
,
obs_t
,
n_sb
):
"""Calculate the image sensitivity for a given number of stations, HBA/LBA mode,
observation time, and number of subbands."""
# Hardcoded value for subband width
sb_width
=
195.3125
# kHz
# Hardcoded values for station SEFD
core_sefd
=
{
'lba'
:
38160
,
'hba'
:
2820
}
remote_sefd
=
{
'lba'
:
38160
,
'hba'
:
1410
}
int_sefd
=
{
'lba'
:
18840
,
'hba'
:
710
}
# Figure out whether the user wants to observe with LBA or HBA.
if
'hba'
in
hba_mode
:
mode
=
'hba'
n_core
*=
2
else
:
mode
=
'lba'
# Calculate the bandwidth in MHz
bandwidth
=
n_sb
*
sb_width
*
1.E3
bandwidth
/=
1.E6
def
calculate_im_noise
(
nCore
,
nRemote
,
nInt
,
hbaMode
,
obsT
,
nSB
):
"""Calculate the image sensitivity for a given number of stations, HBA/LBA mode,
observation time, and number of subbands."""
# Hardcoded value for subband width
sbWidth
=
195.3125
# kHz
# Hardcoded values for station SEFD
coresefd
=
{
'lba'
:
38160
,
'hba'
:
2820
}
remotesefd
=
{
'lba'
:
38160
,
'hba'
:
1410
}
intsefd
=
{
'lba'
:
18840
,
'hba'
:
710
}
# Figure out whether the user wants to observe with LBA or HBA.
if
'hba'
in
hbaMode
:
mode
=
'hba'
nCore
*=
2
else
:
mode
=
'lba'
# Calculate the bandwidth in MHz
bandwidth
=
nSB
*
sbWidth
*
1.E3
bandwidth
/=
1.E6
# Calculate the sensitivity
prodcc
=
coresefd
[
mode
]
if
hbaMode
==
'hbadualinner'
:
# SEFD of the tapered remote station is the same as a core station
prodrr
=
coresefd
[
mode
]
else
:
prodrr
=
remotesefd
[
mode
]
prodii
=
intsefd
[
mode
]
prodcr
=
np
.
sqrt
(
prodcc
)
*
np
.
sqrt
(
prodrr
)
prodci
=
np
.
sqrt
(
prodcc
)
*
np
.
sqrt
(
prodii
)
prodri
=
np
.
sqrt
(
prodrr
)
*
np
.
sqrt
(
prodii
)
nccbl
=
nCore
*
(
nCore
-
1
)
/
2
nrrbl
=
nRemote
*
(
nRemote
-
1
)
/
2
niibl
=
nInt
*
(
nInt
-
1
)
/
2
ncrbl
=
nCore
*
nRemote
ncibl
=
nCore
*
nInt
nribl
=
nRemote
*
nInt
denom
=
4
*
bandwidth
*
obsT
*
1.E6
*
(
(
nccbl
/
prodcc
**
2
)
+
(
nrrbl
/
prodrr
**
2
)
+
\
(
niibl
/
prodii
**
2
)
+
(
ncrbl
/
prodcr
**
2
)
+
\
(
ncibl
/
prodci
**
2
)
+
(
nribl
/
prodri
**
2
)
)
imNoise
=
1
/
np
.
sqrt
(
denom
)
imNoise
*=
1.E6
# In uJy
return
'{:0.2f}'
.
format
(
imNoise
)
# Calculate the sensitivity
prodcc
=
core_sefd
[
mode
]
if
hba_mode
==
'hbadualinner'
:
# SEFD of the tapered remote station is the same as a core station
prodrr
=
core_sefd
[
mode
]
else
:
prodrr
=
remote_sefd
[
mode
]
prodii
=
int_sefd
[
mode
]
prodcr
=
np
.
sqrt
(
prodcc
)
*
np
.
sqrt
(
prodrr
)
prodci
=
np
.
sqrt
(
prodcc
)
*
np
.
sqrt
(
prodii
)
prodri
=
np
.
sqrt
(
prodrr
)
*
np
.
sqrt
(
prodii
)
nccbl
=
n_core
*
(
n_core
-
1
)
/
2
nrrbl
=
n_remote
*
(
n_remote
-
1
)
/
2
niibl
=
n_int
*
(
n_int
-
1
)
/
2
ncrbl
=
n_core
*
n_remote
ncibl
=
n_core
*
n_int
nribl
=
n_remote
*
n_int
denom
=
4
*
bandwidth
*
obs_t
*
1.E6
*
\
((
nccbl
/
prodcc
**
2
)
+
(
nrrbl
/
prodrr
**
2
)
+
\
(
niibl
/
prodii
**
2
)
+
(
ncrbl
/
prodcr
**
2
)
+
\
(
ncibl
/
prodci
**
2
)
+
(
nribl
/
prodri
**
2
))
im_noise
=
1
/
np
.
sqrt
(
denom
)
im_noise
*=
1.E6
# In uJy
return
'{:0.2f}'
.
format
(
im_noise
)
def
calculate_raw_size
(
obs
T
,
intTime
,
nBaselines
,
nChan
,
nSB
):
"""Compute the datasize of a raw LOFAR measurement set given the
length of the observation, correlator integration time, number
of baselines, number of channels per subband, and number of subbands"""
nRows
=
int
(
nBaselines
*
(
obsT
/
intTime
)
)
-
nB
aselines
# A single row in LofarStMan format contains
# - 32-bit sequence number (4 bytes)
# - nChan*16-bit samples for weight and sigma calculation (2*nC
han bytes)
# - 4*nChan*2*float data array (4*nC
han*2*4 bytes)
sbSize
=
nRows
*
((
4
)
+
(
2
*
nChan
)
+
(
4
*
nC
han
*
2
*
4
))
/
(
1024
*
1024
*
1024
)
# in GB
totSize
=
sbSize
*
nSB
return
'{:0.2f}'
.
format
(
totS
ize
)
def
calculate_raw_size
(
obs
_t
,
int_time
,
n_baselines
,
n_chan
,
n_sb
):
"""Compute the datasize of a raw LOFAR measurement set given the
length of the observation, correlator integration time, number
of baselines, number of channels per subband, and number of subbands"""
n_rows
=
int
(
n_baselines
*
(
obs_t
/
int_time
))
-
n_b
aselines
# A single row in LofarStMan format contains
# - 32-bit sequence number (4 bytes)
# - n_chan*16-bit samples for weight and sigma calculation (2*n_c
han bytes)
# - 4*n_chan*2*float data array (4*n_c
han*2*4 bytes)
sb_size
=
n_rows
*
((
4
)
+
(
2
*
n_chan
)
+
(
4
*
n_c
han
*
2
*
4
))
/
(
1024
*
1024
*
1024
)
# in GB
tot_size
=
sb_size
*
n_sb
return
'{:0.2f}'
.
format
(
tot_s
ize
)
def
calculate_proc_size
(
obsT
,
intTime
,
nBaselines
,
nChan
,
nSB
,
pipeType
,
tAvg
,
fAvg
,
dyCompress
):
"""Compute the datasize of averaged LOFAR measurement set given the
length of the observation, integration time, number of baselines,
pipeline type, time and frequency averaging factor, and
enable dysco compression."""
if
pipeType
==
'none'
:
return
''
elif
pipeType
==
'preprocessing'
:
# Change nChan to account for fAvg
nChan
//=
fAvg
# Change integT to account for tAvg
intTime
*=
tAvg
nRows
=
int
(
nBaselines
*
(
obsT
/
intTime
)
)
-
nBaselines
# What does a single row in an averaged MS contain?
sbSize
=
nRows
*
((
7
*
8
)
+
\
(
4
+
(
4
*
nChan
))
+
\
(
4
*
11
)
+
\
(
8
*
1
)
+
\
(
4
)
+
\
(
4
*
(
8
+
8
*
nChan
+
4
*
nChan
))
)
# Convert byte length to GB
sbSize
/=
(
1024
*
1024
*
1024
)
totSize
=
sbSize
*
nSB
# Reduce the data size if dysco is enabled.
if
dyCompress
==
'enable'
:
totSize
=
totSize
/
3.
return
'{:0.2f}'
.
format
(
totSize
)
else
:
pass
def
calculate_proc_size
(
obs_t
,
int_time
,
n_baselines
,
n_chan
,
n_sb
,
pipe_type
,
t_avg
,
f_avg
,
dy_compress
):
"""Compute the datasize of averaged LOFAR measurement set given the
length of the observation, integration time, number of baselines,
pipeline type, time and frequency averaging factor, and
enable dysco compression."""
if
pipe_type
==
'none'
:
return
''
elif
pipe_type
==
'preprocessing'
:
# Change n_chan to account for f_avg
n_chan
//=
f_avg
# Change integ_t to account for t_avg
int_time
*=
t_avg
n_rows
=
int
(
n_baselines
*
(
obs_t
/
int_time
))
-
n_baselines
# What does a single row in an averaged MS contain?
sb_size
=
n_rows
*
((
7
*
8
)
+
\
(
4
+
(
4
*
n_chan
))
+
\
(
4
*
11
)
+
\
(
8
*
1
)
+
\
(
4
)
+
\
(
4
*
(
8
+
8
*
n_chan
+
4
*
n_chan
)))
# Convert byte length to GB
sb_size
/=
(
1024
*
1024
*
1024
)
tot_size
=
sb_size
*
n_sb
# Reduce the data size if dysco is enabled.
if
dy_compress
==
'enable'
:
tot_size
=
tot_size
/
3.
return
'{:0.2f}'
.
format
(
tot_size
)
def
validate_inputs
(
obs
T
,
nCore
,
nRemote
,
nInt
,
nSB
,
integT
,
tAvg
,
f
Avg
,
srcName
,
coord
,
hbaM
ode
):
"""Valid text input supplied by the user: observation time, number of
subbands, and integration time. Following checks will be performed:
- obs
T
ime is a valid positive number
- n
C
ore is not None
- n
R
emote is not None
- n
I
nt is not None
- n
Core+nRemote+nI
nt is at least 1
- n
SB
is an integer and is at least 1 or greater
- integ
T
is a valid positive number greater than or equal to 0.16
- t
A
vg is an integer
- f
A
vg is an integer
- src
N
ame is a string
def
validate_inputs
(
obs
_t
,
n_core
,
n_remote
,
n_int
,
n_sb
,
integ_t
,
t_avg
,
f
_avg
,
src_name
,
coord
,
hba_m
ode
):
"""Valid text input supplied by the user: observation time, number of
subbands, and integration time. Following checks will be performed:
- obs
_t
ime is a valid positive number
- n
_c
ore is not None
- n
_r
emote is not None
- n
_i
nt is not None
- n
_core+n_remote+n_i
nt is at least 1
- n
_sb
is an integer and is at least 1 or greater
- integ
_t
is a valid positive number greater than or equal to 0.16
- t
_a
vg is an integer
- f
_a
vg is an integer
- src
_n
ame is a string
- coord is a valid AstroPy coordinate
- While observing with HBA, check if the targets are inside the tile beam.
Return state=True/False accompanied by an error msg
Note: all input parameters are still strings."""
msg
=
''
# Validate the length of the observing time
try
:
float
(
obsT
)
if
not
float
(
obsT
)
>
0
:
msg
+=
'Observation time cannot be zero or negative.
\n
'
except
ValueError
:
msg
+=
'Invalid observation time specified.
\n
'
# Validate the number of stations
if
nCore
<
0
or
nC
ore
>
24
:
msg
+=
'Number of core stations must be between 0 and 24.
\n
'
if
nRemote
<
0
or
nR
emote
>
14
:
msg
+=
'Number of remote stations must be between 0 and 14.
\n
'
if
nInt
<
0
or
nI
nt
>
14
:
msg
+=
'Number of international stations must be between 0 and 14.
\n
'
if
nCore
+
nRemote
+
nI
nt
<
2
:
msg
+=
'At least 2 station must be included.
\n
'
# Validate the number of subbands
try
:
int
(
nSB
)
if
int
(
nSB
)
<
1
:
msg
+=
'Number of subbands cannot be less than 1.
\n
'
if
int
(
nSB
)
>
488
:
msg
+=
'Number of subbands cannot be larger than 488.
\n
'
except
ValueError
:
msg
+=
'Invalid number of subbands specified.
\n
'
# Validate integration time
try
:
float
(
integT
)
if
float
(
integT
)
<
0.16
:
msg
+=
'Invalid integration time specified. Must be >= 0.16
\n
'
except
:
msg
+=
'Invalid integration time specified.
\n
'
# Validate time averaging factor
try
:
int
(
str
(
tA
vg
))
except
ValueError
:
msg
+=
'Invalid time averaging factor specified.'
# Validate frequency averaging factor
try
:
int
(
str
(
fA
vg
))
except
ValueError
:
msg
+=
'Invalid frequency averaging factor specified.'
# Validate the coordinates specified under target setup
if
coord
is
not
''
:
# Warn if the number of targets do not match the number of coordinates
if
len
(
srcN
ame
.
split
(
','
))
!=
len
(
coord
.
split
(
','
)):
msg
+=
'Number of target names do not match the number of coordinates. '
# Check if the coordinates are valid
try
:
for
i
in
range
(
len
(
coord
.
split
(
','
))):
SkyCoord
(
coord
.
split
(
','
)[
i
])
except
:
msg
+=
'Invalid coodinate value under Target setup. Please make '
+
\
'sure it is compatible with the AstroPy formats.'
# While observing with HBA, check if the specified targets all lie within 10 deg
coord_list
=
coord
.
split
(
','
)
if
'hba'
in
hbaM
ode
and
len
(
coord_list
)
>
1
:
refP
oint
=
SkyCoord
(
coord_list
[
0
])
angD
istance
=
[]
for
i
in
range
(
1
,
len
(
coord_list
)):
thisP
oint
=
SkyCoord
(
coord_list
[
i
])
angDistance
.
append
(
thisPoint
.
separation
(
refP
oint
).
deg
)
maxDistance
=
np
.
max
(
np
.
asarray
(
angD
istance
))
if
maxD
istance
>
10.
:
msg
+=
'Maximum angular separation between specified target pointings
'
+
\
'is {:.2f} degrees. This is not allowed while '
.
format
(
maxD
istance
)
+
\
'
observing with the High Band Antenna'
# If any error has been triggered above, return the error message
if
msg
is
not
''
:
return
False
,
msg
else
:
return
True
,
msg
Return state=True/False accompanied by an error msg
Note: all input parameters are still strings."""
msg
=
''
# Validate the length of the observing time
try
:
float
(
obs_t
)
if
float
(
obs_t
)
<=
0
:
msg
+=
'Observation time cannot be zero or negative.
\n
'
except
ValueError
:
msg
+=
'Invalid observation time specified.
\n
'
# Validate the number of stations
if
n_core
<
0
or
n_c
ore
>
24
:
msg
+=
'Number of core stations must be between 0 and 24.
\n
'
if
n_remote
<
0
or
n_r
emote
>
14
:
msg
+=
'Number of remote stations must be between 0 and 14.
\n
'
if
n_int
<
0
or
n_i
nt
>
14
:
msg
+=
'Number of international stations must be between 0 and 14.
\n
'
if
n_core
+
n_remote
+
n_i
nt
<
2
:
msg
+=
'At least 2 station must be included.
\n
'
# Validate the number of subbands
try
:
int
(
n_sb
)
if
int
(
n_sb
)
<
1
:
msg
+=
'Number of subbands cannot be less than 1.
\n
'
if
int
(
n_sb
)
>
488
:
msg
+=
'Number of subbands cannot be larger than 488.
\n
'
except
ValueError
:
msg
+=
'Invalid number of subbands specified.
\n
'
# Validate integration time
try
:
float
(
integ_t
)
if
float
(
integ_t
)
<
0.16
:
msg
+=
'Invalid integration time specified. Must be >= 0.16
\n
'
except
:
msg
+=
'Invalid integration time specified.
\n
'
# Validate time averaging factor
try
:
int
(
str
(
t_a
vg
))
except
ValueError
:
msg
+=
'Invalid time averaging factor specified.'
# Validate frequency averaging factor
try
:
int
(
str
(
f_a
vg
))
except
ValueError
:
msg
+=
'Invalid frequency averaging factor specified.'
# Validate the coordinates specified under target setup
if
coord
is
not
''
:
# Warn if the number of targets do not match the number of coordinates
if
len
(
src_n
ame
.
split
(
','
))
!=
len
(
coord
.
split
(
','
)):
msg
+=
'Number of target names do not match the number of coordinates. '
# Check if the coordinates are valid
try
:
for
i
in
range
(
len
(
coord
.
split
(
','
))):
SkyCoord
(
coord
.
split
(
','
)[
i
])
except
:
msg
+=
'Invalid coodinate value under Target setup. Please make '
+
\
'sure it is compatible with the AstroPy formats.'
# While observing with HBA, check if the specified targets all lie within 10 deg
coord_list
=
coord
.
split
(
','
)
if
'hba'
in
hba_m
ode
and
len
(
coord_list
)
>
1
:
ref_p
oint
=
SkyCoord
(
coord_list
[
0
])
ang_d
istance
=
[]
for
i
in
range
(
1
,
len
(
coord_list
)):
this_p
oint
=
SkyCoord
(
coord_list
[
i
])
ang_distance
.
append
(
this_point
.
separation
(
ref_p
oint
).
deg
)
max_distance
=
np
.
max
(
np
.
asarray
(
ang_d
istance
))
if
max_d
istance
>
10.
:
msg
+=
'Maximum angular separation between specified target
'
+
\
'pointings is {:.2f} degrees. This is '
.
format
(
max_d
istance
)
+
\
'not allowed while
observing with the High Band Antenna'
# If any error has been triggered above, return the error message
if
msg
is
not
''
:
return
False
,
msg
else
:
return
True
,
msg
calculator.py
View file @
d2058b39
This diff is collapsed.
Click to expand it.
generatepdf.py
View file @
d2058b39
from
datetime
import
datetime
,
timedelta
"""Functions to generate PDF file"""
from
datetime
import
datetime
import
os
from
fpdf
import
FPDF
,
HTMLMixin
import
matplotlib.dates
as
mdates
import
matplotlib.pyplot
as
plt
import
os
# Dummy class needed to generate the PDF file
class
MyFPDF
(
FPDF
,
HTMLMixin
):
pass
class
MyFPDF
(
FPDF
,
HTMLMixin
):
"""Dummy class"""
pass
def
convert_figure_to_axis_info
(
figure
):
"""For a given Graph Figure object, return
xaxis (a list of datetime.datetime objects),
yaxis (a list of source elevation), and
label (name of the source as a string)."""
time_axis
=
figure
[
'x'
]
xaxis
=
[]
for
val
in
time_axis
:
d
=
datetime
.
strptime
(
val
,
'%Y-%m-%dT%H:%M:%S'
)
xaxis
.
append
(
d
)
yaxis
=
figure
[
'y'
]
label
=
figure
[
'name'
]
return
xaxis
,
yaxis
,
label
def
make_pdf_plot
(
elevation_fig
,
outfilename
):
"""For a given elevation_fig object and output filename, generate a
matplotlib plot and write it to disk."""
fig
,
ax
=
plt
.
subplots
(
1
,
1
,
figsize
=
(
8
,
5
))
for
figure
in
elevation_fig
[
'data'
]:
xaxis
,
yaxis
,
label
=
convert_figure_to_axis_info
(
figure
)
ax
.
plot
(
xaxis
,
yaxis
,
label
=
label
)
hour_loc
=
(
0
,
3
,
6
,
9
,
12
,
15
,
18
,
21
)
ax
.
xaxis
.
set_major_locator
(
mdates
.
HourLocator
(
hour_loc
))
ax
.
xaxis
.
set_major_formatter
(
mdates
.
DateFormatter
(
'%H:%M'
))
plt
.
xlabel
(
'Time (UTC)'
)
plt
.
ylabel
(
'Elevation (deg)'
)
plt
.
title
(
'Target visibility plot'
)
if
len
(
elevation_fig
[
'data'
])
>
1
:
ax
.
legend
()
plt
.
tight_layout
()
plt
.
savefig
(
outfilename
,
dpi
=
100
)
def
generate_pdf
(
pdf_file
,
obs_t
,
n_core
,
n_remote
,
n_int
,
n_chan
,
n_sb
,
integ_t
,
antenna_set
,
pipe_type
,
t_avg
,
f_avg
,
is_dysco
,
im_noise_val
,
raw_size
,
proc_size
,
pipe_time
,
elevation_fig
,
distance_table
):
"""Function to generate a pdf file summarizing the content of the calculator.
Return nothing."""
# Create an A4 sheet
pdf
=
MyFPDF
(
'P'
,
'mm'
,
'A4'
)
pdf
.
add_page
()
pdf
.
set_font
(
'Arial'
,
''
,
16
)
# Generate an html string to be written to the file
string
=
'<table border="0" align="left" width="80%">'
string
+=
'<thead><tr><th width="70%" align="left">Parameter</th>'
string
+=
'<th width="30%" align="left">Value</th></tr></thead>'
string
+=
'<tbody>'
string
+=
'<tr><td>Observation time (in seconds)</td>'
string
+=
' <td>{}</td></tr>'
.
format
(
obs_t
)
string
+=
'<tr><td>No. of stations</td>'
string
+=
' <td>({}, {}, {})</td></tr>'
.
format
(
n_core
,
n_remote
,
n_int
)
string
+=
'<tr><td>No. of subbands</td>'
string
+=
' <td>{}</td></tr>'
.
format
(
n_sb
)
string
+=
'<tr><td>No. of channels per subband</td>'
string
+=
' <td>{}</td></tr>'
.
format
(
n_chan
)
string
+=
'<tr><td>Integration time (in seconds)</td>'
string
+=
' <td>{}</td></tr>'
.
format
(
integ_t
)
string
+=
'<tr><td>Antenna set</td>'
string
+=
' <td>{}</td></tr>'
.
format
(
antenna_set
)
string
+=
'<tr></tr>'
string
+=
'<tr><td>Pipeline type</td>'
if
pipe_type
==
'none'
:
string
+=
' <td>{}</td></tr>'
.
format
(
'None'
)
else
:
string
+=
' <td>{}</td></tr>'
.
format
(
'Preprocessing'
)
string
+=
'<tr><td>Averaging factor (time, freq)</td>'
string
+=
' <td>{}, {}</td></tr>'
.
format
(
t_avg
,
f_avg
)
string
+=
'<tr><td>Dysco compression</td>'
if
is_dysco
==
'enable'
:
string
+=
' <td>{}</td></tr>'
.
format
(
'enabled'
)
else
:
string
+=
' <td>{}</td></tr>'
.
format
(
'disabled'
)
string
+=
'<tr></tr>'
string
+=
'<tr><td>Theoretical image sensitivity (uJy/beam)</td>'
string
+=
' <td>{}</td></tr>'
.
format
(
im_noise_val
)
string
+=
'<tr><td>Raw data size (in GB)</td>'
string
+=
' <td>{}</td></tr>'
.
format
(
raw_size
)
if
pipe_type
!=
'none'
:
string
+=
'<tr><td>Processed data size (in GB)</td>'
string
+=
' <td>{}</td></tr>'
.
format
(
proc_size
)
string
+=
'<tr><td>Pipeline processing time (in hours)</td>'
string
+=
' <td>{}</td></tr>'
.
format
(
pipe_time
)
string
+=
'</tbody>'
string
+=
'</table>'
# Generate a matplotlib plot showing the same plot as in the target
# visibility plot
if
elevation_fig
!=
{}:
# User has specified at least one source in the target setup
png_file_name
=
pdf_file
.
replace
(
'summary'
,
'plot'
).
replace
(
'pdf'
,
'png'
)
make_pdf_plot
(
elevation_fig
,
png_file_name
)
# Add the elevation plot to html
string
+=
'<center>'
string
+=
'<img src={} width=400 height=250>'
.
format
(
png_file_name
)
string
+=
'</center>'
def
convertFigureToAxisInfo
(
figure
):
"""For a given Graph Figure object, return
xaxis (a list of datetime.datetime objects),
yaxis (a list of source elevation), and
label (name of the source as a string)."""
time_axis
=
figure
[
'x'
]
xaxis
=
[]
for
val
in
time_axis
:
d
=
datetime
.
strptime
(
val
,
'%Y-%m-%dT%H:%M:%S'
)
xaxis
.
append
(
d
)
yaxis
=
figure
[
'y'
]
label
=
figure
[
'name'
]
return
xaxis
,
yaxis
,
label
# Add the distance table to the PDF
if
distance_table
!=
{}:
title
=
distance_table
[
'layout'
][
'title'
]
string
+=
'<center><b>{}</b></center>'
.
format
(
title
)
string
+=
'<table border="0" align="left" width="80%">'
col_titles
=
distance_table
[
'data'
][
0
][
'header'
][
'values'
]
col_width
=
100
//
len
(
col_titles
)
string
+=
'<thead><tr>'
for
item
in
col_titles
:
string
+=
'<th width="{}%" align="left">'
.
format
(
col_width
)
+
\
item
+
'</th>'
string
+=
'</tr></thead>'
string
+=
'<tbody>'
tab_data
=
distance_table
[
'data'
][
0
][
'cells'
][
'values'
]
# Transpose tab_data and write cells to the table
tab_data
=
list
(
map
(
list
,
zip
(
*
tab_data
)))
for
row
in
tab_data
:
string
+=
'<tr>'
for
item
in
row
:
string
+=
'<td>{}</td>'
.
format
(
item
)
string
+=
'</tr>'
string
+=
'</tbody>'
string
+=
'</table>'
def
makePdfPlot
(
elevation_fig
,
outfilename
):
"""For a given elevation_fig object and output filename, generate a
matplotlib plot and write it to disk."""
fig
,
ax
=
plt
.
subplots
(
1
,
1
,
figsize
=
(
8
,
5
))
for
figure
in
elevation_fig
[
'data'
]:
xaxis
,
yaxis
,
label
=
convertFigureToAxisInfo
(
figure
)
ax
.
plot
(
xaxis
,
yaxis
,
label
=
label
)
hour_loc
=
(
0
,
3
,
6
,
9
,
12
,
15
,
18
,
21
)
ax
.
xaxis
.
set_major_locator
(
mdates
.
HourLocator
(
hour_loc
))
ax
.
xaxis
.
set_major_formatter
(
mdates
.
DateFormatter
(
'%H:%M'
))
plt
.
xlabel
(
'Time (UTC)'
)
plt
.
ylabel
(
'Elevation (deg)'
)
plt
.
title
(
'Target visibility plot'
)
if
len
(
elevation_fig
[
'data'
])
>
1
:
ax
.
legend
()
plt
.
tight_layout
()
plt
.
savefig
(
outfilename
,
dpi
=
100
)
# Write text to the pdf file
pdf
.
write_html
(
string
)
def
generatepdf
(
pdffile
,
obsT
,
nCore
,
nRemote
,
nInt
,
nChan
,
nSb
,
integT
,
antSet
,
pipeType
,
tAvg
,
fAvg
,
isDysco
,
imNoiseVal
,
rawSize
,
procSize
,
pipeTime
,
elevation_fig
,
distance_table
,
isMsgBoxOpen
):
"""Function to generate a pdf file summarizing the content of the calculator.
Return nothing."""
# Create an A4 sheet
pdf
=
MyFPDF
(
'P'
,
'mm'
,
'A4'
)
pdf
.
add_page
()
pdf
.
set_font
(
'Arial'
,
''
,
16
)
# Generate an html string to be written to the file
string
=
'<table border="0" align="left" width="80%">'
string
+=
'<thead><tr><th width="70%" align="left">Parameter</th>'
string
+=
'<th width="30%" align="left">Value</th></tr></thead>'
string
+=
'<tbody>'
string
+=
'<tr><td>Observation time (in seconds)</td>'
string
+=
' <td>{}</td></tr>'
.
format
(
obsT
)
string
+=
'<tr><td>No. of stations</td>'
string
+=
' <td>({}, {}, {})</td></tr>'
.
format
(
nCore
,
nRemote
,
nInt
)
string
+=
'<tr><td>No. of subbands</td>'
string
+=
' <td>{}</td></tr>'
.
format
(
nSb
)
string
+=
'<tr><td>No. of channels per subband</td>'
string
+=
' <td>{}</td></tr>'
.
format
(
nChan
)
string
+=
'<tr><td>Integration time (in seconds)</td>'
string
+=
' <td>{}</td></tr>'
.
format
(
integT
)
string
+=
'<tr><td>Antenna set</td>'