1 LSMTool: the LOFAR Local Sky Model Tool|

LSMTool is a Python package which allows for the manipulation of sky models in the makesourcedb format (under-
stood by BBS and NDPPP). Note that LSMTool is still in beta. Please report bugs to drafferty @hs.uni-hamburg.de.
To initialize your environment for LSMTool, users on CEP1 and CEP2 should run the following commands:

use LoflIm
source “rafferty/init_lsmtool

Note that the Pythonlibs LOFAR package includes an older version of astropy that conflicts with LSMTool and cannot

be used in conjunction with it.

1.1 Usage

The command-line version of LSMTool can be run as follows:

Usage: 1lsmtool.py <skymodel> <parset> [<beam MS>]
Options:
--version show program’s version number and exit
-h, --help show this help message and exit
-q Quiet
-V Verbose

The parset specifies the operations to perform and their parameters. These are described in the next sections.

1.2 Operations

These are the operations that LSMTool can perform:
SELECT : Select sources by source or patch properties
REMOVE : Remove sources by source or patch properties
TRANSFER : Transfer a patch scheme from one sky model to another
GROUP : Group sources into patches

UNGROUP : Remove patches

MOVE : Move a source or patch position

MERGE : Merge two or more patches into one
CONCATENATE : Concatenate two sky models

ADD : Add a source

SETPATCHPOSITIONS : Calculate and set patch positions

PLOT : Plot a simple representation of the sky model

I"This section is maintained by David Rafferty (drafferty@hs.uni-hamburg.de).

1.3 Example parset

This is an example parset that filters on the flux, adds a source, and then groups the sources into patches:

LSMTool.Steps = [selectbright, addsrc, grp, setpos]

Select only sources above 1 mly
LSMTool.Steps.selectbright.Operation = SELECT
LSMTool.Steps.selectbright.FilterExpression = I > 1.0 mly

Add a source
LSMTool.Steps.addsrc.Name = new_source
LSMTool.Steps.addsrc.Type = POINT
LSMTool.Steps.addsrc.Ra = 277.4232
LSMTool.Steps.addsrc.Dec = 48.3689
LSMTool.Steps.addsrc.I = 0.69

Group using tessellation to a target flux of 50 Jy
LSMTool.Steps.grp.Operation = GROUP
LSMTool.Steps.grp.Algorithm = tessellate
LSMTool.Steps.grp.TargetFlux = 50.0 Jy
LSMTool.Steps.grp.Method = mid

Set the patch positions to their midpoint and write final skymodel
LSMTool.Steps.setpos.Method = mid
LSMTool.Steps.setpos.Outfile = grouped.sky

In the first line of this parset the step names are defined. Steps are applied sequentially, in the same order defined
in the list of steps. A list of step-specific parameters is given in Table/[I]

1.4 Interactive use and scripting

LSMTool can also be used interactively (in IPython, for example) or in Python scripts without the need for a parset.
To use LSMTool in a Python script or interpreter, import it as follows:

>>> import lsmtool
A sky model can then be loaded with, e.g.:
>>> LSM = lsmtool.load(’skymodel.sky’)

All of the operations described in Section are available as methods of the resulting sky model object (with the
same name as the corresponding operation). For example, the following commands with duplicate the steps done in
the example parset given in Section [I.3}

>>> LSM.select("I > 1.0 mly’)

>>> LSM.add({’Name’: ’new_source’, ’'Type’:’POINT’, 'Ra’:277.4232, ’Dec’:48.3689, 'I1’:0.69})
>>> LSM.group(algorithm="tesselate’, targetFlux="10.0 Jy’)

>>> LSM.setPatchPositions(method="mid’)

In many cases, the methods accept parameters with the same names as those used in a parset (see the full documentation
for details). The sky model can then written to a new file with:

>>> LSM.write(’grouped.sky’)

Additionally, sky models can be written out as ds9 region files and kvis annotation files (as well as all the formats
supported by the astropy.table package, such at VOTable, HDFS, and FITS):

Var Name Format Example Comment

Operation string SELECT An operation among those defined in Sec.
OutFile string out_sky_model.sky Name of output file

SELECT and REMOVE

FilterExpression string I>10.0Jy Filter for selection

Aggregate bool False Filter by aggregated patch property
ApplyBeam bool True If true, apparent fluxes will be used
TRANSFER

PatchFile string sky_model_with_patches.sky File with patches that will be transferred
GROUP

Algorithm string tessellate One of tessellate, cluster, single, every
TargetFlux string 10.0 Jy Target total flux of patches (tessellate only)
NumClusters int 100 Number of clusters (cluster only)

ApplyBeam bool True If true, apparent fluxes will be used
UNGROUP

MOVE

Name string srcl Name of source or patch to move.

Position list of floats [12.3,23.4] RA and Dec in degrees to move to

Shift list of floats [0.001, 0.0] RA and Dec in degrees to shift by

MERGE

Patches list of strings [binl, bin2, bin3] Patch names to merge

Name string merged_patch Name of new merged patch
SETPATCHPOSITIONS

Method string mid Set patch positions to mid, mean, or wmean positions
CONCATENATE

Skymodel2 string in_sky_model2.sky Name of second sky model to concatenate
MatchBy string position Identify duplicates by position or name
Radius string 30 arcsec Radius within which matches are identified
Keep string all If two sources match, keep: all, from1, or from2
ADD

Name string srcl Name of source; required

Type string POINT Type; required

Patch string new_patch Patch name; required if sky model has patches
RA float or string 12:45:30.4 RA; required

Dec float or string +76.45.02.48 Dec; required

I float 0.69 Flux in Jy; required

AnyValidColumnName value Any valid column name can be specified
PLOT

Table 1: Definition of variables in the LSMTool parset.

>>> LSM.write(’outskymodel.reg’, format='ds9’)
>>> LSM.write(’outskymodel.ann’, format=’kvis’)

>>> LSM.write(’outskymodel.fits’, format=’fits’)
>>> LSM.write(’outskymodel.hdf5’, format='hdf5’)
>>> LSM.write(’outskymodel.vo’, format=’votable’)

In addition to the operations described above, a number of other methods are available:
LSM.copy() : Return a copy of the sky model object
LSM.info() : Print information about the sky model

LSM.more() : Print the sky model to the screen, using more-like controls

LSM.getColNames() : Returns a list of the column names in the sky model
LSM.getColValues() : Returns a numpy array of column values
LSM.getRowIndex() : Returns the row index or indices for a source or patch
LSM.getRowValues() : Returns a table or row for a source or patch
LSM.getPatchPositions() : Returns patch RA and Dec values
LSM.getDefaltValues() : Returns column default values
LSM.getPatchSizes() : Returns an array of patch sizes

LSM.setColValues() : Sets column values

LSM.setRowValues() : Sets row values

LSM.setDefaultValues() : Sets default column values

For details on these methods, please see the full documentation.

	LSMTool: the LOFAR Local Sky Model Tool
	Usage
	Operations
	Example parset
	Interactive use and scripting

